patch-2.3.30 linux/arch/alpha/math-emu/fp-emul.c

Next file: linux/arch/alpha/math-emu/fp-emul.h
Previous file: linux/arch/alpha/math-emu/Makefile
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.29/linux/arch/alpha/math-emu/fp-emul.c linux/arch/alpha/math-emu/fp-emul.c
@@ -1,354 +0,0 @@
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/sched.h>
-
-#include <asm/uaccess.h>
-
-#include "ieee-math.h"
-
-#define	OPC_PAL		0x00
-
-#define OPC_INTA	0x10
-#define OPC_INTL	0x11
-#define OPC_INTS	0x12
-#define OPC_INTM	0x13
-#define OPC_FLTC	0x14
-#define OPC_FLTV	0x15
-#define OPC_FLTI	0x16
-#define OPC_FLTL	0x17
-
-#define OPC_MISC	0x18
-
-#define	OPC_JSR		0x1a
-
-#define OP_FUN(OP,FUN)	((OP << 26) | (FUN << 5))
-
-/*
- * "Base" function codes for the FLTI-class instructions.
- * Note that in most cases these actually correspond to the "chopped"
- * form of the instruction.  Not to worry---we extract the qualifier
- * bits separately and deal with them separately.  Notice that base
- * function code 0x2c is used for both CVTTS and CVTST.  The other bits
- * in the function code are used to distinguish the two.
- */
-#define FLTI_FUNC_ADDS			OP_FUN(OPC_FLTI, 0x000)
-#define FLTI_FUNC_ADDT			OP_FUN(OPC_FLTI, 0x020)
-#define FLTI_FUNC_CMPTEQ		OP_FUN(OPC_FLTI, 0x025)
-#define FLTI_FUNC_CMPTLT		OP_FUN(OPC_FLTI, 0x026)
-#define FLTI_FUNC_CMPTLE		OP_FUN(OPC_FLTI, 0x027)
-#define FLTI_FUNC_CMPTUN		OP_FUN(OPC_FLTI, 0x024)
-#define FLTI_FUNC_CVTTS_or_CVTST	OP_FUN(OPC_FLTI, 0x02c)
-#define FLTI_FUNC_CVTTQ			OP_FUN(OPC_FLTI, 0x02f)
-#define FLTI_FUNC_CVTQS			OP_FUN(OPC_FLTI, 0x03c)
-#define FLTI_FUNC_CVTQT			OP_FUN(OPC_FLTI, 0x03e)
-#define FLTI_FUNC_DIVS			OP_FUN(OPC_FLTI, 0x003)
-#define FLTI_FUNC_DIVT			OP_FUN(OPC_FLTI, 0x023)
-#define FLTI_FUNC_MULS			OP_FUN(OPC_FLTI, 0x002)
-#define FLTI_FUNC_MULT			OP_FUN(OPC_FLTI, 0x022)
-#define FLTI_FUNC_SUBS			OP_FUN(OPC_FLTI, 0x001)
-#define FLTI_FUNC_SUBT			OP_FUN(OPC_FLTI, 0x021)
-
-#define FLTC_FUNC_SQRTS			OP_FUN(OPC_FLTC, 0x00B)
-#define FLTC_FUNC_SQRTT			OP_FUN(OPC_FLTC, 0x02B)
-
-#define FLTL_FUNC_CVTQL			OP_FUN(OPC_FLTL, 0x030)
-
-#define MISC_TRAPB	0x0000
-#define MISC_EXCB	0x0400
-
-extern unsigned long alpha_read_fp_reg (unsigned long reg);
-extern void alpha_write_fp_reg (unsigned long reg, unsigned long val);
-
-
-#ifdef MODULE
-
-MODULE_DESCRIPTION("FP Software completion module");
-
-extern long (*alpha_fp_emul_imprecise)(struct pt_regs *, unsigned long);
-extern long (*alpha_fp_emul) (unsigned long pc);
-
-static long (*save_emul_imprecise)(struct pt_regs *, unsigned long);
-static long (*save_emul) (unsigned long pc);
-
-long do_alpha_fp_emul_imprecise(struct pt_regs *, unsigned long);
-long do_alpha_fp_emul(unsigned long);
-
-int init_module(void)
-{
-	save_emul_imprecise = alpha_fp_emul_imprecise;
-	save_emul = alpha_fp_emul;
-	alpha_fp_emul_imprecise = do_alpha_fp_emul_imprecise;
-	alpha_fp_emul = do_alpha_fp_emul;
-	return 0;
-}
-
-void cleanup_module(void)
-{
-	alpha_fp_emul_imprecise = save_emul_imprecise;
-	alpha_fp_emul = save_emul;
-}
-
-#undef  alpha_fp_emul_imprecise
-#define alpha_fp_emul_imprecise		do_alpha_fp_emul_imprecise
-#undef  alpha_fp_emul
-#define alpha_fp_emul			do_alpha_fp_emul
-
-#endif /* MODULE */
-
-/*
- * Emulate the floating point instruction at address PC.  Returns 0 if
- * emulation fails.  Notice that the kernel does not and cannot use FP
- * regs.  This is good because it means that instead of
- * saving/restoring all fp regs, we simply stick the result of the
- * operation into the appropriate register.
- */
-long
-alpha_fp_emul (unsigned long pc)
-{
-	unsigned long op_fun, fa, fb, fc, func, mode;
-	unsigned long fpcw = current->thread.flags;
-	unsigned long va, vb, vc, res, fpcr;
-	__u32 insn;
-
-	MOD_INC_USE_COUNT;
-
-	get_user(insn, (__u32*)pc);
-	fc     = (insn >>  0) &  0x1f;	/* destination register */
-	fb     = (insn >> 16) &  0x1f;
-	fa     = (insn >> 21) &  0x1f;
-	func   = (insn >>  5) & 0x7ff;
-	mode   = (insn >>  5) & 0xc0;
-	op_fun = insn & OP_FUN(0x3f, 0x3f);
-	
-	va = alpha_read_fp_reg(fa);
-	vb = alpha_read_fp_reg(fb);
-	fpcr = rdfpcr();
-
-	/*
-	 * Try the operation in software.  First, obtain the rounding
-	 * mode...
-	 */
-	if (mode == 0xc0) {
-	    /* dynamic---get rounding mode from fpcr: */
-	    mode = ((fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT) << ROUND_SHIFT;
-	}
-	mode |= (fpcw & IEEE_TRAP_ENABLE_MASK);
-
-	if ((IEEE_TRAP_ENABLE_MASK & 0xc0)) {
-		extern int something_is_wrong (void);
-		something_is_wrong();
-	}
-
-	switch (op_fun) {
-	      case FLTI_FUNC_CMPTEQ:
-		res = ieee_CMPTEQ(va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_CMPTLT:
-		res = ieee_CMPTLT(va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_CMPTLE:
-		res = ieee_CMPTLE(va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_CMPTUN:
-		res = ieee_CMPTUN(va, vb, &vc);
-		break;
-
-	      case FLTL_FUNC_CVTQL:
-		/*
-		 * Notice: We can get here only due to an integer
-		 * overflow.  Such overflows are reported as invalid
-		 * ops.  We return the result the hw would have
-		 * computed.
-		 */
-		vc = ((vb & 0xc0000000) << 32 |	/* sign and msb */
-		      (vb & 0x3fffffff) << 29);	/* rest of the integer */
-		res = FPCR_INV;
-		break;
-
-	      case FLTI_FUNC_CVTQS:
-		res = ieee_CVTQS(mode, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_CVTQT:
-		res = ieee_CVTQT(mode, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_CVTTS_or_CVTST:
-		if (func == 0x6ac) {
-			/*
-			 * 0x2ac is also CVTST, but if the /S
-			 * qualifier isn't set, we wouldn't be here in
-			 * the first place...
-			 */
-			res = ieee_CVTST(mode, vb, &vc);
-		} else {
-			res = ieee_CVTTS(mode, vb, &vc);
-		}
-		break; 
-
-	      case FLTI_FUNC_DIVS:
-		res = ieee_DIVS(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_DIVT:
-		res = ieee_DIVT(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_MULS:
-		res = ieee_MULS(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_MULT:
-		res = ieee_MULT(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_SUBS:
-		res = ieee_SUBS(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_SUBT:
-		res = ieee_SUBT(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_ADDS:
-		res = ieee_ADDS(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_ADDT:
-		res = ieee_ADDT(mode, va, vb, &vc);
-		break;
-
-	      case FLTI_FUNC_CVTTQ:
-		res = ieee_CVTTQ(mode, vb, &vc);
-		break;
-
-	      case FLTC_FUNC_SQRTS:
-		res = ieee_SQRTS(mode, vb, &vc);
-		break;
-
-	      case FLTC_FUNC_SQRTT:
-		res = ieee_SQRTT(mode, vb, &vc);
-		break;
-
-	      default:
-		printk("alpha_fp_emul: unexpected function code %#lx at %#lx\n",
-		       func & 0x3f, pc);
-		MOD_DEC_USE_COUNT;
-		return 0;
-	}
-
-	/*
-	 * Take the appropriate action for each possible
-	 * floating-point result:
-	 *
-	 *	- Set the appropriate bits in the FPCR
-	 *	- If the specified exception is enabled in the FPCR,
-	 *	  return.  The caller (entArith) will dispatch
-	 *	  the appropriate signal to the translated program.
-	 *
-	 * In addition, properly track the exception state in software
-	 * as described in the Alpha Architectre Handbook section 4.7.7.3.
-	 */
-	if (res) {
-		/* Record exceptions in software control word.  */
-		current->thread.flags = fpcw |= res >> 35;
-
-		/* Update hardware control register */
-		fpcr &= (~FPCR_MASK | FPCR_DYN_MASK);
-		fpcr |= ieee_swcr_to_fpcr(fpcw);
-		wrfpcr(fpcr);
-
-		/* Do we generate a signal?  */
-		if (res >> 51 & fpcw & IEEE_TRAP_ENABLE_MASK) {
-			MOD_DEC_USE_COUNT;
-			return 0;
-		}
-	}
-
-	/*
-	 * Whoo-kay... we got this far, and we're not generating a signal
-	 * to the translated program.  All that remains is to write the
-	 * result:
-	 */
-	alpha_write_fp_reg(fc, vc);
-
-	MOD_DEC_USE_COUNT;
-	return 1;
-}
-
-
-long
-alpha_fp_emul_imprecise (struct pt_regs *regs, unsigned long write_mask)
-{
-	unsigned long trigger_pc = regs->pc - 4;
-	unsigned long insn, opcode, rc;
-
-	MOD_INC_USE_COUNT;
-
-	/*
-	 * Turn off the bits corresponding to registers that are the
-	 * target of instructions that set bits in the exception
-	 * summary register.  We have some slack doing this because a
-	 * register that is the target of a trapping instruction can
-	 * be written at most once in the trap shadow.
-	 *
-	 * Branches, jumps, TRAPBs, EXCBs and calls to PALcode all
-	 * bound the trap shadow, so we need not look any further than
-	 * up to the first occurrence of such an instruction.
-	 */
-	while (write_mask) {
-		get_user(insn, (__u32*)(trigger_pc));
-		opcode = insn >> 26;
-		rc = insn & 0x1f;
-
-		switch (opcode) {
-		      case OPC_PAL:
-		      case OPC_JSR:
-		      case 0x30 ... 0x3f:	/* branches */
-			MOD_DEC_USE_COUNT;
-			return 0;
-
-		      case OPC_MISC:
-			switch (insn & 0xffff) {
-			      case MISC_TRAPB:
-			      case MISC_EXCB:
-				MOD_DEC_USE_COUNT;
-				return 0;
-
-			      default:
-				break;
-			}
-			break;
-
-		      case OPC_INTA:
-		      case OPC_INTL:
-		      case OPC_INTS:
-		      case OPC_INTM:
-			write_mask &= ~(1UL << rc);
-			break;
-
-		      case OPC_FLTC:
-		      case OPC_FLTV:
-		      case OPC_FLTI:
-		      case OPC_FLTL:
-			write_mask &= ~(1UL << (rc + 32));
-			break;
-		}
-		if (!write_mask) {
-			if (alpha_fp_emul(trigger_pc)) {
-				/* re-execute insns in trap-shadow: */
-				regs->pc = trigger_pc + 4;
-				MOD_DEC_USE_COUNT;
-				return 1;
-			}
-			break;
-		}
-		trigger_pc -= 4;
-	}
-	MOD_DEC_USE_COUNT;
-	return 0;
-}

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)