patch-2.3.99-pre1 linux/Documentation/DocBook/z8530book.tmpl

Next file: linux/Documentation/networking/comx.txt
Previous file: linux/Documentation/DocBook/wanbook.tmpl
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.51/linux/Documentation/DocBook/z8530book.tmpl linux/Documentation/DocBook/z8530book.tmpl
@@ -0,0 +1,383 @@
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V3.1//EN"[]>
+
+<book id="Z85230Guide">
+ <bookinfo>
+  <title>Z8530 Programming Guide</title>
+  
+  <authorgroup>
+   <author>
+    <firstname>Alan</firstname>
+    <surname>Cox</surname>
+    <affiliation>
+     <address>
+      <email>alan@redhat.com</email>
+     </address>
+    </affiliation>
+   </author>
+  </authorgroup>
+
+  <copyright>
+   <year>2000</year>
+   <holder>Alan Cox</holder>
+  </copyright>
+
+  <legalnotice>
+   <para>
+     This documentation is free software; you can redistribute
+     it and/or modify it under the terms of the GNU General Public
+     License as published by the Free Software Foundation; either
+     version 2 of the License, or (at your option) any later
+     version.
+   </para>
+      
+   <para>
+     This program is distributed in the hope that it will be
+     useful, but WITHOUT ANY WARRANTY; without even the implied
+     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+     See the GNU General Public License for more details.
+   </para>
+      
+   <para>
+     You should have received a copy of the GNU General Public
+     License along with this program; if not, write to the Free
+     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+     MA 02111-1307 USA
+   </para>
+      
+   <para>
+     For more details see the file COPYING in the source
+     distribution of Linux.
+   </para>
+  </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+
+  <chapter id="intro">
+      <title>Introduction</title>
+  <para>
+	The Z85x30 family synchronous/asynchronous controller chips are
+	used on a larg number of cheap network interface cards. The
+	kernel provides a core interface layer that is designed to make
+	it easy to provide WAN services using this chip.
+  </para>
+  <para>
+	The current driver only support synchronous operation. Merging the
+	asynchronous driver support into this code to allow any Z85x30
+	device to be used as both a tty interface and as a synchronous 
+	controller is a project for Linux post the 2.4 release
+  </para>
+  <para>
+	The support code handles most common card configurations and
+	supports running both Cisco HDLC and Synchronous PPP. With extra
+	glue the frame relay and X.25 protocols can also be used with this
+	driver.
+  </para>
+  </chapter>
+  
+  <chapter>
+ 	<title>Driver Modes</title>
+  <para>
+	The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices
+	in three different modes. Each mode can be applied to an individual
+	channel on the chip (each chip has two channels).
+  </para>
+  <para>
+	The PIO synchronous mode supports the most common Z8530 wiring. Here
+	the chip is interface to the I/O and interrupt facilities of the
+	host machine but not to the DMA subsystem. When running PIO the
+	Z8530 has extremely tight timing requirements. Doing high speeds,
+	even with a Z85230 will be tricky. Typically you should expect to
+	achieve at best 9600 baud with a Z8C530 and 64Kbits with a Z85230.
+  </para>
+  <para>
+	The DMA mode supports the chip when it is configured to use dual DMA
+	channels on an ISA bus. The better cards tend to support this mode
+	of operation for a single channel. With DMA running the Z85230 tops
+	out when it starts to hit ISA DMA constraints at about 512Kbits. It
+	is worth noting here that many PC machines hang or crash when the
+	chip is driven fast enough to hold the ISA bus solid.
+  </para>
+  <para>
+	Transmit DMA mode uses a single DMA channel. The DMA channel is used
+	for transmission as the transmit FIFO is smaller than the receive
+	FIFO. it gives better performance than pure PIO mode but is nowhere
+	near as ideal as pure DMA mode. 
+  </para>
+  </chapter>
+
+  <chapter>
+ 	<title>Using the Z85230 driver</title>
+  <para>
+	The Z85230 driver provides the back end interface to your board. To
+	configure a Z8530 interface you need to detect the board and to 
+	identify its ports and interrupt resources. It is also your problem
+	to verify the resources are available.
+  </para>
+  <para>
+	Having identified the chip you need to fill in a struct z8530_dev,
+	which describes each chip. This object must exist until you finally
+	shutdown the board. Firstly zero the active field. This ensures 
+	nothing goes off without you intending it. The irq field should
+	be set to the interrupt number of the chip. (Each chip has a single
+	interrupt source rather than each channel). You are responsible
+	for allocating the interrupt line. The interrupt handler should be
+	set to <function>z8530_interrupt</function>. The device id should
+	be set to the z8530_dev structure pointer. Whether the interrupt can
+	be shared or not is board dependant, and up to you to initialise.
+  </para>
+  <para>
+	The structure holds two channel structures. 
+	Initialise chanA.ctrlio and chanA.dataio with the address of the
+	control and data ports. You can or this with Z8530_PORT_SLEEP to
+	indicate your interface needs the 5uS delay for chip settling done
+	in software. The PORT_SLEEP option is architecture specific. Other
+	flags may become available on future platforms, eg for MMIO.
+	Initialise the chanA.irqs to &amp;z8530_nop to start the chip up
+	as disabled and discarding interrupt events. This ensures that
+	stray interrupts will be mopped up and not hang the bus. Set
+	chanA.dev to point to the device structure itself. The
+	private and name field you may use as you wish. The private field
+	is unused by the Z85230 layer. The name is used for error reporting
+	and it may thus make sense to make it match the network name.
+  </para>
+  <para>
+	Repeat the same operation with the B channel if your chip has
+	both channels wired to something useful. This isnt always the
+	case. If it is not wired then the I/O values do not matter, but
+	you must initialise chanB.dev.
+  </para>
+  <para>
+	If your board has DMA facilities then initialise the txdma and
+	rxdma fields for the relevant channels. You must also allocate the
+	ISA DMA channels and do any neccessary board level initialisation
+	to configure them. The low level driver will do the Z8530 and
+	DMA controller programming but not board specific magic.
+  </para>
+  <para>
+	Having intialised the device you can then call
+	<function>z8530_init</function>. This will probe the chip and 
+	reset it into a known state. An identification sequence is then
+	run to identify the chip type. If the checks fail to pass the
+	function returns a non zero error code. Typically this indicates
+	that the port given is not valid. After this call the
+	type field of the z8530_dev structure is initialised to either
+	Z8530, Z85C30 or Z85230 according to the chip found.
+  </para>
+  <para>
+	Once you have called z8530_init you can also make use of the utility
+	function <function>z8530_describe</function>. This provides a 
+	consistant reporting format for the Z8530 devices, and allows all
+	the drivers to provide consistent reporting.
+  </para>
+  </chapter>
+
+  <chapter>
+ 	<title>Attaching Network Interfaces</title>
+  <para>
+	If you wish to use the network interface facilities of the driver,
+	then you need to attach a network device to each channel that is
+	present and in use. In addition to use the SyncPPP and Cisco HDLC
+	you need to follow some additional plumbing rules. They may seem 
+	complex but a look at the example hostess_sv11 driver should
+	reassure you.
+  </para>
+  <para>
+	The network device used for each channel should be pointed to by
+	the netdevice field of each channel. The dev-&gt; priv field of the
+	network device points to your private data - you will need to be
+	able to find your ppp device from this. In addition to use the
+	sync ppp layer the private data must start with a void * pointer
+	to the syncppp structures.
+  </para>
+  <para>
+	The way most drivers approach this paticular problem is to
+	create a structure holding the Z8530 device definition and
+	put that and the syncppp pointer into the private field of
+	the network device. The network device fields of the channels
+	then point back to the network devices. The ppp_device can also
+	be put in the private structure conveniently.
+  </para>
+  <para>
+	If you wish to use the synchronous ppp then you need to attach
+	the syncppp layer to the network device. You should do this before
+	you register the network device. The
+	<function>sppp_attach</function> requires that the first void *
+	pointer in your private data is pointing to an empty struct
+	ppp_device. The function fills in the initial data for the
+	ppp/hdlc layer.
+  </para>
+  <para>
+	Before you register your network device you will also need to
+	provide suitable handlers for most of the network device callbacks. 
+	See the network device documentation for more details on this.
+  </para>
+  </chapter>
+
+  <chapter>
+ 	<title>Configuring And Activating The Port</title>
+  <para>
+	The Z85230 driver provides helper functions and tables to load the
+	port registers on the Z8530 chips. When programming the register
+	settings for a channel be aware that the documentation recommends
+	initialisation orders. Strange things happen when these are not
+	followed. 
+  </para>
+  <para>
+	<function>z8530_channel_load</function> takes an array of
+	pairs of initialisation values in an array of u8 type. The first
+	value is the Z8530 register number. Add 16 to indicate the alternate
+	register bank on the later chips. The array is terminated by a 255.
+  </para>
+  <para>
+	The driver provides a pair of public tables. The
+	z8530_hdlc_kilostream table is for the UK 'Kilostream' service and
+	also happens to cover most other end host configurations. The
+	z8530_hdlc_kilostream_85230 table is the same configuration using
+	the enhancements of the 85230 chip. The configuration loaded is
+	standard NRZ encoded synchronous data with HDLC bitstuffing. All
+	of the timing is taken from the other end of the link.
+  </para>
+  <para>
+	When writing your own tables be aware that the driver internally
+	tracks register values. It may need to reload values. You should
+	therefore be sure to set registers 1-7, 9-11, 14 and 15 in all
+	configurations. Where the register settings depend on DMA selection
+	the driver will update the bits itself when you open or close.
+	Loading a new table with the interface open is not recommended.
+  </para>
+  <para>
+	There are three standard configurations supported by the core
+	code. In PIO mode the interface is programmed up to use
+	interrupt driven PIO. This places high demands on the host processor
+	to avoid latency. The driver is written to take account of latency
+	issues but it cannot avoid latencies caused by other drivers,
+	notably IDE in PIO mode. Because the drivers allocate buffers you
+	must also prevent MTU changes while the port is open.
+  </para>
+  <para>
+	Once the port is open it will call the rx_function of each channel
+	whenever a completed packet arrived. This is invoked from
+	interrupt context and passes you the channel and a network	
+	buffer (struct sk_buff) holding the data. The data includes
+	the CRC bytes so most users will want to trim the last two
+	bytes before processing the data. This function is very timing
+	critical. When you wish to simply discard data the support
+	code provides the function <function>z8530_null_rx</function>
+	to discard the data.
+  </para>
+  <para>
+	To active PIO mode sending and receiving the <function>
+	z8530_sync_open</function> is called. This expects to be passed
+	the network device and the channel. Typically this is called from
+	your network device open callback. On a failure a non zero error
+	status is returned. The <function>z8530_sync_close</function> 
+	function shuts down a PIO channel. This must be done before the 
+	channel is opened again	and before the driver shuts down 
+	and unloads.
+  </para>
+  <para>
+	The ideal mode of operation is dual channel DMA mode. Here the
+	kernel driver will configure the board for DMA in both directions.
+	The driver also handles ISA DMA issues such as controller
+	programming and the memory range limit for you. This mode is
+	activated by calling the <function>z8530_sync_dma_open</function>
+	function. On failure a non zero error value is returned.
+	Once this mode is activated it can be shut down by calling the
+	<function>z8530_sync_dma_close</function>. You must call the close
+	function matching the open mode you used.
+  </para>
+  <para>
+	The final supported mode uses a single DMA channel to drive the
+	transmit side. As the Z85C30 has a larger FIFO on the receive
+	channel	this tends to increase the maximum speed a little. 
+	This is activated by calling the <function>z8530_sync_txdma_open
+	</function>. This returns a non zero error code on failure. The
+	<function>z8530_sync_txdma_close</function> function closes down
+	the Z8530 interface from this mode.
+  </para>
+  </chapter>
+
+  <chapter>
+ 	<title>Network Layer Functions</title>
+  <para>
+	The Z8530 layer provides functions to queue packets for
+	transmission. The driver internally buffers the frame currently
+	being transmitted and one further frame (in order to keep back
+	to back transmission running). Any further buffering is up to
+	the caller.
+  </para>
+  <para>
+	The function <function>z8530_queue_xmit</function> takes a network
+	buffer in sk_buff format and queues it for transmission. The
+	caller must provide the entire packet with the exception of the
+	bitstuffing and CRC. This is normally done by the caller via
+	the syncppp interface layer. It returns 0 if the buffer has been 
+        queued and non zero values  for queue full. If the function accepts 
+	the buffer it becomes property of the Z8530 layer and the caller 
+	should not free it. 
+  </para>
+  <para>
+	The function <function>z8530_get_stats</function> returns a pointer
+	to an internally maintained per interface statistics block. This
+	provides most of the interface code needed to implement the network
+	layer get_stats callback.
+  </para>
+  </chapter>
+
+  <chapter>
+     <title>Porting The Z8530 Driver</title>
+  <para>
+	The Z8530 driver is written to be portable. In DMA mode it makes
+	assumptions about the use of ISA DMA. These are probably warranted
+	in most cases as the Z85230 in paticular was designed to glue to PC
+	type machines. The PIO mode makes no real assumptions.
+  </para>
+  <para>
+	Should you need to retarget the Z8530 driver to another architecture
+	the only code that should need changing are the port I/O functions.
+	At the moment these assume PC I/O port accesses. This may not be
+	appropriate for all platforms. Replacing 
+	<function>z8530_read_port</function> and <function>z8530_write_port
+	</function> is intended to be all that is required to port this
+	driver layer.
+  </para>
+  </chapter>
+
+  <chapter id="bugs">
+     <title>Known Bugs And Assumptions</title>
+  <para>
+  <variablelist>
+    <varlistentry><term>Interrupt Locking</term>
+    <listitem>
+    <para>
+	The locking in the driver is done via the global cli/sti lock. This
+	makes for relatively poor SMP performance. Switching this to use a
+	per device spin lock would probably materially improve performance.
+    </para>
+    </listitem></varlistentry>
+
+    <varlistentry><term>Occasional Failures</term>
+    <listitem>
+    <para>
+	We have reports of occasional failures when run for very long
+	periods of time and the driver starts to receive junk frames. At
+	the moment the cause of this is not clear.
+    </para>
+    </listitem></varlistentry>
+  </variablelist>
+	
+  </para>
+  </chapter>
+
+  <chapter id="pubfunctions">
+     <title>Public Functions Provided</title>
+!Edrivers/net/wan/z85230.c
+  </chapter>
+
+  <chapter id="intfunctions">
+     <title>Internal Functions</title>
+!Idrivers/net/wan/z85230.c
+  </chapter>
+
+</book>

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)