

Import & Export

Utilities

GridSQL

Version 1.0

May 2008

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 2

Table of Contents

1. Table of Contents 2

2. 1 Introduction 3

1.1 Performance Considerations 3

3. 2 gs-loader 5

2.1 Handling Bad Input Lines 7

2.2 Example Usage 8

4. 3 gs-impex 9

3.1 Format File and Command Line options 9

3.2 Importing 11

3.3 Exporting 12

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 3

1 Introduction

The EnterpriseDB GridSQL offers three different methods for importing and exporting

data.

GridSQL supports EnterpriseDB’s COPY command. This can be invoked from

edb-psql or cmdline. A description of it appears in the GridSQL SQL

Reference Manual.

Another utility described in this document is gs-loader is available that adds

additional features that COPY lacks, such as retries.

The gs-impex utility is for both importing and exporting data to and from the

database. It is not as fast as gs-loader when importing, so using gs-loader or COPY

is recommended.

1.1 Performance Considerations

In populating the database as fast as possible, there are some things to consider.

1. After creating the tables, it is best to load data before creating any indexes or

primary or foreign key constraints. The entire process will complete sooner.

2. Modifying the parameters of the underlying database. You may want to

change the database configuration temporarily to speed up the loading or

data. For example:

a. Temporarily increasing the checkpoint_segments variable can also

make large data loads faster. This is because loading a large amount

of data into EnterpriseDB Advanced Server can cause checkpoints to

occur more often than the normal checkpoint frequency (specified by

the checkpoint_timeout configuration variable). Whenever a

checkpoint occurs, all dirty pages must be flushed to disk. By

increasing checkpoint_segments temporarily during bulk data loads,

the number of checkpoints that are required can be reduced.

b. Increase maintenance_work_mem. Temporarily increasing the

maintenance_work_mem configuration variable when loading large

amounts of data can lead to improved performance. This is because

when a B-tree index is created from scratch, the existing content of

the table needs to be sorted. Allowing the merge sort to use more

memory means that fewer merge passes will be required. A larger

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 4

setting for maintenance_work_mem may also speed up validation of

foreign-key constraints.

c. Fsync. Setting fsync in the postgresql.conf file to false is generally

not a good idea since it does not guarantee writes to disk have

occurred, but can be considered to disable temporarily when doing

initial loading of the database. We recommend leaving it set to the

default, true, but wanted to point out this option nonetheless.

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 5

2 gs-loader

Syntax:

gs-loader <connect> -t <table> [-c <column_list>] [-i <inputfilename>]

 [-f <delimiter>] [-z <NULL>]

 [-v [-q <quote>] [-e <escape>] -n <column_list>

 [-o] [-a] [-r <prefix>] [-w [<count>]] [-b <filename>]

 [-k <commit_interval>[,<autoreducing_rate>[,<min_interval>]]

 -y <badchunkdir>[-x]]

 where <connect> is –j jdbc:edb://<host>:<port>/<database>?

user=<username>&password=<password>

 or

 [-h <host>] [-s <port>] -d <database> -u <user> [-p <password>]

 -h <host> : Host where XDBServer is running. Default is localhost

 -s <port> : XDBServer's port. Default is 6453

 -d <database> : Name of database to connect to.

 -u <user>, -p <password> : Login to the database

 -t <table> : target table name

 -c <column_list> : comma or space separated list of columns

 -i <inputfilename> : name of file with data to be loaded.

 Standard input is used if omitted

 -f <delimiter> : field delimiter. Default is \t (tab character)

 -z <NULL> : value to indicate NULL. Default is \N

 -v : CSV mode

 -q <quote> : Quote character, default " (CSV mode only)

 -e <escape> : Escape of character. Default is quote character (double)

 (CSV mode only)

 -n <column_list>: Force not null. Values for this column are never

 treated as NULL, as if they was qouted

 -a : remove trailing delimiter

 -o : same as WITH OIDS

 -r <prefix> : ignore data lines starting from specified prefix

 -w [<count>] : verbose- every <count> lines (default 100000)

 display number of lines read

 -b <filename> : file where to output invalid lines for simple checks

 -k <commit_interval>[,<autoreducing_rate>[,<min_interval>]]:

 <commit_interval> : number of lines to commit at a time

 <autoreducing_rate> : if chunk failed, divide into this

 number of chunks and retry

 <min_interval> : do not further divide chunks of specified size

 -y <badchunkdir> : directory where to output failed chunks

 -x keep original format for failed chunks

The gs-loader utility acts as a front-end to the COPY command, and can connect to

either GridSQL or EnterpriseDB Advanced Server. The primary benefit it adds is the

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 6

retry functionality, so that data can be loaded even if some of the input lines are

malformed.

Options:

-a Added ending delimiter. By default, a field

delimiter is required only between the fields,

not after the final field. Including –a

indicates that a trailing final delimiter is

present.

-b bad_file Some basic checks will be done on the lines of

the input file, like number of fields. The bad

lines are written to bad_file, but the load

will continue. This should not be confused with

–k, which handles rejected lines from the

backend.

-c column_list List of columns to load. This allows for

specifying a subset of columns in the table

that correspond to the file being loaded up.

-d database The GridSQL database to connect to.

-e escape Only used in conjunction with –v, indicates the

quote escape character.

-f separator Separator. The field delimiter. Default is \\t

(tab character)

-h host Host to connect to

-i inputfile Input file to load from. If not specified, data

is loaded from stdin.

-j jdbcurl The JDBC url to use to connect to the GridSQL

Server

-k chunk_interval This instructs the loader to break up

committing the bulk load operations into

“chunks”, every chunk_interval rows. This is

useful because normally if even a single insert

fails on the back end, the entire load will

fail. Instead, -k will still allow good

segments of data to be committed, and just flag

bad ones that contain problematic input. The

bad chunks are created as new files at the path

location specified by –o. It is recommended to

try and use a fairly high chunk count if

possible, like 100000, for performance reasons

when loading a lot of data.

-o Generate an internal unique row identifier

(WITH OIDs).

-p The password to use when connecting. If not

included, the user will be prompted

-q quote Quote character

-r string Remark (comment) string. Lines that start with

this will be ignored. If used in conjunction

with –b, all bad input lines will be written

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 7

out to the bad file, preceded by a comment line

starting with the string here, explaining the

reason for the rejection.

-s port The socket port to connect to. By default it is

6453.

-t table Target table

-u username The username to use when connecting

-v CSV mode. File is comma separated value file.

-w count Write information (verbose). Displays how many

rows have been read every count lines, default

100000.

-x Used in conjunction with –k and –o. Without –x,

rejected lines appear in a format friendly to

the underlying database. With –x, they appear

in the original format.

-y bad_chunk_directory This is used in conjunction with –k, and

instructs the loader where to create bad chunk

files.

-z Value to indicate null. Default is \\N.

2.1 Handling Bad Input Lines

The loader contains additional options for handling input files that may cause errors

when loading. This will allow you to try and continue loading as much data as

possible, even if you encounter an error.

With –k, the input is broken out into the “chunk” row count specified. This allows

smaller discrete segments of the input file to be committed if there are not any

errors. Should an error occur on one of the backends, a new file will be created in

the directory specified by –y. This allows the user to try and clean up any problems

and reload the data, potentially in turn processing it in smaller and smaller chunks

until the data is clean.

The bad chunk files are created in the format:

 <database_host>_<node_database>_table_<internal_id>.dump

There is one file per target underlying database, in a format expected by the

backend. That means if –a was included, it will have stripped the lines.

The –k option also allows you to specify an auto-reduce rate and minimum row

amount, in addition to the chunk size, separated by commas, without any spaces.

The advantage of this is if a chunk is bad, the loader will automatically break it out

into “line count/auto-reduce rate” separate sub-chunks and to retry loading the rows

and narrow down the particular problematic lines. This process is repeatedly

recursively up until the minimum amount of specified rows.

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 8

The exact options to use with –k depend on how clean you think your data is. For

performance, if few errors are expected, a large count number should be used.

Example: -k 100000,10,1.

This will result in a chunk size of 100,000 being used. If a chunk fails, that is broken

out into 10 sub-chunks, resulting in chunks of 10,000 lines being used. Those that

fail will be broken out to 1,000, then 100, then 10, and finally 1. The loader will

have loaded up all of the lines that it could; the only remaining lines in the bad

chunk files are the ones that it could not load up.

2.2 Example Usage

gs-loader.sh –d BIGDB –u myuser –p mypassword –h localhost

-i /home/extendb/mig/order_fact.tbl -t orders -f '|'

-k 100000,20,1 –y /home/extendb/mig/bad

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 9

3 gs-impex

Like gs-loader, gs-impex can also be used to import data. It offers a little more

flexibility at the cost of slower load speeds. In addition, gs-impex includes the ability

to export data from tables as well.

Modes

There are 2 operating modes, import and export, the modes of which are mutually

exclusive. Import is invoked with the “-i” and export with –x, where in either case it

is followed by the source or target file.

An optional format file may be used with the “-f” option to allow more complex

mapping information to appear. If the import is relatively simple, the user can also
just enter the desired options on the command line.

3.1 Format File and Command Line options

Importing

 [INFILE=file_name]

 [TARGET=table_name]

 [OVERWRITING=[0|1] (default is 0)

 | IGNORE=[0|1]] (default is 0) (at most only one of these two can be set)

 [[DELIMITER=delimiter]

 |[column_name delimited_position, [n…]]]

 [ADD_TRAILING_DELIMITER=[0|1]] (default is 0)

 [TERMINATOR=terminator]

 [LOCK=[0|1]] (default is 0)

 [SILENT=[0|1]] (default is 0)

 [START_LINE=line_num]

 [END_LINE=line_num]

 [POSITION_FORMATTED { column_name start:stop, [n...] }]

 [QUOTED=quote_character]

 [COMMIT_INTERVAL=integer]

 [MAX_ERRORS=integer]

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 10

 [DATA_ERROR_FILE=filename]

 [DRIVERCLASS=driverclass] (default to extendb.connect.XDriver)]

 [JDBC_URL=jdbc_url of target database]

Exporting

 [EXTRACT=query_string]

 [OUTFILE=file_name]

 [TRIM_TRAILING_SPACES=[0|1] (default is 0)

A table appears below that describes both the command line options and the
format file parameters, depending on the preferred mode of usage.

Format File Value Command
Line
Option

Description

 -f Specifies a format file to use to allow more complex mapping information
to appear. Followed by the file name for the formatting. Command line
option only.

INFILE -i Import (-i), followed by the source file. If no source file specified, data is
read from stdin.

Required for command line operation

TARGET -t The target table, if importing

OUTFILE -x Export (-x), followed by the query sting and output or target file name.
Required for command line operation

EXTRACT (query string) -y The SQL query to run to get the data. If it is just a single word, it is
assumed to be the name of the table and will do a “SELECT * FROM
<table>”.

OVERWRITING or IGNORE -w, -g Used for handling input records that duplicate existing records on primary
key values. If OVERWRITING is specified, rows will get overwritten with
the new data, provided they have the same value for primary or unique
index as the row to be replaced. If IGNORE is specified, rows will be
ignored with the new data if they have the same value for primary or
unique index as the row to be replaced. If neither option is present, it will
always try and insert the row (default). These are mutually exclusive.

DELIMITER -d Default delimiter is pipe (|). Optionally, in the format file, it can be followed
by matching column names with the positional delimited items, to allow the
data to be mapped. Command line option for mapping column names is
not available.

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 11

ADD_TRAILING_DELIMITER -a Indicates that a final delimiter follows the last field.

TERMINATOR -z Default is carriage return

LOCK -l Whether or not to lock the entire table

SILENT -h If Omitted, the number of rows processed will be displayed every 10,000
rows. Default is verbose

START_LINE -s Default will begin at 1. This is useful if importing from a large file and
something goes wrong after 210,000 records for example. The import can
be restarted with the same import file, but told to start on line number
210,001.

END_LINE -e Default will be the end of file

POSITION_FORMATTED -p Used to match column_name with start and stop character positions of
data in the row, for non-delimited, fixed format import files.

QUOTED -q Used if data is quoted, surrounded by “ or ‘.

COMMIT_INTERVAL -c Default is to commit after each insert. Otherwise, batches will be used, and
the batch will be committed after every COMMIT_INTERVAL number of
rows. It is important to use this for faster loads. A default of 1000 is a
good value to start with.

MAX_ERRORS -m Default is 1. Set to any positive integer to instruct the loader to continue
processing up until at least that many errors occur. Setting to 0 (zero) will
ignore all errors, and always continue to load the next line from the file.

DATA_ERROR_FILE -r Specifies target file for rows that could not be loaded up successfully. This
way, the user can first try and load entire file, then just work with
problematic data in a separate file that could not be loaded up, and try
again.

JDBC_URL -j The JDBC URL for connecting to the server. For example:
jdbc:xdb:BIGDB:myuser/mypassword@extendbhost

DRIVERCLASS -C The driver class name, if exporting from other databases, for example, like:
com.edb.Driver.

TRIM_TRAILING_SPACES -T If set, strings that are read from the source that have trailing spaces in
them will be trimmed when writing to the output file. That is useful for
saving disk space for large files, but it can impact your data- if you were
expecting a column to contain a single space, for example, it will now be
empty.

3.2 Importing

A command line option should be available for use with all the commands unless

there are mapping columns used, as available POSITION_FORMATTED. If the

column order differs in the source file from the target table, the user must use a
format file to describe the mapping and cannot do this via the command line.

GridSQL Import & Export Utilities

. Copyright © 2008

 Page 12

Example:

Note that we must preceed & with backslash here.

gs-impex –c 1000 –d '|' -i customer.dat –t customer

–j

jdbc:edb://host:6453/BIGDB?user=usermyuser\&password=mypassword

This will import the customer.data file into customer, with a pipe delimiter and a
batch size of 1000, using the specified jdbc string.

3.3 Exporting

Examples:

Note that we must preceed & with backslash here.

 gs-impex –x orders.out –t orders

–j

jdbc:edb://host:6453/BIGDB?user=myuser\&password=mypassword

 gs-impex –x orders.out –y orders

–j

jdbc:edb://host:6453/BIGDB?user=usermyuser\&password=mypassword

 gs-impex –x orders.out –y “select * from orders”

–j

jdbc:edb://host:6453/BIGDB?user=usermyuser\&password=mypassword

The following example demonstrates using a format file and exporting from a

PostgreSQL database:

gs-impex –f format.txt

 where format.txt is:

EXTRACT=select * from atable

DRIVERCLASS=org.postgresql.Driver

JDBC_URL=jdbc:postgresql://localhost/mydb?user=myuser&passw

ord=mypassword

OUTFILE=/tmp/atable.txt

