
             
 

GridSQL Administration Guide 
 
 
 

GridSQL 
 

 Version 1.0 
  

 
 
 

 
 

  

 

 

 

 

 

 

 

 
 
 
 
 

May 2008 
 



GridSQL Administration Guide 
 

 

Page 2                                      Copyright © 2008      

Table of Contents 
 

Table of Contents ........................................................................................................2 
1  Introduction............................................................................................................4 
1.1 Overview .............................................................................................4 
1.2 References ...........................................................................................4 
2 Installation..........................................................................................................5 
2.1 Operating System .................................................................................5 

2.1.1 Additional Linux Kernel Settings.....................................................5 
2.1.1.1 Number of Open Files ................................................................5 
2.1.1.2 Read-Ahead .............................................................................6 
2.1.1.3 Access Time .............................................................................6 

2.2 Java ....................................................................................................6 
2.3 GridSQL ...............................................................................................7 

2.3.1 Linux ..........................................................................................7 
2.3.1.1 From the RPM File.....................................................................7 
2.3.1.2 From gridsql-0.9.tar.gz..............................................................8 
2.3.1.3 GridSQL Agents ......................................................................10 

2.3.2 MS-Windows..............................................................................11 
2.4 Underlying Database ...........................................................................12 

2.4.1 Logging Considerations ...............................................................12 
2.4.2 Initializing Underlying System......................................................12 
2.4.3 Network ....................................................................................13 
2.4.4 Configuring the Underlying Database ............................................13 
2.4.5 Date Style .................................................................................15 
2.4.6 Starting the Underlying Database Server Process ...........................15 
2.4.7 Database User ...........................................................................15 

2.4.7.1 Coordinator............................................................................16 
2.4.8 Verify .......................................................................................17 

3 GridSQL Configuration ........................................................................................18 
3.1 The gridsql.config File..........................................................................18 

3.1.1 Sample gridsql.config File............................................................19 
3.1.2 Configuring GridSQL Agents ........................................................21 

3.1.2.1 Agents...................................................................................22 
3.2 Initializing GridSQL..............................................................................24 

3.2.1 Manual Mode .............................................................................25 
3.3 Starting the Coordinator and Agents......................................................25 

3.3.1 Coordinator ...............................................................................25 
3.3.2 Agents ......................................................................................26 

3.4 Creating User Databases......................................................................26 
3.4.1 Example....................................................................................27 

3.5 Testing the Database...........................................................................27 
3.6 Starting and Stopping Databases ..........................................................28 
3.7 Dropping Databases ............................................................................28 
3.8 Planning.............................................................................................29 
3.9 Multi-Language and Unicode Support.....................................................30 
3.10 The gridsql.config Reference ...........................................................31 

3.10.1 Server Settings..........................................................................31 
3.10.2 Metedata Database Settings ........................................................32 



GridSQL Administration Guide 
 

 

Page 3                                      Copyright © 2008      

3.10.3 JDBC and Pool Settings ...............................................................33 
3.10.4 Multi-Language Support ..............................................................35 
3.10.5 Configuration for Underlying Database..........................................36 

3.10.5.1 Temp Table Handling ...........................................................36 
3.10.5.2 SQL Command Templates.....................................................37 
3.10.5.3 Date and Time Settings ........................................................39 
3.10.5.4 Other Settings.....................................................................39 
3.10.5.5 Gateway Settings for Administering Underlying Databases........41 

3.10.6 gs-loader settings ......................................................................41 
3.10.7 Data Types and Data Type Mapping..............................................42 
3.10.8 Function Mapping .......................................................................43 
3.10.9 Logging.....................................................................................45 

4 Users and Privileges ...........................................................................................46 
4.1 Introduction .......................................................................................46 
4.2 Users.................................................................................................46 
4.3 Privileges ...........................................................................................46 
5 Redundancy, Backup and Recovery ......................................................................47 
5.1 Redundancy .......................................................................................47 
5.2 Load Balancing ...................................................................................47 
5.3 Backup & Recovery .............................................................................49 
6 Command Reference ..........................................................................................50 
6.1 gs-cmdline .........................................................................................50 
6.2 gs-createdb........................................................................................52 
6.3 gs-createmddb ...................................................................................54 
6.4 gs-dropdb ..........................................................................................55 
6.5 gs-agent ............................................................................................56 
6.6 gs-dbstart ..........................................................................................57 
6.7 gs-dbstop...........................................................................................57 
6.8 gs-server ...........................................................................................58 
6.9 gs-shutdown ......................................................................................58 
6.10 gs-loader and gs-impex..................................................................59 
7 Isolation Levels and Locking ................................................................................60 
8 Troubleshooting .................................................................................................61 
8.1 Issues with Installation and Configuration ..............................................61 
8.2 Issues with Execution ..........................................................................61 
9 Appendices........................................................................................................63 
9.1 Appendix A – Metadata Database Schema..............................................63 
 



GridSQL Administration Guide 
 

 

Page 4                                      Copyright © 2008      

1  Introduction 
 

 

1.1 Overview 
 

This document describes how to install and configure EnterpriseDB GridSQL. In 

addition, it includes a command reference for administering the system. 

 

 

1.2 References 
GridSQL Planning Guide 

GridSQL Import & Export Utilities 

GridSQL SQL Reference 

 
 

 

 

 

 

 



GridSQL Administration Guide 
 

 

Page 5                                      Copyright © 2008      

2 Installation  
 

 

2.1 Operating System 
 

GridSQL can run under Linux or any other platform that supports Java. 

 

2.1.1 Additional Linux Kernel Settings 

 

There are some additional kernel configuration values that should be modified. The 

underlying database requires ample shared memory, so the kernel.shmmax, 

kernel.shmall and kernel.sem values should be increased. This can be set in the 

/etc/sysctl.conf file.  

 

The value of kernel.shmmax refers to the maximum size of shared memory 

segments in bytes, while kernel.shmmall is the total amount of shared memory 

available. These values should be set fairly high; you can start with 50% of available 

memory and monitor the system to adjust.  If a lot of system paging occurs, lower 

this value. Conversely, increase it if there is still a lot of available memory 

afterwards.   

 

The value kernel.shmni is for the system wide maximum number of shared memory 

segments. 4096 is a reasonable value. 

 

The kernel setting kernel.sem maps to four parameters: SEMMSL SEMMNS SEMOPM 
SEMMNI 

 

SEMMSL: maximum num of semaphores per id  

SEMMNS: maximum number of semaphores in system (SEMMNI*SEMMSL) 

SEMOPM: maximum num of ops per semop call  

SEMMNI: maximum number of semaphore identifiers 

 

Sample values for 2 GB of shared memory to be set in /etc/sysctl.conf (adjust 

shmmax and shmall, depending on desired shared memory): 

 
kernel.shmmax = 68719476736 

kernel.shmmni = 4096 

kernel.shmall = 4294967296 

kernel.sem = 1000 128000 100 128 

 

After modifying the file, execute “sysctl –p” to have these values take effect. 
 

2.1.1.1 Number of Open Files 
 



GridSQL Administration Guide 
 

 

Page 6                                      Copyright © 2008      

Depending on your configuration, you may run into errors involving a limit to the 

number of open files that your operating system allows the user to have. This is 

particularly likely when you have several nodes in the cluster.  

 

To change that, increase the limit of the number of files that can be open by 

modifying the /etc/security/limits.conf file, increasing the value for nofile.  

 

If you do not do this, you may encounter error messages like “unable to send to 

nodes”. 
 
 

2.1.1.2 Read-Ahead 
 

In data warehousing, tables are often scanned entirely, so having the operating 

system read ahead can significantly boost query times. You can increase the read-

ahead size for your RAID devices with the blockdev command: 

 
blockdev –-setra 16384 <device> 

 

 

2.1.1.3 Access Time 
 

Very often whenever files are accessed, the operating system will update the last 

time of read or write access for bookkeeping. To turn off this extra unnecessary 

overhead in Linux, modify the /etc/fstab file after you create your dedicated data 

partitions, and add the “noatime” attribute. 

 

 

2.2 Java 
 

GridSQL requires a Java Runtime Edition, version 5 or later. If installed with Postgres 

Plus Advanced Server’s installer, the version build 1.5.0_11-b03 is automatically 

installed along with GridSQL and works with it.  

 

If installing separately, you can download the JRE from http://java.sun.com.  Note 

that some Linux come with Java already installed, but these will not necessarily work 

with GridSQL.  For example, the pre-installed version of Java on Ubuntu 7.10 causes 

the GridSQL process to chew up CPU and is unresponsive. 

 

 



GridSQL Administration Guide 
 

 

Page 7                                      Copyright © 2008      

2.3 GridSQL 
 

The instructions for installing GridSQL vary, depending on the target operating 

system. 

 

We will discuss configuring the actual GridSQL system itself in the next chapter. 

 

2.3.1 Linux  

 

If you used an EnterpriseDB installer, these files will already be properly installed in 

a subdirectory named gridsql below the /opt/PostgresPlus/8.3AS directory, and 

you can skip this section. 

 

2.3.1.1 From the RPM File 
 

1. Login as root. 

 

2. We will install the RPM file.   

 
rpm –ivh gridsql-0.9-0.noarch.rpm 

 

including the full path to the rpm as necessary. This will create the GridSQL 

group and user, and install in the directory /usr/local/gridsql-0.9. 

 

At this point, it will create the following subdirectories: bin, lib, config, and 

log. The bin directory contains some scripts that are wrappers to make it 

easier to execute GridSQL programs, which are all java-based. The lib 

directory contains external jar libraries that are required by GridSQL. 

Configuration information that must be customized is found in the 

gridsql.config file in the config directory. Finally, a log directory is created 

for containing the server log files. 

 

3. Configure environment. Modify /usr/local/gridsql-0.9/gridsql_env.sh, if 

necessary. It includes the following lines: 

 
export GSPATH=/usr/local/gridsql-0.9 

 

export CLASSPATH=$GSPATH/lib/edb-jdbc14.jar:$CLASSPATH 

 

export PATH=$PATH:$GSPATH/bin 

 

The first line just defines the GSPATH environment variable, which is 

referenced in the scripts and must be set properly. 

 

The second line defines CLASSPATH, which is used by the script when 

executing java programs to find additional needed external libraries. This 

should be set to the JDBC jar file you are using to interact with the underlying 



GridSQL Administration Guide 
 

 

Page 8                                      Copyright © 2008      

database. In the example above, it is set to the default EnterpriseDB JDBC 

driver jar.  

 

The third line can be uncommented if you wish to include the $GSPATH/bin 

directory in the user’s environment as well. 

 

4. Users executing GridSQL programs should source the /usr/local/gridsql-

0.9/gridsql_env.sh file to have their environment set correctly: 

 
source /usr/local/gridsql-0.9/gridsql_env.sh 

 

or  

 
. /usr/local/gridsql-0.9/gridsql_env.sh 

 

The enterprisedb user and other users may want to reference this file in an 

appropriate profile file, like ~/.bash_profile.  These users should also be 

made part of the edb group, if they want to execute anything other than 

cmdline. For most commands, it is required that you execute them as the 

user enterprisedb. 

 

 

2.3.1.2 From gridsql-0.9.tar.gz 
 

Instead of an rpm file, a tarball (.tar.gz file) may be used instead to 

accommodate manual installations. 

 

5. If not already, change to user root: 

 
su – 

 

6. Create a user group edb, if it does not already exist: 

 
groupadd edb 

 

7. Create an operating system user enterprisedb: 

 
useradd -g edb enterprisedb 

 

8. All the files will be installed under /usr/local/gridsql-0.9. Extract the 

downloaded gzipped tar file to /usr/local/ 

 
tar xvzf gridsql0_9.tar.gz –C /usr/local 

 

At this point, it will create the following subdirectories: bin, lib, config, and 

log. The bin directory contains some scripts that are wrappers to make it 

easier to execute GridSQL programs, which are all java-based. The lib 

directory contains external jar libraries that are required by GridSQL. 

Configuration information that must be customized is found in the 



GridSQL Administration Guide 
 

 

Page 9                                      Copyright © 2008      

gridsql.config file in the config directory. Finally, a log directory is created 

for containing the server log files. 

 

9. Set ownership of the files correctly: 

 
chown enterprisedb –R /usr/local/gridsql-0.9 

chgrp enterprisedb –R /usr/local/gridsql-0.9 

 

10. We only allow the enterprisedb user to execute programs, except for cmdline. 

We also want to set other permissions: 

 
chmod 700 /usr/local/gridsql-0.9/bin/*.sh 

chmod 775 /usr/local/gridsql-0.9/log 

chmod 755 /usr/local/gridsql-0.9/bin/gs-cmdline.sh  

chmod 600 /usr/local/gridsql-0.9/config/* 

 

11. Configure environment. Modify /usr/local/gridsql-0.9/gridsql_env.sh. It 

includes the following lines: 

 
export GSPATH=/usr/local/gridsql-0.9 

 

export CLASSPATH=$GSPATH/lib/edb-jdbc14.jar 

 

#export PATH=$PATH:$GSPATH/bin 

 

The first line just defines the GSPATH environment variable, which is 

referenced in the scripts and must be set properly. 

 

The second line defines CLASSPATH, which is used by the script when 

executing java programs to find additional needed external libraries. This 

should be set to the JDBC jar file you are using to interact with the underlying 

database. In the example above, it is set to the EnterpriseDB JDBC driver jar.  

 

The third line can be uncommented if you wish to include the $GSPATH/bin 

directory in the user’s environment as well. 

 

12. Users executing GridSQL programs should source the /usr/local/gridsql-

0.9/gridsql_env.sh file to have their environment set correctly: 

 
source /usr/local/gridsql-0.9/gridsql_env.sh 

 

or  

 
. /usr/local/gridsql-0.9/gridsql_env.sh 

 

The GridSQL user and other users may want to reference this file in an 

appropriate profile file, like ~/.bash_profile.  These users should also be 

made part of the GridSQL group, if they want to execute anything other than 

cmdline. For most commands, it is required that you execute them as the 

user enterprisedb. 
 



GridSQL Administration Guide 
 

 

Page 10                                      Copyright © 2008      

 

2.3.1.3 GridSQL Agents 
 

If you wish to achieve better scalability and performance by having an agent run on 

each of the underlying nodes, repeat the procedure on each node that will participate 

in the database cluster.  

 

By default, each node agent will run within the main coordinator process. For better 

scalability and avoid having the coordinator node become a bottleneck, you can 

move this out onto each of the nodes, with each agent running as a separate 

process. 

 

It is recommended to first configure a centralized version without the 

agents running on the nodes and verify that the system is working properly, 

before configuring the agents. It is easier to isolate any configuration issues 

this way. 

 



GridSQL Administration Guide 
 

 

Page 11                                      Copyright © 2008      

2.3.2 MS-Windows 

 

There is no automatic installation program for Windows. We describe how to install 

GridSQL using a Zip file. 

 

1. Create an enterprisedb user, and login as enterprisedb. 

2. Create a directory named \enterprisedb. Unzip gridsql-0.9.zip, which will 

create a subdirectory named gridsql. 

 

At this point, it will create the following subdirectories: bin, lib, config, and 

log. The bin directory contains some scripts that are wrappers to make it 

easier to execute GridSQL programs, which are all java-based. The lib 

directory contains external jar libraries that are required by GridSQL. 

Configuration information that must be customized is found in the 

gridsql.config file in the config directory. Finally, a log directory is created 

for containing the server log file. 

 

3. Add the JDBC Driver required by your underlying database to the CLASSPATH 

environment variable. The PostgreSQL-compatible EnterpriseDB driver is 

included, so CLASSPATH can be set to c:\enterprisedb\gridsql\lib\edb-

jdbc14.jar.  If using another database server, you can copy the driver to 

the coordinator and then reference the full path at the end of your 

CLASSPATH variable, including the “;” separator required in Windows, if 

necessary. The scripts installed in the bin directory will look for classes 

referred to by the CLASSPATH environment variable. 

 

To access the environment variables in Windows: open a Windows Explorer, 

right click on My Computer, select Properties, select the Advanced tab, and 

click the Environment Variables button. 

 

4. Set and export GSPATH in your environment to be the base directory, such as 

C:\enterprisedb\gridsql. 

 

5. Add C:\enterprisedb\gridsql\bin to your PATH environment variable. 

 



GridSQL Administration Guide 
 

 

Page 12                                      Copyright © 2008      

2.4 Underlying Database 
 

GridSQL uses Postgres Plus Advanced Server 8.3 or later as the underlying database 

on each of the nodes.  Alternatively, Postgres Plus or PostgreSQL may also be used, 

but for consistency this document will refer to Postgres Plus Advanced Server. This 

means that you need to take care when examples are cited in this document and 

refer to specific paths that may not exist on your particular server.  

 

The underlying database should be fully and properly installed on all of the nodes 

that are going to make up the GridSQL cluster. It is also recommended to install 

Postgres Plus on all of the nodes exactly the same way.  

 

It is important that your environment is set up properly so that GridSQL can work 

with the underlying database and use its utilities. It is a good idea to add the 

EnterpriseDB bin directory to your PATH environment variable, to allow access to all 

of its programs. You should add this to the appropriate profile file for GridSQL, like 

~enterprisedb/.bash_profile, if not already configured.  For example, if using 

EnterpriseDB’s Postgres Plus Advanced Server: 

 
export PATH=/opt/PostgresPlus/8.3AS/dbserver/bin:$PATH 

 

2.4.1 Logging Considerations 

 

Like other databases, EnterpriseDB uses logging for point in time recovery, called 

Write Ahead Logging (WAL).  

 

The location of these files in a subdirectory called pg_xlog in the data directory (the 

data directory is the one specified with initdb). Although it is not required, you may 

want to consider keeping these files on a separate disk, for performance reasons. 

This can be done by either setting up a symbolic link, or by creating a new disk 

partition and mounting it at pg_xlog, below the data directory. 

 

2.4.2 Initializing Underlying System 

 

Postgres Plus Advanced Server requires execution of the initdb command for 

initialization. If you used an installer, you can skip this step. Login as the user 

enterprisedb, and execute a command like the one below.   

 

The –D option must be included to indicate the location of the data. We recommend 

a dedicated device with redundancy, whether local with RAID 5 or RAID 10, or 

attached via SAN. If the EnterpriseDB installer already prompted you for this and you 

configured it, you can skip this step.  

 

In the example below, the data directory is initialized at /GSDATA. 

  
/opt/PostgresPlus/8.3AS/dbserver/bin/initdb –D /GSDATA 



GridSQL Administration Guide 
 

 

Page 13                                      Copyright © 2008      

 

The initdb command must be executed on each node that will make up the GridSQL 

cluster. 

 

2.4.3 Network 

 

We must configure each of the underlying database instances to communicate with 

one another for the GridSQL cluster to function properly. 

 

With EnterpriseDB by default, only local connections will be accepted. Since the 

instances need to work together, an additional configuration parameter must be set 

in the postgresql.conf file, listen_addresses. It takes a comma-separated list of 

host names or ip addresses, including wildcards.  For security, you should set this to 

just a list of the other nodes in the cluster. If using monitoring utilities from other 

locations, you can specify something broader, including *. 

 

The next step is to configure the pg_hba.conf file, which is used to determine which 

users and clients can connect to the database. The file is found in the data directory 

specified by the initdb command earlier.  

 

More detailed information about configuring the file can be found in the EnterpriseDB 

documentation, but we include an example entry below: 

 
# TYPE  DATABASE    USER        CIDR-ADDRESS          METHOD 

host    all  all         192.168.75.0/24       md5 

 

 

The above entry allows any connection from the 192.168.75.* subnet, provided that 

the user name and password are valid, using the md5 authentication method. It is a 

good idea to put the nodes on its own subnet, with access to the underlying 

databases only occurring through GridSQL. 

 

2.4.4 Configuring the Underlying Database 

 

EnterpriseDB offers many configuration and tuning options to help database 

administrators improve the performance of their system for the particular 

environment that it is running in.  In this case, we want to tune the database for a 

decision support environment.  

 

Available configuration options can be found in a file named postgres.conf in the 

data directory.  The most important options that you’ll want to be concerned about 

appear below. 

 
shared_buffers = 256MB     
maintenance_work_mem = 256MB 

work_mem = 128MB 

effective_cache_size = 512MB 

random_page_cost = 40 



GridSQL Administration Guide 
 

 

Page 14                                      Copyright © 2008      

  

wal_buffers = 64 

checkpoint_segments = 128     

checkpoint_timeout = 900 

 

constraint_exclusion = on 

max_connections = 60 

default_statistics_target = 500 

 

edb_redwood_date = false 

 

 

More details about these options appear in the EnterpriseDB or PostgreSQL 

documentation. The parameters in the first group are the most important, and 

should be adjusted based on the amount of memory that you have and number of 

users. Tuning can be difficult and may require trial and error to get the best 

results, depending on your environment, the number of users, the schema, 

and the queries.  

 

We briefly discuss these parameters.  

 

The parameter shared_buffers is for the database’s buffer cache. In OLTP systems, 

you normally want this to be reasonably high. For data warehousing, initially set this 

to 200 MB – 400 MB. Note that Linux has its own file system cache, so data can still 

be cached in memory, just not in the database’s cache. Data warehousing often 

involves large sequential scans anyway, and an overly large shared_buffers setting 

where a large cache is managed may actually hurt performance (also given the clock 

sweep algorithm). Should you nonetheless use a large setting, limit it to 2.5GB. 

 

The parameter maintenance_work_mem is used for creating indexes, foreign keys, 

and vacuum and analyze. You may want to consider setting this value higher initially 

while loading up the database and building indexes, and then lowering it later. 

 

The parameter work_mem is used for operations like sorting and aggregation 

(allocated per connection).  Setting this high can substantially improve sort 

performance. As a result, we have increased the default from 1MB to 128MB here. 

Keep in mind that a single query may need multiple work_mem allocations, and you 

may have multiple concurrent users at the same time, so try not set work_mem too 

high, or swapping may occur. 

 

The EnterpriseDB query planner is only influenced by effective_cache_size; it 

does not actually influence allocated memory. For OLTP systems, it is recommended 

that this is about 2/3 or RAM. The parameter random_page_cost is the internal cost 

the optimizer uses for seek costing. While it depends on your system configuration, 

schema and queries, you will probably want to bias things towards sequential scans 

instead of index seeks. One way to do that is to decrease effective_cache_size 

and increase random_page_cost. 

 

The second group of values is used for the Write Ahead Log, and can impact 

performance in particular when loading the database. 



GridSQL Administration Guide 
 

 

Page 15                                      Copyright © 2008      

 

The parameter constraint_exclusion is off by default and must be set to on in 

order to take advantage of EnterpriseDB’s feature that allows you to partition into 

subtables to reduce the amount of data that must be scanned for statements with 

qualifying WHERE clauses. 

 

The parameter max_connections determines how many simultaneous connections 

can connect to the EnterpriseDB database. GridSQL creates pools of connections to 

the database, and you want to make sure you have enough connections. The exact 

amount for this to use may be influenced by how you configure the GridSQL 

gridsql.config file (described later), but it is a good idea to make sure that this is set 

sufficiently high. At the same time, if using a high work_mem setting, you may want 

to be careful to not set the pools too large in gridsql.config. 

 

The final parameter, edb_redwood_date only applies if using Postgres Plus Advanced 

Server instead of PostgreSQL. Both Advanved Server and GridSQL need to have the 

same redwood date settings to have the desired effect. 

 

2.4.5 Date Style 

 

This only applies to Postgres Plus Advanced Server, and not Postgres Plus or 

PostgreSQL. 

 

Postgres Plus Advanced Server has a setting called edb_redwood_date, configurable 

in the postgresql.conf file. Setting it to true indicates that date handling should be 

compatible with Redwood. Note that one must also set xdb.edb_redwood_date to 

true in the gridsql.config file as well (false by default); GridSQL needs to know 

how dates are expected in the underlying database. 

 

 

 

2.4.6 Starting the Underlying Database Server Process 

 

EnterpriseDB offers the pg_ctl  wrapper to start the postmaster and run it as a 

background process. For example, if initdb used /GSDATA as the location of 

EnterpriseDB data, you can start the postmaster process using the command below: 

 

/opt/PostgresPlus/8.3AS/dbserver/bin/pg_ctl start -D /GSDATA -l 

logfile 

 

The –l option allows you to specify a log file for the EnterpriseDB log. 
 

2.4.7 Database User 

 



GridSQL Administration Guide 
 

 

Page 16                                      Copyright © 2008      

A database user must be created on each instance that will be used by GridSQL for 

connecting to the databases.  This single user will always be used for connecting to 

the underlying database. The username and password will be required later when 

configuring GridSQL’s gridsql.config file, so please make note of it. You should 

use the same username and password on all instances. 

 

In the example below, we create a database user named gridsql. Note that this is a 

database user and not operating system user. GridSQL will later use this user when 

connecting to the individual database instances running on the nodes. 

 
 /opt/PostgresPlus/8.3AS/dbserver/bin/createuser –d –E gridsql –U 

enterprisedb -P 

 

After executing this, it will prompt you for a password, and ask you to retype it. 

Please note this password for later. It may also give you a third password prompt. 

This is because of the –U option, where we are executing the command as the 

database super user that you used when you configured the underlying database, in 

this case user enterprisedb. 

 

Repeat the execution of createuser on each node. 

 

If you have difficulty executing this, it may be because of the underlying database 

configuration. If you installed EnterpriseDB PostgresPlus Advanced Server, it may be 

using the port 5432, while EnterpriseDB’s client tools use 5444 by default. Similarly, 

the client tools try and use the default database edb by default. You can work-around 

these problems by creating a dummy database named edb, and including the –p 

5432 option for the command line tools like createuser. If the underlying database 

port being used is indeed 5432, make sure xdb.default.dbport=5432 is set in the 

gridsql.config file, instead of the default of 5444. 

 

2.4.7.1 Coordinator 
 

When using EnterpriseDB with authentication, a password will be required for 

authentication.  GridSQL makes use of EnterpriseDB command line utilities, so we 

create a .pgpass file in the enterprisedb user’s home directory. This is used by 

EnterpriseDB to provide passwords to connect to other servers. This only needs to be 

done on the coordinator.  

 

Login as user enterprisedb. 

 

The file’s access must be restricted to the user, in this case enterprisedb.  After 

creating the file, you need to restrict access via chmod 600 

~enterprisedb/.pgpass. 

 
It is important that you setup .pgpass, otherwise, executing GridSQL scripts 

like gs-createmddb.sh will appear to hang, because the particular 

EnterpriseDB utility will be trying to prompt for a password. 

 

The lines in the file are to appear in the format: 

 



GridSQL Administration Guide 
 

 

Page 17                                      Copyright © 2008      

 hostname:port:database:username:password 

 
Wildcards may be used. An example appears below: 

 
*:*:*:gridsql:password 

 

where password is the password we used with createuser. The GridSQL process 

that will later run under the enterprisedb user can now connect to all nodes and use 

EnterpriseDB utilities without requiring a password from the user.  Note that user 

“gridsql” here is a database user, not an operating system user. 

 

2.4.8 Verify 

 

Before proceeding to configuring GridSQL, it is a good idea to verify that the 

underlying databases and network have been installed and configured properly.  

Doing this now will help make troubleshooting your GridSQL installation 

easier by eliminating the likelihood of configuration issues with the 

underlying database.  

 

Verification can be done by creating a test database on each, by running createdb 

from the coordinator.  

 
/opt/PostgresPlus/8.3AS/8.3/dbserver/bin/createdb –h node1 –U 

gridsql test 

 

Here, node1 is the host name or IP address of one of the nodes that will be in the 

GridSQL cluster.  Run this command from the coordinator node for each node. We 

use the database user gridsql that we previously created and verify login and create 

privilege. 

 

If there is a problem, verify that the postgresql.conf file has listen_addresses 

set to allowable hosts, that the node has a valid pg_hba.conf file, and that the 

enterprisedb user on the coordinator has a valid .pgpass (or pgpass.conf) file. Note 

that if you modify the pg_hba.conf file, you must restart postmaster. 



GridSQL Administration Guide 
 

 

Page 18                                      Copyright © 2008      

3 GridSQL Configuration 
 

 

This chapter discusses how to configure GridSQL, including creating and using 

databases. The first part assumes a first time configuration after installation, and the 

chapter concludes with more information about multi-language support and an 

gridsql.config file reference. 
 

If you have not done so already, login as the enterprisedb user to modify.  

3.1 The gridsql.config File 
 

A configuration file must be created that will determine how the GridSQL server is 

run.  When the GridSQL server is run, it reads from a file named gridsql.config in 

the config directory for system defaults. The file needs to be configured properly to 

initialize the metadata database and user-created databases. 

 

There are a myriad of options, but few options need to be changed in practice, those 

being the host or IP of the nodes, underlying database username and password, and 

database port. 

 

Permissions for gridsql.config should be set to be readable only by the 

enterprisedb user, since the file contains username and password 

information for connecting to the underlying databases. 

 

The options for xdb.metadata.* determine where the metadata database resides. 

The metadata database contains information about all of the user-created databases 

and schema info like tables, columns, data types, indexes, and constraints. Make 

sure that the xdb.metadata values are set properly, before trying to execute gs-

createmddb, which will create the metadata database.  

 

This gridsql.config file is also where you define the nodes that are used in the 

GridSQL cluster, specifying the host or IP address of each node. The username and 

password should be set to the same values as those you used when you created the 

database user earlier (createuser with EnterpriseDB). 

 

The included default gridsql.config file contains the most important options you 

may want to change. A detailed reference of all of the available configuration options 

appears at the end of this chapter in section 3.10, along with descriptions of 

mapping data types and defining and overriding SQL functions. 
 

 

 



GridSQL Administration Guide 
 

 

Page 19                                      Copyright © 2008      

 

3.1.1 Sample gridsql.config File 

 

To give a better idea of what a real gridsql.config file looks like, a sample one 

appears below for a 4 node system. In addition, a sample gridsql.config is found 

in the config directory of your installation. 

 

Note that some lines contain template variables that are enclosed with curly braces, 

like {dbhost} and {database}. These are dynamically substituted by the GridSQL 

server per database as needed- there is no need for you to replace these here. 

 

Be sure and modify the username and password information properly for the 

underlying databases, as well as the hostname or IP address of each node in the 

database for xdb.node.1.dbhost through xdb.node.1.dbhost. Also, if logging is 

desired, modify the File parameter of each logger to be an absolute path to the 

desired target file location. 

 

The example below is for a four-node system. Note that you can use the same host 

or IP address for all if you would like to create a “cluster” on a single system to just 

familiarize yourself with GridSQL. It will assign a unique database name to each 

“node,” creating 4 underlying databases. Also, you may choose to create fewer than 

4 nodes if you wish. Just change the xdb.nodecount and comment out or remove 

the appropriate xdb.node.n.dbhost entries. 

 

In this file four different logs are referenced, as can be seen by the log4j properties. 

There is a main server log, a query log (to log SELECT statements), and a long query 

log (for logging long SELECT statements). 

 

 
########################################################################### 

# gridsql.config 

# 

# GridSQL configuration file 

########################################################################### 

 

 

### 

### Server settings 

### 

 

xdb.port=6453 

xdb.maxconnections=10 

 

 

### 

### Node & JDBC Pool configuration 

###  

 

### Set defaults for all nodes and MetaData database.  

### These can be overriden. 

### Note that {dbhost} and {database} are template variables 

### that will be substituted dynamically per database 



GridSQL Administration Guide 
 

 

Page 20                                      Copyright © 2008      

 

xdb.default.dbusername=gridsql 

xdb.default.dbpassword=password 

 

### Connection thread defaults for each node 

### Note that these are pooled, so the number of clients connected  

### to the GridSQL server can be greater than pool size. 

 

xdb.default.threads.pool.initsize=5 

xdb.default.threads.pool.maxsize=10 

 

 

### Connectivity for MetaData database 

 

xdb.metadata.database=XDBSYS 

xdb.metadata.dbhost=localhost 

 

### The number of nodes in cluster 

 

xdb.nodecount=4 

 

### Individual node info 

### Set these to hostname or IP addresses of nodes 

 

xdb.node.1.dbhost=node1 

xdb.node.2.dbhost=node2 

xdb.node.3.dbhost=node3 

xdb.node.4.dbhost=node4 

 

### Designate coordinator node 

### In practice, the coordinator node should be the node where 

### the GridSQL database is running. 

 

xdb.coordinator.node=1 

 

 

### 

### Logging Settings 

### 

 

### The log4j library is used.  

### More info at http://logging.apache.org/log4j/docs/ 

 

# rootLogger. Log warnings and errors. 

log4j.rootLogger=WARN, console 

 

# Define other characteristics for console log 

log4j.appender.console=org.apache.log4j.RollingFileAppender 

log4j.appender.console.maxFileSize=500KB 

log4j.appender.console.maxBackupIndex=10 

log4j.appender.console.layout=org.apache.log4j.PatternLayout 

log4j.appender.console.layout.ConversionPattern=%d{ISO8601} - %-5p %m%n 

log4j.appender.console.File=/usr/local/gridsql-0.9/log/console.log 

 

# Log Server messages to the console logger 

log4j.logger.Server=ALL, console 

 

# Query logger. 

# This logs all queries sent to the database.  

log4j.logger.query=INFO, QUERY 



GridSQL Administration Guide 
 

 

Page 21                                      Copyright © 2008      

log4j.appender.QUERY=org.apache.log4j.RollingFileAppender 

log4j.appender.QUERY.File=/usr/local/gridsql-0.9/log/query.log 

log4j.appender.QUERY.maxFileSize=500KB 

log4j.appender.QUERY.maxBackupIndex=10 

log4j.appender.QUERY.layout=org.apache.log4j.PatternLayout 

log4j.appender.QUERY.layout.ConversionPattern=%d{ISO8601} - %m%n 

 

# Uncomment this if you would like other SQL commands other 

# than SELECT to be logged in the query logger as well  

# (e.g. INSERT, UPDATE, DELETE). 

 

#log4j.logger.command=INFO, QUERY 

 

# A separate "long query" log may be defined to separately log queries 

# that appear to be be taking a long time. 

# Specify the threshold in seconds at which queries will show up in the  

# long query log. 

xdb.longQuerySeconds=300 

 

log4j.logger.longquery=INFO, LONGQUERY 

log4j.appender.LONGQUERY=org.apache.log4j.RollingFileAppender 

log4j.appender.LONGQUERY.File=/usr/local/gridsql-0.9/log/longqry.log 

log4j.appender.LONGQUERY.maxFileSize=500KB 

log4j.appender.LONGQUERY.maxBackupIndex=10 

log4j.appender.LONGQUERY.layout=org.apache.log4j.PatternLayout 

log4j.appender.LONGQUERY.layout.ConversionPattern=%d{ISO8601} - %m%n 

 

# activity logger. 

# This logs all queries sent to the database.  

log4j.logger.activity=INFO, activity 

log4j.appender.activity=org.apache.log4j.RollingFileAppender 

log4j.appender.activity.File=/usr/local/gridsql-0.9/log/activity.log 

log4j.appender.activity.maxFileSize=10MB 

log4j.appender.activity.maxBackupIndex=10 

log4j.appender.activity.layout=org.apache.log4j.PatternLayout 

log4j.appender.activity.layout.ConversionPattern=%d{ISO8601} - %m%n 

 

 

A request is determined to be “long” based on another gridsql.config value, 

xdb.longQuerySeconds, which should be set to the number of seconds at which point 

it will be logged in the LONGQUERY log. 
 

 

3.1.2 Configuring GridSQL Agents 

 

This section is applicable if you decide to run dedicated agents on the database 

nodes. Note that if the node that is also the coordinator hosts a node database, there 

is no need to install an agent process there, it will run within the coordinator process. 

 

If you installed the agent software for the non-coordinator nodes for better 

performance, some additional lines are needed in the gridsql.config file on the 

coordinator. Please see the sample below: 

 
# Only for agent version 

# Port for node's SocketCommunicator  



GridSQL Administration Guide 
 

 

Page 22                                      Copyright © 2008      

xdb.node.1.port=6455 

xdb.node.1.host=node1 

xdb.node.2.port=6455 

xdb.node.2.host=node2 

xdb.node.3.port=6455 

xdb.node.3.host=node3 

xdb.node.4.port=6455 

xdb.node.4.host=node4 

 

 

### In practice, the coordinator node should be the node where 

### the GridSQL database is running. 

 

xdb.coordinator.host=node1 

xdb.coordinator.port=6454 

 

# Specify protocol types. 

# Can use local connection between coordinator and node 1, 

# since they are the same system 

xdb.connector.0.1=0 

xdb.connector.1.0=0 

 

The first group assigns a port and host. Note that xdb.node.n.host differs from 

xdb.node.n.dbhost in that dbhost is where the underlying database is, and in 

theory could be different from the host where the agent is executing. As a practical 

matter, these values will be the same. 

 

The second group configures the coordinator. 

 

The third group specifies the connector type. The format is xdb.connector.m.n., 

where m is the source node number and n is the destination node number. The 

default is 2, which is a channel connector. Setting it to 0 indicates that a local 

connector should be used, which is more efficient when one node is also a 

coordinator node. Note that node number 0 always refers to the coordinator. 

 

3.1.2.1 Agents 
 

In the installation, in the config subdirectory exists two files, gridsql.config and 

gridsql_agent.config. A sample gridsql_agent.config file for the agents 

appears below: 

 
#########################################################################

# 
# gridsql.config - Agent 
#########################################################################

# 

 

### 

### The coordinator host and port 

### 

 

xdb.coordinator.host=node1 

xdb.coordinator.port=6454 

 

 

### 



GridSQL Administration Guide 
 

 

Page 23                                      Copyright © 2008      

### Logging settings 

### 

 

log4j.rootLogger=WARN, console 

 

log4j.logger.Server=ALL, console 

 

# A1 is set to be a ConsoleAppender. 

log4j.appender.console=org.apache.log4j.RollingFileAppender 

 

# A1 uses PatternLayout. 

log4j.appender.console.layout=org.apache.log4j.PatternLayout 

log4j.appender.console.layout.ConversionPattern=%r [%t] %-5p %c %x - %m%n 

log4j.appender.console.File=/usr/local/gridsql-0.9/log/agent.log 

 

 

Note that this file is much shorter than that of the coordinator’s. Other than its own 

port number, the coordinator host and logging settings, all other configuration 

information is sent over from the coordinator, allowing for centralized maintenance 

of the configuration settings.



GridSQL Administration Guide 
 

 

Page 24                                      Copyright © 2008      

 

3.2 Initializing GridSQL 
 

To initialize the GridSQL cluster, the metadata database and an administrative user 

must be created. 

 

First, it is a good idea to add the EnterpriseDB bin directory to your PATH 

environment variable, to allow access to all of its programs. You may want to also 

add this to the appropriate profile like ~enterprisedb/.bash_profile Example: 

 
export PATH=/opt/PostgresPlus/8.3AS/dbserver/bin:$PATH 

 

Also, please verify that GSPATH environment variable has been set correctly to the 

base GridSQL directory in gridsql.config. 
 

Before creating any user-defined databases, we must first create the metadata 

database to contain information about the user-created databases. Once it is 

created, user-created databases and all of their corresponding information about 

tables and columns, etc., will be stored there. 

 

In addition, we need to create an administrative user for GridSQL. Note that users in 

GridSQL are separate from the users used in Postgres Plus Advanced Server. 

GridSQL will always use the same user specified in gridsql.config to communicate 

with the underlying Postgres Plus Advanced Server databases. This is completely 

separate from the users that are defined to interact with the GridSQL cluster. 

 

For both of these tasks, use the gs-createmddb.sh command. It creates the 

required actual database on the underlying node, creates all needed tables, and 

creates an administrative user.  The exact schema of the metadata database can be 

seen in the appendix.  

 
This relies on configuration values stored in the gridsql.config file, so be 

sure that it is set properly.  Also, refer to the command reference in the next 

chapter that discusses gs-createmddb. That means that you set all of the 

xdb.metadata.* properties as how you want them, and that gs-createmddb will use 

these as your desired settings.  The username and password used should be valid 

and have permission to create new databases and tables. You can use the username 

and password created earlier. 

 

If everything was setup properly in gridsql.config, you are ready to execute gs-

createmddb.sh. To create the metadata database and create an initial user at the 

GridSQL level named “admin” with the password “secret”: 

 
 gs-createmddb.sh –u admin –p secret 

 

If –p is left off, the user will be prompted for a password. 



GridSQL Administration Guide 
 

 

Page 25                                      Copyright © 2008      

3.2.1 Manual Mode 

 

You can also choose to create the metadata database manually with the –m option, 

instead of having gs-createmddb do it for you.  Instructions for doing this with 

EnterpriseDB appear below. (Skip this section if you created the metadata database 

successfully in the previous section.) 

 

If a database user for the underlying databases was not created in section 2.4.7, you 

should do so now.  

 

Next, create the database named XDBSYS, as designated in the gridsql.config file 

as the metadata database by using the EnterpriseDB command createdb. 

 
createdb XDBSYS -U gridsql 

 

Now, initialize the GridSQL metadata database. Note that –m is used here, indicating 

that the physical database already exists; we just need to initialize it and create the 

metadata tables in it.  Make sure a valid username and password are set in the 

xdb.metadata options of the gridsql.config file for the underlying database. Also, 

pass in a GridSQL administrative username and password to create: 
 

gs-createmddb.sh –m –u admin –p secret 

 

Now the metadata database is ready, which can be verified using the EnterpriseDB 

command edb-psql (or just psql if using PostgreSQL): 

 
edb-psql -U gridsql -d XDBSYS –h 127.0.0.1 

 

Note that when using edb-psql or psql with GridSQL, you must include the  -h option 

for host, even if it is local to force it to use a socket connection. 

 

You should plan on backing up the metadata database regularly. Whereas 

with other databases, an incremental backup may make the most sense, the 

metadata database will be relatively small, so a complete backup should be done. 

 

 

3.3 Starting the Coordinator and Agents 
 

3.3.1 Coordinator 

 

We are now ready to start the gs-server process so that we can create user 

databases. gs-server can be started with no arguments if no databases have been 

created yet: 

 
 gs-server.sh 

 



GridSQL Administration Guide 
 

 

Page 26                                      Copyright © 2008      

This will start the server in the background. If there is a problem with gs-server, 

please check the log files in the log directory and verify the configuration in 

gridsql.config.  Note that when executing the gs-server process, you may need to 

modify the parameters that Java uses, increasing the maximum amount of memory 

specified in the gs-server.sh launch script, depending on your requirements and 

system configuration. 

 

When executing gs-server in the future, you can include a list of previously created 

databases to bring online with the –d option. That way, you will not need to 

separately execute gs-dbstart. 

 
 gs-server.sh –d XTEST 

 

3.3.2 Agents 

 

If you installed and configured the cluster to use GridSQL Agents, you will want to 

start the agents on all of the nodes. Perform this as user enterprisedb. 

 

The GridSQL agent is started by calling the gs-agent.sh wrapper script in the 

GridSQL bin directory. It expects the –n argument, followed by the designated node 

number this will act as in the cluster. Example: 

 
 gs-agent.sh –n 4 

 

We recommend you start the server on the coordinator first (gs-server.sh), before 

starting the agents. If the gs-server process is stopped and restarted, it should 

reestablish connections with the running agents. Similarly, if an agent is stopped and 

restarted, gs-server will detect that and reestablish a connection. 

 

gs-server will log the event that an agent has successfully connected to it, so if there 

is a problem in creating and using databases, please read the coordinator logs to 

pinpoint the source of the problem. 

 

 

3.4 Creating User Databases 
 

Now that the metadata database has been created and gs-server is executing, you 

can create your own databases.  

 

First, configure the individual nodes in the gridsql.config file that you will be using 

if you have not already. You should have also installed the underlying database 

Postgres Plus Advanced Server 8.3 on all of those nodes, with the database server 

running. Note that it is a good idea to have all of the nodes installed and configured 

exactly the same way to make administration easier. If you make any changes to 

gridsql.config, you will need to restart gs-server. 

 



GridSQL Administration Guide 
 

 

Page 27                                      Copyright © 2008      

It should also be pointed out that you could also have a system where one of the 

nodes in the GridSQL system both participates as a member of user database nodes 

as well as contains the metadata database. 

 

You create a database by using the gs-createdb.sh utility. When a database is 

created, it adds the appropriate information to the metadata database. The gs-

createdb.sh command will also try and create the database on the underlying nodes 

if you wish, which is recommended. Otherwise, use the -m (manual) option, which 

will only update the metadata database information without trying to create any 

databases on the nodes. 

 

See the gs-createdb command in the section of the Command Reference section of 

this document for more information.  

 

3.4.1 Example 

 

We show two examples.   

 

The first example will create a GridSQL database named XTEST. The physical 

underlying databases will be named XTESTN1, XTESTN2, XTESTN3, and XTESTN4 on 

the nodes, corresponding to their node numbers. 

 
gs-createdb.sh -d XTEST -u admin -p <password> -n 1,2,3,4 

 

Note that if you are prompted by a password even with –p, it is the underlying tool, 

edb-psql that is prompting you for a password. This means you are executing 

createdb under a user where a trusted EnterpriseDB environment has not been 

configured. Be sure that it is configured for user enterprisedb, and execute the 

command as user enterprisedb. 

 

Manual mode 

 

If desired, the database can also be set up by hand, where the databases are first 

created on the individual nodes using EnterpriseDB’s createdb command. Care needs 

to be taken to name them with the desired database name followed by “N” and the 

node number (<dbname>N1 on node 1, <dbname>N2 on node 2, etc.).  Once that 

is done, gs-createdb.sh can be called using the “-m” option to wire it up and update 

the metadata information. 

 
gs-createdb.sh -d XTEST -u admin -p <password> -n 1,2,3,4 -m 

 

3.5 Testing the Database 
 

Once you have successfully created a database, you are ready to test using the 

command line utility.  

 



GridSQL Administration Guide 
 

 

Page 28                                      Copyright © 2008      

Note that gs-server will automatically bring the created database online and accept 

connections to it when you execute gs-createdb.sh.  

 

With the server running ok, execute gs-cmdline.sh, specifying a database and valid 

username and password, such as: 

 
gs-cmdline.sh -d XTEST -u admin -p <password> 

 

If you were able to connect ok you should receive a command prompt like the 

following: 

 
GridSQL-> 

 

Try creating a table. The following command creates a table mytable1 and specifies 

that rows should be partitioned according to the column col1: 

 
CREATE TABLE mytable1 (col1 INT) PARTITIONING KEY col1 ON ALL; 

 

Try and insert some data: 

 
 INSERT INTO mytable1 VALUES (1); 

 INSERT INTO mytable1 VALUES (2); 

 

Select: 
 SELECT * FROM mytable1; 

 

If everything looks ok, you can drop the table: 

 
 DROP TABLE mytable1; 

 

 

3.6 Starting and Stopping Databases 
 

The commands gs-dbstart and gs-dbstop communicate with the gs-server process 

and can be used to bring GridSQL databases online or offline. 

 

Example: 

 
 gs-dbstart.sh –d XTEST –u admin –p <password> 

 

 gs-dbstop.sh –d XTEST –u admin –p <password> 

 

3.7 Dropping Databases 
 

You can drop databases using the dropdb command.  

 

If the database is online, dropdb will fail, so you should first bring it offline with gs-

dbstop: 



GridSQL Administration Guide 
 

 

Page 29                                      Copyright © 2008      

 
 gs-dbstop.sh –d XTEST –u admin –p <password> 

 

An example for dropping the XTEST database appears below: 

 
gs-dropdb.sh -d XTEST -u admin -p <password> 

 

It will attempt to drop the databases on the underlying nodes, as well as clean out 

any metadata information in the XDBSYS database. Please see dropdb in the 

Command Reference section of this document for more information. 

 

If dropping fails for some reason, you may want to try again with “-f” (force) option 

to continue and try and remove all metadata information from the metadata 

database, even if it failed to drop a database on a node. 

 

3.8 Planning 
 

You are now ready to create your own databases. Please refer to important 

information in the Planning Guide for important information regarding 

determining your database schema and partitioning strategies before 

creating tables. A poorly thought out schema will result in less than optimal 

performance. 

 



GridSQL Administration Guide 
 

 

Page 30                                      Copyright © 2008      

3.9 Multi-Language and Unicode Support 
 

GridSQL supports international character sets, provided the chosen underlying 

database supports it as well and is configured properly.  For the current version, 

however, the GridSQL Metadata database does not support international identifiers, 

so all object names such as tables and columns must be standard identifiers using 

single-byte characters. 

 

The following steps must be done in order to configure and support this properly 

 

1. The underlying database needs to be configured properly. In Postgres Plus 

Advanced Server, unicode is enabled by default.   

 

2. The JDBC Driver for the underlying database that GridSQL uses may require 

additional parameters.  

 

3. The GridSQL server must be configured. If you intend to use international 

characters from some specific character set, you can specify its name in 

gridsql.config configuration file, e.g.: 

 
xdb.charset=windows-1252 

 

The default for xdb.charset is ISO-8859-1. 

 

If Unicode is desired, including support for various clients using different 

character sets, then add the following to the gridsql.config file: 

 
xdb.unicode=yes 

 

 



GridSQL Administration Guide 
 

 

Page 31                                      Copyright © 2008      

 

3.10   The gridsql.config Reference  
 

If you need to customize your particular installation, you can change the 

gridsql.config file.   

 

A table appears on the following pages describing all of the possible configuration 

options in gridsql.config.  

 

3.10.1 Server Settings 

 
Configuration Value Default Description 
log4j.configuration  Optional configuration file for 

logging preferences in log4j 

format. Alternatively, 

configuration properties may 

also be specified directly in 

the gridsql.config file. More 

information about log4j appears 

later in this chapter. 

xdb.coordinator.node  The node to use for combining 

results from underlying nodes. 

In practice, it is the node that 

corresponds to where the GridSQL 

server is running, whether or 

not it is a dedicated 

coordinator or not. 

xdb.longQuerySeconds 300 The threshold in number of 

seconds at which a query is 

determined to be a long running 

query, and logged in the long 

query log, if enabled.  

xdb.maxconnections 50 Maximum number of client 

connections to GridSQL to allow 

at a time. 

xdb.nodecount  The number of underlying nodes 

in the GridSQL cluster 

xdb.port 6453 The port number that GridSQL 

will use to allow client 

processes to connect to. If you 

have more than one gs-server 

running on the same coordinator 

node (one for development, one 

for testing, for example), make 

sure they use different ports. 

 



GridSQL Administration Guide 
 

 

Page 32                                      Copyright © 2008      

3.10.2 Metedata Database Settings 

 
Configuration Value Default Description 
xdb.metadata.jdbcdriver com.edb.Driver The class name of the JDBC 

Driver to use with underlying 

metadata database 

xdb.metadata.jdbcstring jdbc:edb://{dbhost}

:{dbport}/{database

} 

A template JDBC url to use to 

connect to the underlying 

database.  

xdb.metadata.dbhost  The host name or IP address or 

the server that contains the 

metadata database. In practice, 

it will often be the same one as 

where the GridSQL server runs. 

xdb.metadata.dbport xdb.default.dbport The port to connect to for the 

underlying database 

xdb.metadata.database  The name of the metadata 

database, e.g. XDBSYS 

xdb.metadata.jdbcuser  The user to use when connecting 

to the metadata database 

xdb.metadata.jdbcpassword  The password to use when 

connecting to the metadata 

database 

 

 



GridSQL Administration Guide 
 

 

Page 33                                      Copyright © 2008      

3.10.3 JDBC and Pool Settings 

 
Configuration Value Default Description 
xdb.default.jdbcdriver com.edb.Driver The default driver name to use 

for all connections 

xdb.default.jdbcstring jdbc:edb://{dbhost}

:{dbport}/{database

} 

The default jdbc url to use for 

all connections 

xdb.default.dbport 5432 The default port to use when 

connecting to the underlying 

database. 

xdb.default.dbusername  The default username to use for 

all connections 

xdb.default.dbpassword  The default password to use for 

all connections. 

xdb.default.threads.pool.initsize 5 Default thread pool size for all 

nodes. 

xdb.default.threads.pool.idle 600000 Default idle time in 

milliseconds. 

xdb.default.threads.pool.maxsize 10 Default max thread pool size for 

all nodes. 

xdb.default.threads.pool.timeout 60000 Default pool timeout for all 

nodes in milliseconds. 

xdb.jdbc.coordinator.pool.initsize xdb.default.threads

.pool.initsize 

The initial size of the 

coordinator connection pool. 

xdb.jdbc.coordinator.pool.maxsize xdb.default.threads

.pool.maxsize * 0.8 

The maximum size of the 

coordinator connection pool 

xdb.jdbc.pool.maxsize xdb.default.threads

.pool.maxsize 

Maximum number of connections 

per JDBC pool for underlying 

node. Note that this is an 

important value for managing 

simultaneous connections. You 

may still allow a large number 

of client connections via 

xdb.maxconnections, but you 

might want to limit how many 

simultaneous queries can execute 

on the underlying databases at 

the same time by limiting the 

pool here. In addition, 

depending on your underlying 

database, you might have 

licensing restrictions that 

dictate a smaller pool size. The 

GridSQL Scheduler will handle 

sharing and managing of these 

pools. 

xdb.jdbc.pool.initsize  xdb.default.threads

.pool.initsize 

Initial JDBC pool size 

xdb.jdbc.pool.idle xdb.default.threads

.pool.idle 

Default idle timeout value for 

JDBC Pool, in milliseconds. 

After this time, connections are 

released and pool is shrunk. 

xdb.jdbc.pool.timeout xdb.default.threads

.pool.timeout 

Maximum time to wait for 

available jdbc connection from 

pool 

xdb.jdbc.pool.largequery.count 2 The number of connections to 



GridSQL Administration Guide 
 

 

Page 34                                      Copyright © 2008      

allow for “large queries”. This 

allows us to reserve some 

connections for low-cost 

commands, in effect reserving 

connections for fast operations 

without having to have them wait 

if all connections are being 

used executing large queries. 

This also provides a mechanism 

for allowing the DBA to be able 

to connect and administer the 

server if it is very busy. 

xdb.jdbc.pool.largequery.threshold 25000 The cost at which a query will 

be designated as a “long” query. 

See xdb.jdbc.largequery.count 

for more details.  

xdb.node.n.dbhost  The host address of the 

underlying database that the 

node is using, where n is the 

node id. In practice, the host 

will be same as the node itself, 

but that is not required. 

xdb.node.n.dbport  The default port to use when 

connecting to the underlying 

database. 

xdb.node.n.jdbcdriver  The JDBC driver to use for node 

n, where n is the node id. 

xdb.node.n.jdbcstring  The JDBC URL template string 

used to connect to node n, where 

n is the node id. 

xdb.node.n.threads.pool.maxsize 10 Maximum thread execution pool 

size for node n. In practice, 

this should be set to the same 

value as xdb.jdbc.pool.initsize.  

xdb.node.n.threads.pool.initsize 5 Initial thread pool size for 

node id n.  

xdb.node.n.threads.pool.idle 600000 In milliseconds, how long to 

allow a thread to be active with 

no activity before destroying 

it. 

xdb.node.n.threads.pool.timeout 60000 In milliseconds, how long to 

wait on an available thread. 

xdb.nodeFetchSize 1000 The fetch size to use on the 

underlying connection. 

xdb.persist_on_set true If the client connection issues 

a SET command, persist the 

underlying connections. If 

persisted, these are not 

available from the pool, and may 

impact how many concurrent 

connections available. 

 



GridSQL Administration Guide 
 

 

Page 35                                      Copyright © 2008      

3.10.4 Multi-Language Support 

 
Configuration Value Default Description 
xdb.charset ISO-8859-1 The character set to use. 

xdb.unicode false xdb.unicode false Whether or 

not to use Unicode. 

 



GridSQL Administration Guide 
 

 

Page 36                                      Copyright © 2008      

3.10.5 Configuration for Underlying Database 

 

3.10.5.1 Temp Table Handling 
 

Configuration Value Default Description 
xdb.sqlcommand.createTempTable.start CREATE TEMP TABLE Start of command for CREATE 

TABLE statement for creating 

temp table. Allows for alternate 

syntaxes like “CREATE TEMP 

TABLE”. See also 

xdb.tempTablePrefix.  

 

This is for temp tables that the 

end user specifies. 

xdb.sqlcommand.createTempTable.suffix WITHOUT OIDS Suffix to add at the end of 

CREATE statements for temp 

tables. This can be used to 

allow disabling of logging 

information on the underlying 

database and greatly improve 

performance, since temporary 

tables are used internally by 

GridSQL. 

 

This is for temp tables that the 

user specifies. 

xdb.sqlcommand.createGlobalTempTable.

start 

CREATE TABLE This is used when creating 

internal temp tables by the 

database for query processing.  

 

Real tables are used, in order 

to access them across sessions. 

xdb.sqlcommand.createGlobalTempTable.

suffix 

WITHOUT OIDS The suffix to use when creating 

an internal temp table used for 

query processing. 

 

Default is an empty string. 

xdb.tempTablePrefix TMPT Temporary table prefix to use in 

underlying database. Various 

databases have different 

conventions, like “TEMP.” or 

“#”.  

 

Warning- be careful about 

assigning. On startup, GridSQL 

will try and delete any tables 

that start with this name, in 

case permanent tables were used 

and tables were not cleaned up 

due to a server error. 

xdb.allowtemptableindex true Whether or not the underlying 

database allows the support of 

indexes on temporary tables. 

xdb.temporary_intermediate_tables !xdb.use_load_for

_step 

If temporary intermediate tables 

were used. This is used for 

INSERT INTO. 

xdb.tempTableSelect select tablename If “fake” temp tables are used 



GridSQL Administration Guide 
 

 

Page 37                                      Copyright © 2008      

from pg_tables 

where tablename 

LIKE 

'{xdb.tempTablePr

efix}%’ 

on the underlying database 

(instead of actual temp tables), 

this value can be used to 

determine how to obtain a list 

of temp tables on the underlying 

nodes, to purge any tables at 

gs-server start-up, in case 

there are any remaining from 

previous execution that were not 

cleaned due to an error. 

 
3.10.5.2 SQL Command Templates 
 

Below are command templates that can be overridden, along with their defaults. 

 
Configuration Value Default Description 
xdb.sqlcommand 

.altertable.addcolumn 

add {colname} For adding columns within an 

ALTER TABLE command 

xdb.sqlcommand 

.altertable.addprimary 

alter table 

{table} add 

constraint 

{constr_name} 

primary 

key({col_list}) 

For adding a primary key to a 

table 

xdb.sqlcommand 

.altertable.addforeignkey 

alter table 

{table} add 

constraint 

{constr_name} 

foreign key 

({col_list}) 

references 

{reftable}({col_m

ap_list}) 

For adding a foreign key to a 

table 

xdb.sqlcommand 

.altertable.dropcolumn 

alter table 

{table} drop 

{colname} 

For dropping a column 

xdb.sqlcommand 

.altertable.dropconstraint 

drop constraint 

{constr_name} 

Template for dropping a 

constraint within ALTER TABLE 

command. 

xdb.sqlcommand 

.altertable.dropconstraint.check 

xdb.sqlcommand 

.altertable.dropc

onstraint 

Template for dropping a check 

constraint within ALTER TABLE 

command. 

xdb.sqlcommand 

.altertable.dropconstraint.primary 

xdb.sqlcommand 

.altertable.dropc

onstraint 

Template for dropping a primary 

key constraint within ALTER 

TABLE command. 

xdb.sqlcommand 

.altertable.dropconstraint.reference 

xdb.sqlcommand 

.altertable.dropc

onstraint 

Template for dropping a foreign 

key constraint within ALTER 

TABLE command. 

xdb.sqlcommand 

.altertable.dropconstraint.unique 

xdb.sqlcommand 

.altertable.dropc

onstraint 

Template for dropping a unique 

key constraint within ALTER 

TABLE command. 

xdb.sqlcommand 

.altertable.dropprimary 

alter table 

{table} drop 

constraint 

{constr_name} 

For dropping a primary key from 

a table 

xdb.sqlcommand 

.altertable.modifycolumn 

alter table 

{table} alter 

{colname} type 

For modifying a column’s type 



GridSQL Administration Guide 
 

 

Page 38                                      Copyright © 2008      

{coltype} 

xdb.sqlcommand 

.altertable.modifycolumn.dropdefault 

alter {column} 

drop default 

Used to indicate that a columns 

default should be removed 

xdb.sqlcommand 

.altertable.modifycolumn.dropnotnull 

alter {column} 

drop not null 

Used to indicate a column should 

no longer be NOT NULL. 

xdb.sqlcommand 

.altertable.modifycolumn.setdefault 

alter {column} 

set default 

{default_expr} 

Used to modify the default value 

of a column 

xdb.sqlcommand 

.altertable.modifycolumn.setnotnull 

alter {column} 

set not null 

Used to indicate a column should 

be set to not null 

xdb.sqlcommand 

.altertable.modifycolumn.using 

using 

{using_expr} 

An expression for modifying the 

column 

xdb.sqlcommand.altertable 

.settablespace 

set tablespace 

{tablespace} 

Partial command template for 

setting tablespace 

xdb.sqlcommand.altertable 

.settablespace.toparent 

true  

xdb.sqlcommand.analyze.template.table ANALYZE {table} The UPDATE STATISTICS or ANALYZE 

command template to run on the 

underlying database to update 

internal statistics on a table 

used by the optimizer. 

xdb.sqlcommand.analyze.template 

.column 

ANALYZE {table} 

({column_list}) 

Other ANALYZE command template 

when columns are also specified. 

xdb.sqlcommand.dropindex drop index 

{index_list} 

Command to use when dropping 

indexes 

xdb.sqlcommand.renametable.template 

 

  

 

ALTER TABLE 

{oldname} RENAME 

TO {newname} 

Format of command to rename 

table.  

xdb.sqlcommand.selectinto.template CREATE TABLE 

{newname} AS 

SELECT * FROM 

{oldname} 

Cammnd to use for SELECT INTO 

implementation 

xdb.sqlcommand.selectintotemp 

.template 

CREATE TEMP TABLE 

{newname} AS 

SELECT * FROM 

{oldname} 

Cammnd to use for SELECT INTO 

implementation when using temp 

tables 

xdb.sqlcommand 

.updatestatistics.template.table 

VACUUM ANALYZE 

{table}  

The UPDATE STATISTICS or ANALYZE 

command template to run on the 

underlying database to update 

internal statistics on a table 

used by the optimizer.  

 

Example template: 

 

UPDATE STATISTICS {table}   

xdb.sqlcommand 

.updatestatistics.template.column 

VACUUM ANALYZE 

{table} 

({column_list}) 

The UPDATE STATISTICS or ANALYZE 

command template to run on the 

underlying database to update 

internal statistics on a table’s 

column used by the optimizer. It 

will process those columns that 

were explicitly specified in the 

GridSQL command. Example 

template: 

 

UPDATE STATISTICS COLUMN 

{column_list} FOR {table} 
xdb.sqlcommand SELECT When calculating statistics, the 



GridSQL Administration Guide 
 

 

Page 39                                      Copyright © 2008      

.updatestatistics.query stadistinct  

FROM pg_statistic 

s, pg_class c, 

pg_attribute a  

WHERE s.starelid 

= c.oid  

AND s.staattnum = 

a.attnum  

AND c.relname = 

‘{table}’ 

AND a.attname = 

‘{column}’ 

server will try and run the 

corresponding command on the 

underlying database, but when 

finished, it may be able to 

determine the selectivity from 

the underlying database without 

having to resort to calculating 

it itself. If this parameter is 

set, it defines a command to 

obtain the statistics from the 

underlying database.  

xdb.sqlcommand.update.correlatedstyle 

 

2 This is need for the UPDATE 

command to work properly for 

correlated updates.  

xdb.sqlcommand.vacuum.template.table VACUUM 

{vacuum_type} 

{table} 

The command to execute for 

vacuuming. 

xdb.sqlcommand 

.vacuum.analyze.template.table 

VACUUM 

{vacuum_type} 

ANALYZE {table} 

The command to execute for 

vacuuming with anaylze. 

xdb.sqlcommand 

.vacuum.analyze.template.column 

VACUUM 

{vacuum_type} 

ANALYZE {table} 

({column_list}) 

The command to execute for 

vacuuming with analyze with 

columns specified. 

 

 

3.10.5.3 Date and Time Settings 
 

xdb.edb_redwood_date false This value should be set to 

whatever the value of 

edb_redwood_date is in the 

underlying Postgres Plus 

Advanced Server database. 

xdb.subsecondPrecision 0 The number of digits for 

subsecond precision that the 

underlying database supports. 

 

 

3.10.5.4 Other Settings 
 

xdb.combined.resultset.buffer 1000 Default read-ahead buffer per 

ResultSet when combining 

xdb.connectiontest.statement select 1 Statement to run against backend 

to verify that connection is 

still good. 

xdb.connectiontest.createtable  Statement to run to (if not 

null) to create a table to run a 

query against to test the 

connection via 

xdb.connectiontest.statement. 

xdb.identifier.case lower Default case to use for storing 

identifier metadata and on the 

backend databases when unquoted. 

Other options are “upper” and 

“preserve” 

xdb.identifier.quote " Default quote character for 

identifiers. This is used for 



GridSQL Administration Guide 
 

 

Page 40                                      Copyright © 2008      

both open and close, unless 

overridden below. 

xdb.identifier.quote.open  Open quote character for 

identifiers 

xdb.identifier.quote.close  Close quote character for 

identifiers 

xdb.identifier.quote.escape  Escape quote character for 

identifiers 

xdb.index.useAscDesc false Whether or not it is ok to use 

ASC or DESC in indexes. 

xdb.locks.readcommitted.mode S If using an isolation mode of 

read committed (the default), 

this can be fine tuned further. 

S (Strict) indicates that only 

one UPDATE or DELETE statement 

may be executing at a time per 

table, which also helps prevent 

deadlocks. Setting this to L 

(Loose) allows for concurrent 

UPDATE and DELETE statements. 

xdb.savepointType S T = subtransaction, S = 

Savepoints. Although savepoints 

from the user’s point of view is 

currently not supported, this is 

used in working with the 

underlying database. 

xdb.sort.case.sensitive false Whether or not the underlying 

database sorts in a case 

sensitive manner. 

xdb.sort.nulls.style 2 How nulls are handled in sorting 

on the underlying database. 

 

0-Nulls always at start 

1-Nulls always at end 

2-Null greater than not null  

3-Null less than not null 

xdb.sort.trim true Whether or not leading spaces 

are ignored in sorting 

xdb.sql.usecrossjoin true Whether or not to use CROSS JOIN 

syntax for Cartesian products. 

If overridden to false, syntax 

used will be “table1, table2” 

instead. 

xdb.strip_interval_quote true When passing interval constants 

to the backend, whether or not 

to quote them in single quotes, 

such as INTERVAL ‘1 day’. 

xdb.xrowid.type 

  

DECIMAL(31,0)    The xrowid settings allow for 

customization for databases that 

support varying levels of 

precision. xrowid is the GridSQL 

internal unique tuple 

identifier. 

xdb.xrowid.SQLtype 3 java.sql.Types.DECIMAL 

xdb.xrowid.length 0  

xdb.xrowid.precision 31  

xdb.xrowid.scale 0  

 

 



GridSQL Administration Guide 
 

 

Page 41                                      Copyright © 2008      

3.10.5.5 Gateway Settings for Administering Underlying Databases 
 

Configuration Value Default Description 
xdb.gateway.createdb createdb -h 

{dbhost} –p 

{dbport} -U 

{dbusername} -O 

{dbusername} 

{database}  

Template command for creating a 

new database on underlying 

database 

xdb.gateway.dropdb dropdb -h {dbhost} 

-p {dbport} -U 

{dbusername} 

{database} 

Template command for dropping 

database on nodes 

 

3.10.6 gs-loader settings 

 
Configuration Value Default Description 
xdb.loader.dataprocessors.count 1 The number of processor threads 

to use internally when 

performing COPY. Increasing this 

may help in multi-core/multi-

processor systems. 

xdb.loader.header.columnseparator  Optional separator for header 

for output file if exporting. 

xdb.loader.header.template  Optional template for output 

file. 

xdb.loader.footer.columnseparator  Optional separator for file 

footer for output file if 

exporting. 

xdb.loader.footer.template  Optional file footer template if 

exporting. 

xdb.loader.intermediate.commit 

.interval 

0 When shipping intermediate 

results, the commit interval to 

use, if xdb.use_load_for_step is 

set to false. If non-zero and 

used, this should be set fairly 

high, like 100000. 

xdb.loader.nodewriter.columninfo ({columns}) Column info template to use if 

column names explicitly 

specified on load 

xdb.loader.nodewriter.columninfo. 

none 

 Template to use if no column 

names present 

xdb.loader.nodewriter.delimiterinfo DELIMITER AS 

'{delimiter}' 

Template to be used within 

xdb.loader.nodewrite.template, 

for specifying passing along 

delimiter information. 

xdb.loader.nodewriter.delimiterinfo.

none 

DELIMITER AS '\|\' delimiterinfo template to use 

when the user did not specify 

any delimiter. Default null. 

xdb.loader.nodewriter.template psql -h {dbhost} -p 

{dbport} -d 

{database} -U 

{dbusername} -a -e 

-E -c \"COPY 

{table} 

{columninfo} FROM 

This is used for bulk loading 

data into the underlying 

database, and describes the 

template of the command to use. 

Note that another template, 

delimiterinfo can be included 

here. See xdb.loader. 



GridSQL Administration Guide 
 

 

Page 42                                      Copyright © 2008      

STDIN WITH NULL AS 

'' 

{delimiterinfo}\"" 

nodewriter.delimiterinfo for 

more information 

xdb.loader.nodewriter.rowdelimiter \n Row separator 

xdb.loader.nodewriter.use_edb_jdbc_c

opy 

true By default, COPY will use 

EnterpriseDB’s JDBC COPY 

facilities 

xdb.loader.row.nullvalue  Null value indicator in loading 

data 

xdb.loader.row.quote (none) Indicates that strings are to be 

quoted with the specified 

character when loading data. 

xdb.loader.row.quote.escape (none) Quote escape character 

xdb.loader.row.template {value_list} Row template for output file 

xdb.loader.row.columnseparator , The default column separator 

character to use when loading in 

data. 

xdb.use_load_for_step y Indicates if a native database 

bulk loader utility should be 

used for handling intermediate 

results. This is highly 

recommended, so this value 

should be set to “y”. 

 

3.10.7 Data Types and Data Type Mapping 

 

GridSQL also includes the ability to map SQL data types, to allow for flexibility with 

various underlying databases, since the different databases sometimes name things 

differently than standard ANSI. Below appears the data types supported and their 

default mappings, which can be overridden in the gridsql.config file. 

 

 Numeric types: 

 
xdb.sqltype.integer.map=INT 

xdb.sqltype.smallint.map=SMALLINT 

xdb.sqltype.boolean.map=BOOLEAN 

 

Floating point types (parameter "length" available): 

 

xdb.sqltype.float.map=FLOAT ({length}) 

xdb.sqltype.real.map=REAL ({length}) 

xdb.sqltype.double.map=DOUBLE PRECISION 

 
Fixed point types (parameters "precision" and "scale" available): 

 

xdb.sqltype.fixed.map=FIXED ({precision}, {scale}) 

xdb.sqltype.numeric.map=NUMERIC ({precision}, {scale}) 

xdb.sqltype.decimal.map=DEC ({precision}, {scale}) 

 

Character types (parameter "length" available): 

 

xdb.sqltype.char.map=CHAR ({length}) 

xdb.sqltype.varchar.map=VARCHAR ({length}) 



GridSQL Administration Guide 
 

 

Page 43                                      Copyright © 2008      

xdb.sqltype.nchar.map=CHAR ({length}) UNICODE 

xdb.sqltype.nvarchar.map=VARCHAR ({length}) UNICODE 

 

Date and Time types: 

 

xdb.sqltype.time.map=TIME 

xdb.sqltype.date.map=DATE 

xdb.sqltype.timestamp.map=TIMESTAMP 

 

 

Partitioning 

 

Some types of columns can be partitioned on and others cannot be by default. That 

is because inexact data types like FLOAT can be problematic. Some optional settings 

allow these to be configured. 

 
Configuration Value Default Description 
xdb.allow.partition.integer true Columns of this type can be the table’s 

designated partitioning key 

xdb.allow.partition.char true Columns of this type can be the table’s 

designated partitioning key 

xdb.allow.partition.decimal true Columns of this type can be the table’s 

designated partitioning key 

xdb.allow.partition.float false Columns of this type can be the table’s 

designated partitioning key 

xdb.allow.partition.datetime false Columns of this type can be the table’s 

designated partitioning key 

 

3.10.8 Function Mapping 

 

GridSQL’s recognized SQL is ANSI-92 in nature, along with the most common 

functions found in most databases, especially PostgreSQL. However, it is possible to 

also use additional functions that are supported by your underlying database when 

issuing SQL commands. This also includes any stored procedures or user-defined 

functions used, with the caveat that these should usually not access any tables 

directly because each will be executed in isolation on the particular node. 

 

By default, any functions not recognized will be executed on the underlying database 

directly. In some queries, it is necessary for GridSQL to know the return type.  In 

those cases, it is best to define these in the gridsql.config file.  

 

In addition, it is possible to override the definition for a GridSQL-recognized function 

and map it to the equivalent function on the underlying database. 

 

To either define or override functions, use xdb.sqlfunction, followed by the 

function name, followed by following settings. 

 

template Used only if recognized function is 

being overridden or unknown function 

is being defined, maps the function to 

the underlying database 



GridSQL Administration Guide 
 

 

Page 44                                      Copyright © 2008      

returntype The return sql data type of the 

function 

paramcount The number of parameters the 

function takes 

argn Where n is 1, 2… the argument 

 

 

The SQL data types recognized are: 

 
CHAR, VARCHAR 

DATE, TIME, TIMESTAMP 

BYTE, SMALLINT, INTEGER, BIGINT 

ANYINT, FLOAT, REAL, DOUBLE, NUMERIC, DECIMAL 

 

In addition, ANYCHAR, ANYDATETIME, ANYINT and ANYNUMBER are short-hand 

notations when more than one type is permissible: 
 

ANYCHAR = CHAR|VARCHAR 

ANYDATETIME = DATE|TIME|TIMESTAMP 

ANYINT = BYTE|SMALLINT|INTEGER|BIGINT 

ANYNUMBER = ANYINT|FLOAT|REAL|DOUBLE|NUMERIC|DECIMAL 

 

For example, to define a function for SUBDATE(date, number_of_days) function: 

 
xdb.sqlfunction.subdate.template=DATE({arg1})-INTERVAL '{arg2} 

days' 

xdb.sqlfunction.subdate.returntype=DATE 

xdb.sqlfunction.subdate.paramcount=2 

xdb.sqlfunction.subdate.arg1=DATE 

xdb.sqlfunction.subdate.arg2=ANYNUMBER 



GridSQL Administration Guide 
 

 

Page 45                                      Copyright © 2008      

3.10.9 Logging 

 

GridSQL uses a popular library called log4j to implement its logging functionality. 

More detail can be found online here: 

http://logging.apache.org/log4j/docs/index.html.  

 

There are a few defined “loggers” that are used: console, Server, QUERY, and 

LONGQUERY. The console logger is used for errors and warnings. Server is used for 

significant server events. QUERY allows you to log all SQL requests to the database, 

which can be useful in troubleshooting. LONGQUERY allows you to log those requests 

which seem to be taking a long time to execute, which is useful for a DBA to get 

quickly to the source of which queries seem to be taking the most time to execute. 

 

A request is determined to be “long” based on another gridsql.config value, 

xdb.longQuerySeconds, which should be set to the number of seconds at which point 

it will be logged in the LONGQUERY log. 



GridSQL Administration Guide 
 

 

Page 46                                      Copyright © 2008      

4 Users and Privileges 
 

 

4.1 Introduction 
 

GridSQL supports creation of users and privileges.  

 

It is important to distinguish between users at the GridSQL level, and those of the 

underlying databases. GridSQL does not in turn try and create those same users on 

the underlying databases. It always accesses the underlying database with the single 

user defined in the gridsql.config file. GridSQL manages its own users and 

privileges for allowing access to the tables. 

 

4.2 Users 
 

There are 3 classes of users: DBA, RESOURCE, and STANDARD. DBA users have 

Database Administration privileges. RESOURCE users can create tables. STANDARD 

users cannot create tables, but can access the database. 

 

Users can be created with the CREATE USER command, and can be modified and 

dropped with the ALTER USER and DROP USER commands, respectively. 

 

4.3 Privileges  
 

A user must be granted access to a table before being able to access it. By default, a 

user who creates a table has all privileges on that table. 

 

Privileges can be set on tables by using the GRANT and REVOKE commands. 

 

More details on using these commands can be found in the GridSQL SQL Reference 

manual. 

 

The following types of privileges are available: 

 

• SELECT 

• INSERT 

• UPDATE 

• DELETE 

• REFERENCES 

• INDEX 

• ALTER 

 

Note that in the current version, GridSQL does not yet support ROLES. 



GridSQL Administration Guide 
 

 

Page 47                                      Copyright © 2008      

 

5 Redundancy, Backup and Recovery 
 

5.1 Redundancy 
 

The current version of GridSQL has no built-in redundancy, but this is a feature that 

will be added in the near future.  Keep in mind that the component most likely to fail 

is going to be a hard disk, and by using a RAID configuration like RAID 0+1 or RAID-

5, you are well protected against such a failure. 

 

You can achieve a high degree of redundancy, but without automatic failover. 

GridSQL will typically be used in reporting or data warehousing type of scenarios so 

while important and will be added, it is not as critical as a high volume OLTP 

database. 

 

One solution is to rely on HA solutions such as from Veritas or Red Hat.  

 

You could have your data out on a SAN, and have a stand-by node ready to point to 

the failed node’s data. The gridsql.config file would have to be modified for the node, 

and GridSQL stopped and restarted. 

 

You can also replicate the metadata database and user-created databases on the 

nodes. 

 

For replication, you can rely on EnterpriseDB Replication or Slony for a manual 

stand-by configuration. Note that any schema changes (ALTER TABLE) may require 

re-snapshotting the modified table. To failover to a stand-by node, the node 

information is changed in gridsql.config, and GridSQL is stopped and restarted. 

 

To make efficient use of the nodes in the cluster, you should consider creating the 

replicated copies of one node on another node. For example, node 1’s databases are 

replicated to node 2, node 2’s to node 3, and so on. 

 

5.2 Load Balancing 
 

GridSQL provides some amount of “load balancing” by virtue of the fact that it 

parallelizes queries and leverages multiple nodes. This allows queries over large 

amounts of data to execute much faster than they would if they were just on a single 

system. 

 

Also, above, we suggest creating stand-by databases on other nodes in the cluster 

that are also being used, for efficiency and cost savings, especially if OLTP activity is 

low. 

 

Still, if dedicated replicated standby nodes were created manually in your system 

and you wish to make use of them for querying for better throughput, it is possible 



GridSQL Administration Guide 
 

 

Page 48                                      Copyright © 2008      

to do so by hand, with some effort, however. (Built-in load balancing is planned for 

future support.) 

 

With the current version, you can execute multiple coordinators while keeping the 

following in mind: 

 

1. Your schema should be static. If doing schema changes, you should disable 

access temporarily to the second cluster until synchronized. 

2. An IP-based load balancer that supports sticky connections can be used to 

distribute the load amongst the coordinators. 



GridSQL Administration Guide 
 

 

Page 49                                      Copyright © 2008      

5.3 Backup & Recovery 
 

How backups are performed will depend greatly on the underlying database you are 

using. It is best to rely on the tools of the underlying database to backup nodes. That 

allows you to do restores on individual nodes and achieve parallelism while 

performing backups, as opposed to just doing a complete dump of all the data on all 

the nodes to a single destination.  

 

Many databases have the concept of full backups (backs up everything), incremental 

backups and log file backups.  This allows for different backup schedules. For 

example, you may wish to do a complete backup of all of the nodes once a week, 

and incremental backups every evening, or after a nightly load. 

 

If you are in an environment where GridSQL houses a data warehouse or data mart 

that where no update or delete activity occurs, with just periodic loads, you can also 

have a backup schedule with periodic full backups of the database combined with 

backups of the regular import files. 

 

Performing the backups can be done directly on the nodes using the database tools 

available for the underlying database. Alternatively, the execdb command can be 

used, which allows for the execution of the (nearly) exact same command on all of 

the underlying nodes. It makes use of the configuration value set for 

gridsql.config file for the particular database product being used. 

 

An example for backing up EnterpriseDB locally on each host appears below, 

assuming a secure environment has been been set up to use ssh (secure shell): 

 
execdb.sh -c "ssh –h {dbhost} 'pg_dump -h {dbhost} -U {dbusername} 

{database} -f /data/back/{database}.dump'" -d mydatabase -u gridsql -p password 

 

 

To recover a database, there are a couple of scenarios to consider. Typically, the 

problem will just be on a single node due to a hardware or software failure. If that is 

the case, use the tools of the underlying database to restore a complete backup if 

necessary, and any incremental backups and logs, as the case may be. See the 

documentation for your particular database product for details on how to do this. 

 

Another scenario is that a recovery is required because of human error. In this case, 

all of the nodes may very well be affected and will need to be restored. 



GridSQL Administration Guide 
 

 

Page 50                                      Copyright © 2008      

6 Command Reference 
 

 

In this section, commands used to administer GridSQL are described. 

 

All of these are from classes in the GridSQL java jar files, but can be accessed more 

conveniently via the script wrappers in the bin directory. If using Linux or other Unix 

variant, append a “.sh” at the end of the commands listed here.  

 

Note that the scripts invoke java and specify the amount of memory to use for the 

JVM. In the event that you encounter the OutOfMemoryException, just increase the 

values specified for –Xmx. 

 

Commands include connectivity options designated with the –o option.  The two 

modifiers are mode and charset. Mode set to P indicates that the connection should 

be persisted, instead of using pooling. Charset is used for localization. For example:  

 
-o mode=P charset=utf8 

 

6.1 gs-cmdline         
 

gs-cmdline.sh <connect> [-a] [-e] [-t] [-f inputfile]  

[-o connect_options] 

 
    <connect> is either a jdbcurl like, 
    -j 

jdbc:postgresql://<host>:<port>/<database>?user=<user>&password=<password

> 

         or  

   [-h <host>] [-s <port>] -d <database> -u <user> [-p <password>] 

 

    -a : add delimiter. If output mode is NORMAL, it will append 

an extra delimiter at the end of the last column when doing 

SELECT queries. 

    -e : echo mode. Echoes any statements as it executes them 

    -t : has effect of SET OUPUT NORMAL  

        (turns off default table mode) 

    -f : input file to be executed, instead of interactive mode. 

 

 

The gs-cmdline utility is used to obtain a SQL command prompt and execute SQL 

commands like CREATE TALBE, SELECT and INSERT interactively. A complete list of 

SQL commands can be found in the SQL Reference manual.  

 

The gs-cmdline utility is mentioned here in order to point out that there are some 

additional administrative commands, which appear in the table below that can be 

used by the DBA. 

 

Command Description 



GridSQL Administration Guide 
 

 

Page 51                                      Copyright © 2008      

SHOW DATABASES Lists all of the user-created GridSQL 

databases  

SHOW TABLES Lists all of the tables that exist in the 

current database 

SHOW VIEWS Lists all of the views that exist in the 

current database 

SHOW TABLE <table> Lists the columns and their definitions of 

the specified table 

SHOW VIEW <view> Displays the view definition for the 

specified view. 

SHOW INDEXES ON <table> Lists all indexes for <table> 

SHOW CONSTRAINTS ON 

<table> 

Lists the following types of constraints for 

<table>: primary keys, foreign keys, foreign 

key references 

SHOW USERS Lists all defined users and their class 

SHOW STATEMENTS Lists all of the currently executing SQL 

statements 

KILL <request_id> Kills execution of the request id specified. 

Request ids can be obtained by executing the 

SHOW STATEMENTS command. 

 

 



GridSQL Administration Guide 
 

 

Page 52                                      Copyright © 2008      

 

6.2 gs-createdb 
 

gs-createdb.sh -d dbname 

       [-h host] [-s port] 

              -u dbusername [-p dbpassword] 

              -n nodelist 

         [-m] 

 

The gs-createdb command is used to create GridSQL databases.  

 

There are two modes of operation, standard and manual. In standard mode it will try 

and create the physical underlying databases on all of the specified nodes using 

EnterpriseDB’s gs-createdb command. 

 

In manual mode, specified by the –m option, it will not try and create the underlying 

databases, but you are required to create them all by hand properly first. 

 

GridSQL uses the naming convention of <dbname>N<nodeid> when naming the 

actual physical databases on the underlying nodes. So, if you run gs-createdb in 

manual mode, you should first create all databases and their names properly before 

running gs-createdb with –m to wire it up. This naming scheme means that you 

could create a logical multi-node system where all nodes are really on the same 

physical system- this is not recommended of course, but may be helpful in testing. 

 

Note that some underlying databases have a limit to the number of characters that 

can be used when creating the database, so you may need to shorten the name you 

choose if it is rejected 

 

The values of dbusername and dbpassword are used to validate that the user 

attempting to execute this command is a valid user with administrative (DBA) rights. 

 

Note that if you are prompted by a password even with –p, it is the underlying tool, 

like edb-psql that is prompting you for a password. This means you are executing 

gs-createdb under a user where a trusted EnterpriseDB environment has not been 

configured. Be sure that it is configured for user enterprisedb, and execute the 

command as user enterprisedb. 

 

The nodelist is a comma-separated list of node ids that must be valid nodes as 

defined in the gridsql.config file. 

 

Note: in the current version, if gs-server is running, it must be restarted after gs-

createdb is executed to be able to use the new database and allow users to connect 

to it. 

 

If something goes wrong on one of the nodes during creation (a slightly different 

configuration on a node, underlying database server not running, etc), it might be 

easiest to fix the problem as follows: drop the database with the gs-dropdb.sh 



GridSQL Administration Guide 
 

 

Page 53                                      Copyright © 2008      

command, and then try again to create. If you still have difficulty, retry gs-

dropdb.sh with the –f option. 



GridSQL Administration Guide 
 

 

Page 54                                      Copyright © 2008      

6.3 gs-createmddb 
 

gs-createmddb.sh  

        -u dbusername [-p dbpassword] 
              [-m] 

 

The gs-createmddb command creates and initializes the metadata database. 

 

It relies on the xdb.metadata.* values in the gridsql.config file being used, so it 

is important that this file is configured properly before executing. It will try and 

create the database xdb.metadata.database on the system xdb.metadata.dbhost 

using the command template for xdb.gateway.createdb (underlying database 

dependent). 

 

After creating the database and running the optional initialization script, gs-

createmddb will create all GridSQL metadata tables in the metadata database, 

connecting to it as determined by the xdb.metadata.* configuration values in the 

gridsql.config file.  

 

Using the “-m” option, manual mode, will just try and create the required tables 

without physically creating the database. This is useful if you want to create the 

metadata database yourself and then just need to initialize it by creating the 

required tables. 

 

The gs-createmddb command also creates an initial administrative user used to 

administer the cluster. As a result, -u followed by a username must be included. If –

p is left off, the user will be prompted for an initial password to be created. 

 



GridSQL Administration Guide 
 

 

Page 55                                      Copyright © 2008      

6.4 gs-dropdb 
 

gs-dropdb.sh -d dbname  

         [-h host] [-s port] 

          -u dbusername -p dbpassword [-f] 

 

 

The gs-dropdb command is used to drop databases. 

 

The dbusername must be a DBA user who has privileges to drop the database. 

 

The underlying databases are dropped as defined by the xdb.gateway.dropdb 

template in the gridsql.config file. 

 

If there is a problem dropping the database, retry with the –f option (force). It will 

continue to try and remove the metadata from the metadata database even after a 

failure to remove any underlying databases, and will continue to try and drop from 

all of the underlying nodes, even if it encounters an error on one. 

 

  



GridSQL Administration Guide 
 

 

Page 56                                      Copyright © 2008      

6.5 gs-agent 
 

gs-agent.sh -n nodelist 

 

 

gs-agent starts the GridSQL Agent on a node participating in the cluster that has 

been installed and configured for agent use. 

 

Using gs-agent on the nodes facilitates better scalability when more nodes are 

present in the cluster. Instead of the coordinator doing all the work in connecting 

directly with the underlying databases, each node can be responsible for one. 

 

Each agent is started with –n, followed by its designated node number. 

 

Like gs-server, gs-agent uses a gridsql.config file for its configuration, but it is 

much smaller compared to gs-server’s. Once the agent connects to the 

coordinator, other configuration settings that are needed by the agent will be sent 

over by the coordinator. 

 

It is recommended to start gs-server on the coordinator before trying to start gs-

agent, but the agent can later be stopped and restarted without having to restart 

gs-server. 

 

 



GridSQL Administration Guide 
 

 

Page 57                                      Copyright © 2008      

6.6 gs-dbstart 
 

gs-dbstart.sh -d dbname 

          [-h host] [-s socketport]  

           -u dbauser [-p dbapassword] 

          [-w waittimeout] 

 

The gs-dbstart command is used to connect to an existing gs-server that is already 

running and bring the database dbname online. Internally, it will tell gs-server to 

initialize all necessary pools and begin accepting connections for that database. 

 

Which gs-server to connect to is determined by the host and port specified. If no 

host is specified, localhost will be used by default. If no port is specified, 6453 will be 

used by default. 

 

A username and password is required to connect with an existing gs-server 

process. 

 

An optional waittime may be included to determine how long to wait before failing if 

a node is inaccessible. 

 

6.7 gs-dbstop 
 

gs-dbstop.sh -d dbname 

          [-h host] [-s socketport]  

          -u dbusername [-p dbpassword] 

 

The gs-dbstop command is used to connect to an existing gs-server that is already 

running and bring the database dbname offline. Internally, it will tell gs-server to 

free all related resources and stop accepting connections to that database. 

 

The gs-server to connect to is determined by the host and port arguments. If no 

host is specified, localhost will be used by default. If no port is specified, 6453 will be 

used by default. 

 

The user and password must be valid for that particular database. 

 

 

 



GridSQL Administration Guide 
 

 

Page 58                                      Copyright © 2008      

6.8 gs-server 
 

gs-server.sh [-d database_list]  [-x] 

 

 

gs-server is executed to start GridSQL. 

 

The main configuration for the server appears in its corresponding gridsql.config 

file, which is found in $GSPATH/config. Please see “The gridsql.config File” 

section under Configuration in this document for more details. 

 

When starting the gs-server, a space-separated list of databases to bring online 

may be included with the –d option. A database must be brought online before 

clients can connect to it. If there already is an gs-server instance running, GridSQL 

databases can also be brought online with the gs-dbstart command. 

 

The –x option indicates that all of those GridSQL user databases specified in the 

database list should be brought online on the underlying nodes.  

 

Note that when executing the gs-server process, you may need to modify the 

parameters that Java uses, increasing the maximum amount of memory specified in 

the gs-server.sh launch script. 

 

 

6.9  gs-shutdown 
 

gs-shutdown.sh [-h host ] [-s socketport]  

            -u dbusername -p dbpassword 

       [-d dblist] 

 

gs-shutdown is executed to shutdown a GridSQL (gs-server) process. It is not to be 

confused with gs-dbstop, which merely brings a database offline, while allowing the 

gs-server process to continue executing. 

 

The gs-server to connect to is determined by the host and port specified. If no host 

is specified, localhost will be used by default. If no port is specified, 6453 will be 

used by default. 

 

The user and password must be valid for that particular database. 

 

 

 

 

 

 



GridSQL Administration Guide 
 

 

Page 59                                      Copyright © 2008      

6.10  gs-loader and gs-impex 
 

The gs-impex utility allows for the importing and exporting of data, while gs-loader 

is targeted exclusively for loading data. 

 

There is a separate document, the GridSQL Import and Export Utilities manual, which 

provides more detail about using these commands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GridSQL Administration Guide 
 

 

Page 60                                      Copyright © 2008      

7 Isolation Levels and Locking 
 

 

The four standard isolation levels are 

 

SERIALIZABLE  

REPEATABLE READ  

READ COMMITTED 

READ UNCOMMITTED 

 

By default, GridSQL uses Read Committed mode (a transaction only sees those rows 

from the beginning of the transaction until it completes). The ANSI SQL standard 

allows for a more restrictive isolation level than the one specified, and GridSQL treats 

Read Uncommitted as Read Committed and Repeatable Read as Serializable. 

 

Furthermore, even in Read Committed mode, by default GridSQL will use an 

exclusive table lock for Update and Delete statements. This can be overridden with 

the gridsql.config setting xdb.locks.readcommitted.mode. It is set to “S” (strict) by 

default, but can be overridden to “L” (loose), allowing for shared write locks on 

tables 

 

If your particular environment does not have a lot of update activity, the default 

should work adequately. Using mode “L” is useful for ETL processes where multiple 

threads are used to update the same table, which will result in much better 

performance. The downside of using mode “L” is the added risk that a deadlock may 

occur across nodes if multiple client sessions are updating the same rows in a 

transaction. 

 

 



GridSQL Administration Guide 
 

 

Page 61                                      Copyright © 2008      

8 Troubleshooting 
 

 

This section covers issues that you may encounter while using your GridSQL cluster, 

and offers possible solutions. 

 

8.1 Issues with Installation and Configuration 
 

The script gs-createmddb.sh appears to hang 

 

This is due to a missing or misconfigured .pgpass or pgpass.conf file. Correct the 

problem, and try again. 

 

 

“Template in use” error when running gs-createmddb.sh or gs-createdb.sh 

 

This is an error message from the underlying EnterpriseDB database server, and is 

caused when trying to create a new database when the template database is 

believed to be in use. Restart EnterpriseDB, and try again. 

 

8.2 Issues with Execution 
 

Connections, Pooling, and Timeouts 

 

GridSQL utilizes various thread and connection pools, and depending on their 

settings and your workload, you may encounter a timeout issue. 

 

For the client connecting to the GridSQL server, keep in mind that there is a fixed 

limit to the maximum number of client connections. This is configured in the 

gridsql.config file via the xdb.maxconnections setting, where you can override the 

default setting. 

 

GridSQL in turn uses pooled connections for communicating with the underlying 

databases on the nodes. The number of connections used for each node is 

determined via xdb.jdbc.pool.initsize and xdb.jdbc.pool.maxsize. You may also 

have to change the settings in the underlying database that you are using to accept 

more connections, if you use large values here. 

 

If the number of client connections is larger than these pools, the requests will 

remain on the request queue for a longer period of time. (Even if the number of 

requests is smaller than the pools, some “expensive” requests may be not be 

executed right away by the scheduler to try and both maximize throughput and be 

responsive for less expensive requests.) 

 



GridSQL Administration Guide 
 

 

Page 62                                      Copyright © 2008      

In addition to the pool sizes, the pools have timeouts. If an executing request cannot 

obtain the needed connections after the time specified in milliseconds by 

xdb.jdbc.pool.timeout, the request will timeout. 

 

Closely related to the JDBC pools are the thread pools, with settings 
xdb.default.threads.pool.maxsize, xdb.default.threads.pool.initsize, 

xdb.default.threads.pool.timeout. A request will only be executed if there are 

enough threads available in the pool. Normally the thread pool and jdbc pools should 

have the same size values. 

 

You may also receive timeouts under very heavy query loads with many concurrent 

sessions. You can try increasing the values of xdb.messagemonitor.timeout.millis 

and xdb.messagemonitor.timeout.short.millis. 

 

 

“Cannot send data to nodes” error message 

 

If you receive the “cannot send data to nodes” error message, it is likely that you 

have run into a memory resource issue. Try modifying the gs-server.sh script, 

increasing the values for MAXMEMORY, and perhaps STACKSIZE. 

 

If, however, you see this for all but the simplest queries, there probably is a 

permissions issue between the nodes. Make sure permissions are setup properly, 

including the .pgpass file and the usernames and passwords used.  

 

 

OutOfMemory Exception 

 

If you encounter this, you have run into a memory resource issue. Try modifying the 

gs-server.sh script, increasing the values for MAXMEMORY, and perhaps STACKSIZE. 

 

 

Concurrent Performance Slow 

 

The intended usage for GridSQL is in a data-warehousing environment where heavy 

transaction activity is expected. Nonetheless, GridSQL still can process hundreds of 

low-cost statements per second over multiple client sessions. 

 

For an individual session, GridSQL does add an extra hop and therefore latency. So, 

a single session will be much slower compared to a native EnterpriseDB database for 

example. Keep in mind that individual session performance and total throughput are 

different things; over many sessions working concurrently, much greater total 

throughput can be achieved. 

  

Please also read the chapter on isolation levels and locking. In particular, you can 

modify the setting xdb.locks.readcommitted.mode in the gridsql.config file, setting it 

to “L”. 

 

 

 



GridSQL Administration Guide 
 

 

Page 63                                      Copyright © 2008      

9 Appendices 
 

9.1 Appendix A – Metadata Database Schema 
 

create table xsystablespaces ( 

 tablespaceid int not null, 

 tablespacename varchar(255) not null, 

 ownerid int not null, 

 primary key(tablespaceid) 

) 

; 

create unique index idx_xsystablespaces_1 

 on xsystablespaces (tablespacename) 

; 

create table xsystablespacelocs ( 

 tablespacelocid int not null, 

 tablespaceid int not null, 

 filepath varchar(1024) not null, 

 nodeid int not null, 

 primary key(tablespacelocid) 

) 

; 

create unique index idx_xsystablespacelocs_1 

 on xsystablespacelocs (tablespaceid, nodeid) 

; 

alter table xsystablespacelocs 

 add foreign key (tablespaceid) references xsystablespaces 

(tablespaceid) 

; 

create table xsysusers ( 

  userid int not null, 

  username char(30) not null, 

  userpwd char(32) not null, 

  usertype char(8) not null,  

  primary key (userid) 

) 

; 

create unique index idx_xsysusers_1 on xsysusers (username) 

; 

create table xsysdatabases 

( 

 dbid int not null, 

 dbname varchar(128) not null, 

 primary key (dbid) 

)  

; 

create unique index idx_xsysdatabases_1 

 on xsysdatabases (dbname) 

; 

create table xsysdbnodes 



GridSQL Administration Guide 
 

 

Page 64                                      Copyright © 2008      

( 

 dbnodeid int not null, 

 dbid int not null, 

 nodeid int not null, 

 primary key (dbid, nodeid) 

) 

; 

create unique index idxnodes1 on xsysdbnodes (dbnodeid) 

; 

alter table xsysdbnodes 

 add foreign key (dbid) references xsysdatabases (dbid) 

; 

create table xsystables 

( 

 tableid int not null, 

 dbid integer not null, 

 tablename char(255) not null, 

 numrows int not null, 

 partscheme smallint not null,  

 partcol char(255),     

 parthash int, 

 owner int, 

 parented int, 

 tablespaceid int, 

 clusteridx varchar(80), 

 primary key (tableid) 

) 

; 

alter table xsystables 

 add foreign key (dbid) references xsysdatabases (dbid) 

; 

alter table xsystables 

 add foreign key (parentid) references xsystables (tableid) 

;         

alter table xsystables 

 add foreign key (tablespaceid) references xsystablespaces 

(tablespaceid) 

; 

create table xsystabparts 

( 

 partid int not null, 

 tableid integer not null, 

 dbid integer not null, 

 nodeid int not null, 

 primary key (partid) 

) 

; 

alter table xsystabparts 

 add foreign key (tableid) references xsystables (tableid) 

; 

alter table xsystabparts 

 add foreign key (dbid, nodeid) references xsysdbnodes (dbid, nodeid) 

; 

create table xsystabparthash 



GridSQL Administration Guide 
 

 

Page 65                                      Copyright © 2008      

( 

 parthashid int not null, 

 tableid integer not null, 

 dbid integer not null, 

 hashvalue integer not null, 

 nodeid int not null, 

 primary key (parthashid) 

) 

; 

alter table xsystabparthash 

 add foreign key (tableid) references xsystables (tableid) 

; 

alter table xsystabparthash 

 add foreign key (dbid, nodeid) references xsysdbnodes (dbid, nodeid) 

; 

 

create table xsyscolumns 

( 

 colid int not null, 

 tableid int not null, 

 colseq smallint not null, 

 colname varchar(255) not null, 

 coltype smallint not null, 

 collength int, 

 colscale smallint, 

 colprecision smallint, 

 isnullable smallint not null, 

 isserial smallint, 

 defaultexpr varchar(255), 

 checkexpr varchar(255), 

 selectivity float, 

 nativecoldef varchar(255),  

 primary key (colid) 

) 

; 

alter table xsyscolumns 

 add foreign key (tableid) references xsystables (tableid) 

; 

create unique index idx_xsyscolumns_1 

 on xsyscolumns (tableid, colseq) 

; 

create table xsysindexes 

( 

 idxid int not null, 

 idxname varchar(80) not null, 

 tableid int not null, 

 keycnt smallint not null, 

 idxtype char(1),   

 tablespaceid int,  

 issyscreated smallint not null, 

 primary key (idxid) 

) 

; 

alter table xsysindexes 



GridSQL Administration Guide 
 

 

Page 66                                      Copyright © 2008      

 add foreign key (tableid) references xsystables (tableid) 

; 

alter table xsysindexes 

 add foreign key (tablespaceid) references xsystablespaces 

(tablespaceid) 

; 

create table xsysindexkeys 

( 

 idxkeyid int not null, 

 idxid int not null, 

 idxkeyseq int not null, 

 idxascdesc smallint not null,  

 colid int not null, 

 primary key (idxkeyid) 

) 

; 

alter table xsysindexkeys 

 add foreign key (idxid) references xsysindexes (idxid) 

; 

alter table xsysindexkeys 

 add foreign key (colid) references xsyscolumns (colid) 

; 

create unique index idx_xsysindexkeys_1 

 on xsysindexkeys (idxid, idxkeyseq) 

; 

; 

create table xsysconstraints 

( 

 constid int not null, 

 constname varchar(128),   

 tableid int not null, 

 consttype char(1) not null,  

 idxid int, 

 issoft smallint not null, 

 primary key (constid) 

) 

; 

alter table xsysconstraints 

 add foreign key (tableid) references xsystables (tableid) 

; 

alter table xsysconstraints 

 add foreign key (idxid) references xsysindexes (idxid) 

; 

create table xsysreferences 

( 

 refid int not null, 

 constid int not null, 

 reftableid int not null, 

 refidxid int not null,   

 primary key (refid) 

) 

; 

alter table xsysreferences 

 add foreign key (constid) references xsysconstraints (constid) 



GridSQL Administration Guide 
 

 

Page 67                                      Copyright © 2008      

; 

alter table xsysreferences 

 add foreign key (reftableid) references xsystables (tableid) 

; 

alter table xsysreferences 

 add foreign key (refidxid) references xsysindexes (idxid) 

; 

; 

create table xsysforeignkeys 

( 

 fkeyid int not null, 

 refid int not null, 

 fkeyseq int not null, 

 colid int not null, 

 refcolid int not null, 

 primary key (fkeyid) 

) 

; 

alter table xsysforeignkeys 

 add foreign key (refid) references xsysreferences (refid) 

; 

alter table xsysforeignkeys 

 add foreign key (colid) references xsyscolumns (colid) 

; 

alter table xsysforeignkeys 

 add foreign key (refcolid) references xsyscolumns (colid) 

; 

create unique index idx_xsysforeignkeys_1 

 on xsysforeignkeys (refid, fkeyseq) 

; 

create table xsystabprivs ( 

 privid int not null, 

 userid int, 

 tableid int not null, 

 selectpriv char(1) not null, 

 insertpriv char(1) not null, 

 updatepriv char(1) not null, 

 deletepriv char(1) not null, 

 referencespriv char(1) not null, 

 indexpriv char(1) not null, 

 alterpriv char(1) not null, 

 primary key (privid) 

) 

; 

alter table xsystabprivs 

 add foreign key (userid) references xsysusers (userid) 

; 

alter table xsystabprivs 

 add foreign key (tableid) references xsystables (tableid) 

; 

create unique index idx_xsystabprivs_1 

 on xsystabprivs (userid, tableid) 

; 

alter table xsystables 



GridSQL Administration Guide 
 

 

Page 68                                      Copyright © 2008      

 add foreign key (owner) references xsysusers (userid) 

; 

create table xsysviews (  

 viewid int not null,  

 dbid int not null,  

 viewname varchar(255),  

 viewtext varchar(7500)) 

; 

create unique index idx_xsysviews_1  

 on xsysviews (viewid) 

; 

alter table xsysviews  

 add foreign key (dbid) references xsysdatabases (dbid) 

; 

create table xsysviewscolumns ( 

 viewcolid int not null,  

 viewid int not null, 

 viewcolseqno int not null, 

 viewcolumn varchar(255), 

 coltype smallint not null, 

 collength int, 

 colscale smallint, 

 colprecision smallint,  

 primary key (viewcolid)) 

; 

create unique index idx_sysviewscols_1  

 on xsysviewscolumns (viewid, viewcolseqno) 

; 

alter table xsysviewscolumns  

 add foreign key (viewid) references xsysviews (viewid) 

; 

create table xsysviewdeps   (  

 viewid int not null,  

 columnid int not null,  

 tableid int not null)  

; 

alter table xsysviewdeps  

 add foreign key (viewid) references xsysviews (viewid) 

; 

create table xsyschecks ( 

 checkid int not null, 

 constid int not null, 

 seqno int not null, 

 checkstmt varchar(8000),  

primary key (checkid)) 

; 

create unique index idx_xsyschecks_1 

 on xsyschecks (constid, seqno) 

; 

alter table xsyschecks 

add foreign key (constid) references xsysconstraints (constid) 

; 


