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Abstract 10 

Windstorms cause major disturbances in European forests and forest management can play 11 

a key role in making forests more persistent to disturbances. However, better information is 12 

needed to support decision making that effectively accounts for wind disturbances. Here we 13 

show how empirical probability models of wind damage, combined with existing spatial 14 

datasets, can be used to provide fine-scale spatial information about disturbance probability 15 

over large areas. First, we created stand-level damage probability models with predictors 16 

describing forest characteristics, recent forest management history and local wind, soil, site 17 

and climate conditions. We tested three different methods for creating the damage 18 

probability models - generalized linear models (GLM), generalized additive models (GAM) 19 

and boosted regression trees (BRT). Then, the damage probability maps were calculated by 20 

combining the models (GLM, GAM and BRT) with GIS data sets representing the model 21 

predictors. Finally, we demonstrated the predictive performance of the maps with a large, 22 

independent test data, which shows that the damage probability maps are able to identify 23 

vulnerable forests also in new wind damage events (AUC > 0.7). Use of the more complex 24 

methods (GAM and BRT) was not found to improve the predictive performance of the map 25 

compared to GLM, and therefore we would suggest using the more simple GLM method that 26 

can be more easily interpreted. The map allows identification of vulnerable forest areas in 27 
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high spatial resolution (16 x 16 m2 raster resolution), making it useful in assessing the 28 

vulnerability of individual forest stands when making management decisions. The map is 29 

also a powerful tool for communicating disturbance risks to forest owners and managers and 30 

it has the potential to steer forest management practices to a more disturbance aware 31 

direction.  Our study showed that in spite of the inherent stochasticity of the wind and 32 

damage phenomena at all spatial scales, it can be modelled with good accuracy across 33 

large spatial scales when existing ground and earth observation data sources are combined 34 

smartly. With improving data quality and availability, map-based risk assessments can be 35 

extended to other regions and other disturbance types. 36 

Keywords: forest disturbances; storm damage; windthrow; tree mortality; forest 37 

management; climate change 38 

1. Introduction 39 

Forest wind disturbances have major economic, societal and ecological consequences in 40 

Europe. Forest disturbances have substantial effects on forest productivity and carbon 41 

storage (Reyer et al., 2017; Seidl et al., 2014), and therefore actions to reduce and manage 42 

the disturbances are crucial in assuring the persistence of the forest carbon sinks. The 43 

damage caused by wind storms in European forests has increased during the past century 44 

(Gregow et al., 2017; Schelhaas et al., 2003; Seidl et al., 2011) and this trend is expected to 45 

continue (Ikonen et al., 2017; Seidl et al., 2017). The question of forest wind disturbances is 46 

therefore becoming increasingly important in the future. 47 

Forest management practices play a key role in making forests less vulnerable to wind 48 

disturbances. Management driven changes in European forests, such as increasing standing 49 

timber volume and promotion of conifer species, have been identified as one of the major 50 

causes of increased forest disturbances in Europe during the latter half of the 20th century 51 

(Schelhaas et al., 2003; Seidl et al., 2011). If management practices are shifted to reduce 52 

forest vulnerability to wind, it may be possible to decrease the negative effects of wind 53 
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disturbances. However, changing the forest management practises to more disturbance-54 

aware direction is not always easy, as illustrated by the 2005 storm Gudrun in southern 55 

Sweden. Despite the massive damage and economic losses caused by the storm and the 56 

Swedish Forest Agency’s recommendations for alternative, less vulnerable, management 57 

options, the forest management practises in the area remained largely unchanged after the 58 

storm (Andersson et al., 2018; Valinger et al., 2014). This demonstrates that not only is 59 

information about the wind damage risks urgently needed to account for disturbances in 60 

management decisions, but it is also crucial that this information is in a form that can be  61 

effectively used and communicated to forest owners and managers. 62 

The development of remote sensing methods and the progress of open data policies have 63 

substantially increased the amount, quality and availability of spatial data relating to forests. 64 

This opens new possibilities for detailed spatial estimation of forest sensitivity to 65 

disturbances. Vulnerability of forests to wind damage is affected by forest characteristics, 66 

forest management as well as the abiotic environment, such as local wind and soil 67 

conditions (Mitchell, 2013). For example, probability of wind damage has been shown to 68 

increase with tree height and certain species, such as Norway spruce, are particularly 69 

vulnerable to wind (Dobbertin, 2002; Peltola et al., 1999; Valinger and Fridman, 2011). 70 

Forest management has major effects on wind damage sensitivity, as trees that have grown 71 

in sheltered conditions and have later been exposed to wind, because of thinning or clear cut 72 

of the neighboring stand, are especially sensitive to damage (Lohmander and Helles, 1987; 73 

Peltola et al., 1999; Suvanto et al., 2016). Areas that are exposed to strong wind gusts 74 

(Schindler et al., 2016) or where rooting conditions are limited due to soil characteristics 75 

(Nicoll et al., 2006) are more predisposed to wind damage. Therefore, in order to provide 76 

useful information on forest vulnerability to wind damage, information from several different 77 

sources, scales and disciplines needs to be brought together.  78 

Logistic generalized linear models (GLM) have long been applied in statistical modelling of 79 

forest wind damage (Lohmander and Helles, 1987; Suvanto et al., 2016; Valinger and 80 
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Fridman, 1997). In addition, different approaches allowing more flexible model behaviour 81 

than fully parametric GLMs have been used, such as generalized additive models (GAM; 82 

Schmidt et al., 2010) that use non-parametric smooth functions to allow more flexibility in the 83 

relationship of response variable and predictors (Hastie et al., 2009). Machine learning 84 

approaches have also been successfully applied to wind disturbance modeling (see 85 

Hanewinkel et al. 2004 for an early example) and recently especially tree-based ensemble 86 

models, such as random forests, have been shown to perform well in predicting wind 87 

damage (Albrecht et al., 2019; Hart et al., 2019; Kabir et al., 2018; Schindler et al., 2016). 88 

While machine learning methods and additive models are able to more flexibly fit the data 89 

and account for non-linearities, the GLMs have strengths in their straightforward 90 

interpretability and the robustness of predictions (Albrecht et al., 2019; Nakou et al., 2016). 91 

In this study, our goal was to create high-resolution spatial information about forest 92 

vulnerability to wind damage in Finland, using an extensive damage observation data set 93 

and a large compilation of spatial data sources to achieve this. More specifically, we aimed 94 

to (1) create a damage probability statistical model based on a large data set of wind 95 

damage observations in the Finnish National Forest Inventory (NFI), (2) compare three 96 

statistical and machine learning methods for creating the model: GLM, GAM and BRT, (3) 97 

calculate a damage probability map by combining the model with national extent GIS layers 98 

of model predictors, compiled from different sources, and (4) test the performance of the 99 

map with independent damage observations from new NFI data. 100 

2. Material and methods 101 

2.1 National Forest Inventory and wind damage observations 102 

In this study, we used stand level wind damage observations from the 11th Finnish national 103 

forest inventory (NFI11) to create an empirical model of wind damage probability (Fig. 1). 104 

The field work for the NFI11 was conducted from 2009 to 2013 (Korhonen, 2016; Korhonen 105 
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et al., 2017). In later stages of the study, we also used NFI12 (field work in 2014 to 2018) to 106 

test the created map (see section 2.5). 107 

In our analysis, we only included plots that were defined as forest land. Poorly productive 108 

forests were excluded because they are unimportant for forestry and their wind damage risks 109 

tend to be small due to low volume of growing stock. In addition, plots on treeless stands or 110 

seedling stands without upper canopy layer were excluded because seedlings have very low 111 

wind damage probability (8633 plots). Plots with missing data or unrealistic (erroneous) 112 

values for any of the used variables were excluded (52 plots). Plots within less than 1 km 113 

from the national border were also excluded, as the data set describing local wind conditions 114 

(Venäläinen et al., 2017) had edge effects (214 plots).  If a plot was located on the border of 115 

two or more forest stands, we only used the data from the stand where the plot centre was 116 

located.  The final data set consisted of a total of 41 392 NFI plots. 117 

Observations of stand level wind damage and an estimate of the damage time is 118 

documented in the Finnish NFI (Korhonen, 2016; Tomppo et al., 2011). Here, we used only 119 

the wind damage observations that had occurred no more than 5 years before the date of 120 

the field visit. Since the field work of NFI11 was done in 2009 to 2013, the data can contain 121 

observations from damage that has occurred between 2004 and 2013. During these years, 122 

several high impact storms affected Finland, such as cyclone Dagmar (known as Tapani in 123 

Finland) in December 2011 and a series of severe thunderstorms in summer 2010. 124 

The severity of damage was not considered in the analysis, because the degree of damage 125 

was only recorded as cumulative effect of all damage agents, and no information of wind 126 

damage severity was available in cases where there were more than one damaging agent 127 

present. The restriction of the analysis to only severe damage cases would also have limited 128 

the number of damage observations available. Therefore, the binary damage variable 129 

contains stands with different damage severities. Stand level wind damage was observed at 130 

1 070 plots of the total 41 392 NFI plots in the dataset. 131 
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 132 

 133 

Figure 1. General approach and workflow 134 

 135 

2.2 Model predictors 136 

2.2.1 National Forest Inventory data 137 

Most predictors in the statistical models were extracted from the NFI field data (Table 1 and 138 

2).  To describe the forest characteristics of the stand, dominant tree species and mean tree 139 

height in the stand were used. If several canopy layers and species were recorded in the 140 

data, the values from the layer with largest tree height were used, as the tallest trees can be 141 

assumed to be most vulnerable to wind. The NFI also documents the type and time of most 142 

recent forest management operation, and based on this data we created a variable 143 

describing the time since last thinning. 144 

NFI information about soil type, soil depth and site fertility was also used (Table 1 and 2). 145 

Soil type variable differentiated between organic and mineral soils, as well as fine and 146 

coarse grained mineral soils. Fine mineral soils included clay and fine sands, whereas sands 147 
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and coarser soils were classified as coarse mineral soils. Grain size was estimated on the 148 

field by NFI teams. Site fertility classes in the NFI are estimated in eight classes, but in our 149 

analysis they were regrouped into two classes so that class “Fertile” contained sites from 150 

herb-rich to mesic forests on mineral soils and from euthrophic to meso-oligothrophic 151 

peatlands. Less fertile classes were included in the “Poor” fertility class (see Tomppo et al., 152 

2011 for detailed description of the site fertility classes used in Finnish NFI). 153 

The used data covers the whole country and contains damage observations from several 154 

years and several storm events. Therefore, not all plots were exposed to similar wind 155 

conditions and this needed to be taken into account in the statistical model. However, we did 156 

not have reliable data available about the spatial variation in maximum wind speed 157 

conditions during the study period and lacking such an important factor affecting the damage 158 

probability is likely to bias the estimation of the effects of other predictors. Therefore, a 159 

different approach was taken. To account for areas subjected to severe storm events, 160 

variable “Damage density ratio” was calculated using the locations of NFI plots as as the 161 

ratio of 2D kernel density of damaged plots and all plots (Table 1). That is, the ratio 162 

describes the spatial density of damaged plots in comparison to all NFI plots included in the 163 

model and a value of 2, for example, can therefore be interpreted as two times higher 164 

density of damaged plots than what would be expected from the density of all plots. The 165 

damage density variable was then transformed into a categorical variable (with classes 0-2, 166 

2-3, and >3). The upper limit of the lowest class was set relatively high to identify only the 167 

strongest clusters of damaged plots and to avoid catching all the large-scale spatial trends 168 

with this variable. The calculations were done in R with the KernSmooth package (Wand, 169 

2015) using bandwidth of 20 km, see details in S1. 170 

2.2.2 Other data sets and the delineation of forest stands 171 

In addition to the NFI field data we also supplemented the model predictor set with additional 172 

variables describing local wind conditions and open forest borders from other data sources 173 

(Table 1 and 2).  For the wind conditions, we used a data set describing the local 10-year 174 
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return levels of maximum wind speeds in 20 x 20 m2 raster cells (Venäläinen et al., 2017). 175 

That is, the value of each pixel represents the level of maximum wind speed (ms-1) expected 176 

to be reached on average once in every 10 years. The data is downscaled from coarse-scale 177 

wind speed estimates in ERA-Interim reanalyzed data with a wind multiplier approach using 178 

CORINE land-use data and digital elevation model (Venäläinen et al., 2017). The data set 179 

contains maximum wind speeds calculated for eight different wind directions, and in this 180 

study we used the maximum value of these for each pixel. To identify stands with open 181 

forest borders (variable ‘Open neighbour stand’, Table 1), we used the multi-source NFI 182 

forest resource maps (MS-NFI; Mäkisara et al., 2016; Tomppo et al., 2008) that combine 183 

satellite data and NFI field data to create national extent forest resource maps in a 16 x 16 184 

m2 resolution grid. 185 

However, the used wind damage observations were documented on the level of forest 186 

stands and the stand borders were not mapped in the data but only estimated by the NFI 187 

team at the field. Therefore, in order to combine the stand-level damage information with 188 

other data sources, the locations of stand borders first needed to be defined. A forest stand 189 

in the the Finnish NFI is defined as spatially continuous land area that is homogeneous with 190 

respect to properties such as administrative boundaries, site fertility, structure of the growing 191 

stock (e.g. maturity class, tree species composition) and forest management (Tomppo et al., 192 

2011). To create polygons that would approximately correspond to the stands  assessed in 193 

the field by the NFI team, we used image segmentation on the MS-NFI data layers 194 

(corresponding to year 2013) describing growing stock volumes by main tree species groups 195 

(pine, spruce and deciduous species) and tree height. Land property boundaries obtained 196 

from the National Land Survey of Finland were also included in the segmentation, as they 197 

are considered as stand boundaries in the NFI. The image segmentation was conducted 198 

with the methodology described by Pekkarinen (2002), using the “segmentation by directed 199 

trees” algorithm by Narendra and Goldberg (1980). 200 
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Once the stand polygons were defined with image segmentation, they were used for 201 

calculating local wind conditions and finding stands with open stand borders. For each stand 202 

polygon, maximum wind-speed within the stand boundaries was calculated (Table 1). 203 

Maximum value was used because the NFI field data does not specify the exact location of 204 

the damage within the stand, and we assumed that damage occurred in the most wind 205 

exposed part of the stand. 206 

To identify plots with open neighbor stands, median tree height was first calculated for each 207 

stand polygon using the MS-NFI tree height data. A stand was defined to have an open 208 

stand neighbor if the median tree height of any of the stand neighbours was smaller than 5 209 

meters (Table 1). Median was used instead of mean so that it would be less affected by 210 

possible outlier values resulting from inaccuracies in defining the stand polygons. 211 

Calculations of maximum wind speeds and open stand neighbors for the segments were 212 

conducted with PostGIS (version 2.4.0) and Python (version 2.7.12) with packages 213 

geopandas (version 0.3.0) and rasterstats (version 0.12.0). 214 

2.3 Statistical modelling 215 

Damage probability models were created using three different methods: generalized linear 216 

models (GLM), generalized additive models (GAM, Wood 2006) and boosted regression 217 

trees (BRT; Elith et al., 2008). In all the models the dependent variable was the  presence of 218 

wind damage in the stand and independent variables described forest characteristics, forest 219 

management history, soil and site type, the 10-year return level of maximum wind speed and 220 

temperature sum (Table 1). 221 

Binomial GLM with logit-link function were fitted in R (version 3.5.1, R Core Team, 2017). To 222 

account for non-linear relationships, logarithm transformation were tested for all continuous 223 

independent variables and included in the final model if they showed lower AIC than models 224 

with non-transformed variables. The transformations were included only for the GLM model, 225 

since GAM and BRT enable more flexibility in the shapes of the relationship between 226 
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response variable and predictors, and can therefore account for non-linear relationships 227 

without transformations. 228 

Variable selection was based on several criteria: (1) only variables that, based on earlier 229 

research, were expected to have a causal effect to wind damage probability were included, 230 

(2) since the ultimate goal of the model was to produce the damage probability map, we only 231 

included variables for which reasonably high-quality national-extent GIS data sets were 232 

available or could be derived from existing data, (3) the behaviour of the variable in the 233 

model was plausible based on existing understanding of forest wind damage. We also aimed 234 

to build the model so that all major components related to wind damage probability were 235 

included. Collinearity of predictors was inspected with Pearson’s correlation coefficients and  236 

generalized variance inflation factors (GVIF, Fox and Monette, 1992). All correlation between 237 

included continuous predictor variables were weaker than 0.5 and GVIFs for all variables 238 

were lower than 4. 239 

Generalized additive model (GAM) is a generalized linear model with a linear predictor 240 

involving a sum of smooth functions of covariates. This specification of the model in terms of 241 

smooth functions instead of detailed parametric relationships allows for more flexibility in the 242 

dependence of the response of the covariates (Wood, 2017). In our analysis, GAM with logit-243 

link function was fitted in R with package mgcv (version 1.8-24, Wood, 2011), using the 244 

same predictors that were included in the GLM. All continuous predictors were included in 245 

the model through non-linear smoothing spline functions. The dimension parameter (k), 246 

effectively setting the upper limit on the degrees of freedom related to the smooth, was set to 247 

15 for all variables, except for temperature sum for which k=5 was chosen to avoid 248 

unrealistically fluctuating large-scale patterns in the predictions. The effective degrees of 249 

freedom (edf) after fitting the model were lower than k for all of the terms (see S2 for details), 250 

suggesting that the chosen k’s were sufficiently large. 251 
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Boosted regression trees (BRT) is an ensemble method, that combines a large number of 252 

regression trees with a boosting algorithm (Elith et al., 2008). Here, BRTs were computed 253 

with R package dismo (version 1.1-4, Hijmans et al., 2017). To find the best parameters, 254 

BRTs with different parameter combinations of tree complexity (tested values 1, 2, 3 and 5), 255 

learning rate (0.05, 0.01 and 0.005) and bag fraction (0.5, 0.6 and 0.75) were fitted. The 256 

number of trees was not assigned manually, but was estimated with k-fold cross-validation 257 

using the function gbm.step (Hijmans et al., 2017). To estimate the number of trees and to 258 

compare different parameter combinations, gbm.step was run separately for each parameter 259 

combination. Following the rule-of-thumb suggested by Elith et al. (2008), we excluded 260 

parameter combinations that led to models with fewer than 1000 trees. Thus, the model with 261 

parameter combination leading to lowest holdout residual deviance in the cross-validation 262 

performed by gbm.step and at least 1000 trees was chosen for the final model (tree 263 

complexity=2, learning rate=0.01, bag fraction = 0.5, 2250 trees, see Supplementary 264 

material for details).  265 

To make sure that the unbalanced ratio of damaged versus non-damaged plots did not affect 266 

the results, BRTs were fitted also from two balanced datasets where the balancing of the 267 

observations was done by (1) undersampling the non-damaged plots or (2) oversampling the 268 

damaged plots. In both cases the cross-validated AUCs were very similar to ones calculated 269 

from the original unbalanced dataset and, therefore, the original data set was used for the 270 

final results. 271 

To account for the sampling design, weights based on the forest area each plot represents 272 

were used in all models (Korhonen, 2016). For example, in northern Finland the NFI 273 

sampling design is sparser and therefore the weight of one plot in modelling is higher. To 274 

test if the clustered sampling design had an effect on the results, GLMs and GAMs were also 275 

fitted as mixed models (GLMM and GAMM) with plot clusters as random intercepts, using R 276 

packages lme4 (Bates et al., 2015) for GLMM and gamm4 (Wood and Scheipl, 2017) for 277 

GAMM. However, as the mixed model predictions (in the scale of the linear predictor, using 278 
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only fixed effects for prediction) were highly correlated with the fixed effect model prediction 279 

(Pearson’s r=0.998, p<0.001 for GLM vs GLMM, and r=0.979, p<0.001 for GAM vs GAMM) 280 

and our interest was in marginal instead of conditional inference, no random effects were 281 

included in the final models. 282 

The models were validated with 10-fold stratified cross-validation, where number of 283 

damaged plots was divided evenly into the folds. In the cross-validation, the variation in 284 

damage density variable was not used in the prediction, because the variable was included 285 

in the model only to account for spatial structures in storm severity in the data, and in an 286 

aimed use case of the models (i.e., estimating damage vulnerability in future events) we 287 

would not have this information available. Instead, separate predictions for test-folds were 288 

calculated with each class of the damage density variable (0-2, 2-3, >3). Then, these three 289 

predictions were averaged based on the frequency of each class in the original model data. 290 

See details in S1. 291 

ROC curves and AUC values were calculated for each iteration of cross-validation and used 292 

to assess the performance of the models (see Supplementary material). The ROC curve 293 

plots the true positive rate (sensitivity) and true negative rate (specificity) of the model with 294 

all possible classification thresholds. The AUC values represent the area under ROC curve 295 

and measure the model’s ability to discriminate between events and non-events. AUC 296 

values of 0.5 corresponds to a situation where the classifier is no better than random (ROC 297 

curve along diagonal) and value of 1 a situation where the model perfectly discriminates 298 

between events and non-events. As a rule of thumb, AUC values over 0.7 are considered 299 

acceptable discrimination between classes, values over 0.8 excellent and values over 0.9 300 

outstanding (Hosmer et al., 2013). 301 

  302 
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Table 1. Description of predictors used and their sources in the model and in the damage 303 

probability map. See section 2.2.1 for details. 304 

Variable Type* Unit / Classes Source in model Source in map 

Tree species C pine, spruce, 

other 

NFI11 MS-NFI 2015 

Tree height N dm NFI11 MS-NFI 2015 

Time since 

thinning 

C 0-5, 6-10, 

> 10 years 

NFI11 MS-NFI 2015, 

Forest use notifications 

Wind (10-year 

return level of 

max wind speed) 

N ms
-1 

Venäläinen et al. 

2017 

Venäläinen et al. 2017 

Open neighbor 

stand 

C True, False MS-NFI 2013 MS-NFI 2015 

Soil type C Mineral/coarse, 

Mineral/fine, 

Organic 

NFI11 GTK 2018, 

NLS 2018 

Mineral soil depth 

< 30 cm 

C True, False NFI11 GTK 2018, 

NLS 2018 

Site fertility C Fertile, Poor NFI11 MS-NFI 2015 

Temperature sum 

(average 1985-

2014) 

N 100 dd (over 

5C) 

Aalto et al. 2016 Aalto et al. 2016 

Damage density 

ratio 

C 0-2, 2-3, <3 NFI11 In the calculation of the 

map, this variable was 

included as a weighted 

average of all classes, 

because it was included in 

the model only to account 

for spatial structures in 

storm severity. 

* C – categorical, N – numerical (continuous) 305 

 306 

  307 
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Table 2. Descriptive statistics for the NFI11 data. Mean and standard deviation for non-308 

damaged, damaged and all plots continuous variables, and percentages of each class for 309 

categorical variables. The definitions of the variables are in table 1. 310 

  Non-damaged Damaged All 

Number of plots 40322 1070 41392 

Species 
   

Scots pine 63.4% 59.1% 63.3% 

Norway spruce 24.0% 36.8% 24.3% 

Other 12.6% 4.1% 12.4% 

Tree height 163.0 (50.5) 195.2 (45.1) 163.9 (50.6) 

Time since thinning 
   

0-5 years 13.4% 26.0% 13.7% 

6-10 years 9.2% 15.5% 9.4% 

> 10 years 77.4% 58.5% 76.9% 

Wind 12.1 (2.0) 12.5 (2.0) 12.2 (2.0) 

Open neighbor 
   

False 85.7% 84.6% 85.7% 

True 14.3% 15.4% 14.3% 

Soil type 
   

Mineral, coarse 66.9% 77.8% 67.2% 

Mineral, fine 12.7% 9.8% 12.7% 

Organic 20.3% 12.4% 20.1% 

Soil depth < 30 cm 
   

False 89.5% 85.0% 89.4% 

True 10.5% 15.0% 10.6% 

Site fertility 
   

Poor 34.8% 31.9% 34.7% 

Fertile 65.2% 68.1% 65.3% 

Temperature sum 1185 (178.9) 1262.6 (130.4) 1187.0 (178.3) 

  311 
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2.4 Calculation of the damage probability map 312 

A GIS raster data layer with resolution of 16 x 16 m2 and extent of the whole country was 313 

prepared for each predictor variable used in the models (Table 1). Forest variables 314 

(dominant species, tree height, height-diameter ratio, open forest edge) were derived from 315 

the most recent Finnish MS-NFI data for year 2015 (Mäkisara et al., 2019). A grid cell was 316 

defined to be on an open forest edge if tree height in the MS-NFI data was lower than 5 317 

meters in any of the cell’s within a 5 x 5 cell neighborhood. 318 

Spatial data on forest management history (the time of last thinning) was derived from the 319 

forest use notification collected by the Finnish Forest Centre. This data consists of forest use 320 

notifications that forest owners are required to report to the Forest Centre before conducting 321 

management operations in their forests. For each 16 x 16 m2 pixel, we first assigned the 322 

year of the latest notification of planned thinning in that location of the pixel and then 323 

calculated the difference to year 2015. 324 

Data for the 10-year return rates of maximum wind (Venäläinen et al., 2017) was resampled 325 

to the 16 x 16 m2 grid with GDAL using bilinear interpolation. Soil type was defined as 326 

ORGANIC for areas within the peatland polygons in the Topographic Database  produced by 327 

the National Land Survey of Finland (NLS, 2018). Other areas were defined as mineral soils, 328 

and further divided to fine or coarse mineral soils based on the top soil information in the 329 

1:200 000 resolution soil map of the Geological Survey of Finland (GTK, 2018). Data layer 330 

for soil fertility classes was made by reclassifying the MS-NFI fertility class data layer from 331 

the original five classes to the two classes used in the models (see details in section 2.2.1). 332 

Average annual temperature sum was calculated with a threshold of 5°C from daily weather 333 

data grids (Aalto et al., 2016) for the years 1985 to 2014. 334 

Similarly as in the cross-validation, the variation in damage density variable was not used in 335 

the prediction, because we would not have this information available for future events. 336 

Instead, separate predictions were calculated with each class of the damage density variable 337 
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and these three predictions were then averaged based on the frequency of each class in the 338 

original model data. See details in S1. 339 

The damage probability map was calculated from the GLM, GAM and BRT model objects 340 

and the GIS data layers using R packages raster (Hijmans, 2017) and sp (Pebesma and 341 

Bivand, 2005). 342 

2.5 Testing the map with new damage observations 343 

The accuracy of the damage probability map was validated with an independent test data 344 

set. The map was compared to the damage observations in the most recent NFI 345 

measurements (12th Finnish NFI, NFI12), which were not included in the model fitting data 346 

that was from the NFI11. Compared to NFI11, which covers the whole country, NFI12 does 347 

not cover the northernmost parts of Finland as plots in the three most northern municipalities 348 

(Northern Lapland), where the proportion of forest land is low, are not measured as 349 

frequently as other parts of the country. 350 

We included the NFI12 plots that had been measured during 2014-2018, were classified as 351 

forest land by the field team, and were located within forest area in the MS-NFI forest 352 

resource maps (i.e., there were data in the wind damage probability map at the location of 353 

the plot). For wind damage we also used the same  criteria as with the model data, i.e. only 354 

observations estimated to have occurred during the last 5 years were included and the 355 

severity of the damage was not considered. In addition, those permanent plots that were 356 

measured already in NFI11 were excluded from the test data, as the previous 357 

measurements in the same plots were used in the model fitting. The final test data consisted 358 

of 33 754 plots with wind damage in 734 of the plots. 359 

Values of the wind damage probability maps were extracted at the locations of test data 360 

plots as the mean value of map pixels within 20 meter buffer from the location of the plot 361 

center. ROC curves and AUC values were calculated from the wind damage information in 362 

the test data and the extracted values of the damage probability maps. The extraction was 363 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/666305doi: bioRxiv preprint first posted online Jun. 10, 2019; 

http://dx.doi.org/10.1101/666305
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

conducted in R with package raster (version 2.8-19, Hijmans, 2017) and ROC/AUC  364 

calculations with package pROC (version 1.12.1, Robin et al., 2011). 365 

3. Results 366 

The results showed that forest vulnerability to wind damage is strongly driven by forest 367 

characteristics, especially tree height (Figs 2-4, Table 3). In all models, the damage 368 

probability increased with tree height, and the increase was strongest for spruce dominated 369 

forests. Also forest management affected damage probability in the models, as recently 370 

thinned forests and forests with open stand borders were more susceptible to damage. 371 

These predictors, related to the forest characteristics, very much drive the fine-scale spatial 372 

variation of damage probability in the (Fig. 7). 373 

Wind damage probability was found to show distinct large-scale trends, most importantly the 374 

decreasing damage probability from south to north (Fig. 7). This effect in the models comes 375 

from the temperature sum, but also other predictors contributed to the large-scale trends in 376 

the map, as there as large-scale patterns in wind conditions, forest characteristics and soil 377 

and site fertility conditions (Figs 2-4). The north-south pattern in damage density was evident 378 

in the damage probability maps with all model methods. However, the map created with the 379 

BRT model showed unexpectedly high damage probability values for the northernmost parts 380 

of the country (Fig. 7). 381 

The model predictors showed in general rather similar effects in the three tested methods 382 

(GLM, GAM and BRT). Yet, there are also differences, especially in the shape of relationship 383 

between the continuous predictors and predicted damage probability  (Figs 2-4). In GLM, the 384 

relationships are restricted to sigmoidal curves, whereas GAM and BRT allow more flexible 385 

shapes of responses. This can be seen, for example, in how increasing tree height in pine 386 

forests shows steadily increasing damage probability with GLM (Fig. 2) whereas in GAM 387 

damage probability peaks around tree height 200 dm and then declines. Higher values of 388 

damage density ratio led to higher damage probability in all models, as expected (Fig. 5). 389 
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As the BRT predictions are calculated from ensembles of regression trees, they enable very 390 

sharp changes in the prediction within small changes in the predictor (Fig. 4). They can also 391 

contain diverse interactions between the predictors, which are unfortunately not visible in 392 

partial dependence plots like Fig. 4. The BRT results showed somewhat different trends than 393 

the other methods in model responses to predictors (Fig. 4). For example, while tree height 394 

in spruce forests increases damage probability throughout the range of data in GLM and 395 

GAM results (Figs 2-3), in BRT results similar strongly increasing trend is not found, instead 396 

the relationship between height and damage probability seems to saturate for all tree 397 

species (Fig. 4).  The large-scale spatial patterns in map prediction also differed for BRT 398 

compared to the other models, as high values of damage probability were predicted for the 399 

northernmost parts of the country. (Fig. 7). 400 

Cross-validation showed higher predictive performance of the GAM model compared to the 401 

GLM and BRT (Fig. 6). However, when the final damage probability maps were tested with 402 

the NFI12 test data, all models showed very similar performance in discriminating between 403 

damaged and non-damaged plots in the test data. (Fig. 8). All maps gave on average higher 404 

damage probability values for damaged than non-damaged plots and showed an acceptable 405 

level of discrimination between the two (AUC > 0.7). The added flexibility and ability to 406 

account for nonlinear relationships in GAM and BRT did not considerably improve the 407 

predictive performance of maps compared to the fully parametric GLM (Fig. 8). 408 

 409 

  410 
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Table 3. GLM model results (for categorical variables, the first class listed in Table 1 is the 411 

reference class, and therefore not listed separately in this table). 412 

  
Estimate Std. Error z value Pr(>|z|) 

(Intercept) 
-14.690 1.061 -13.841 < 0.001 

Species/Spruce 
-8.494 1.918 -4.430 < 0.001 

Species/Other 
-9.314 3.931 -2.370 0.018 

log(Height) 
1.661 0.189 8.807 < 0.001 

Last thinning/6-10 years 
-0.298 0.113 -2.637 0.008 

Last thinning/over 10 years 
-0.844 0.084 -9.995 < 0.001 

log(Wind) 
0.749 0.238 3.152 0.002 

Open stand border / TRUE 
0.310 0.095 3.284 0.001 

Soil/mineral, fine 
-0.356 0.124 -2.875 0.004 

Soil/organic 
-0.216 0.110 -1.962 0.050 

Soil depth < 30cm / TRUE 
0.214 0.106 2.011 0.044 

Site fertility / Fertile 
-0.425 0.092 -4.611 < 0.001 

Temperature sum 
0.096 0.025 3.843 < 0.001 

Damage density / 2-3 
1.104 0.088 12.498 < 0.001 

Damage density / >3 
1.898 0.111 17.137 < 0.001 

Species/Spruce : log(Height) 
1.634 0.358 4.561 < 0.001 

Species/Other : log(Height) 

1.625 0.742 2.190 0.029 

 413 

 414 
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 415 

 416 

Figure 2. GLM partial dependence plots for the map predictors. Prediction of damage 417 

probability is calculated for the range of each predictor variable when other predictors are set 418 

to average (continuous variables) or reference class (categorical variables). Rugged x-axis 419 

describes the distribution of data. Confidence intervals are calculated as 2 x prediction 420 

standard error (in the scale of the linear predictor). 421 

 422 

 423 

 424 

Figure 3. GAM partial dependence plots for the map predictors. Prediction of damage 425 

probability is calculated for the range of each predictor variable when other predictors are set 426 

to average (continuous variables) or reference class (categorical variables). Rugged x-axis 427 

describes the distribution of data. Confidence intervals are calculated as 2 x prediction  428 

standard error (in the scale of the linear predictor). 429 
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 430 

Figure 4. BRT partial dependence plots for the map predictors. Prediction of damage 431 

probability is calculated for the range of each predictor variable when other predictors are set 432 

to average (continuous variables) or reference class (categorical variables). Rugged x-axis 433 

describes the distribution of data. 434 

 435 

 436 

 437 

Figure 5. Partial dependence plots for damage density in the different models (GLM, GAM 438 

and BRT). Damage density was included in the models to account for spatial variation in 439 

severity of storm damage in the data, and it was set to 0 when calculating the wind damage 440 

probability map. Note that the y-axis range differs from figures 2-4. 441 

 442 
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 443 

Figure 6. Distribution of AUC values in the 10-fold cross-validation for GLM, GAM and BRT. 444 

 445 

 446 

Figure 7. Damage vulnerability maps calculated for the whole country (upper panel) and a 447 

fine-scale detail of the maps (lower panel), calculated with the three different damage 448 

probability models (GLM, GAM and BRT), and an orthophoto from the same location (B). 449 

Colors in the damage vulnerability map are defined by the percentiles of the map data (e.g., 450 

the first class contain the lowest 10% of map values). The upper panel maps are resampled 451 
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to 1 km x 1 km resolution with bilinear interpolation. Note that the orthophoto is not from the 452 

exact same time as the forest resource data used for the calculation of the map. Orthophoto 453 

© National Land Survey of Finland. 454 

 455 

 456 

 457 

Figure 8. Density plots of the distributions of map predictions for test data plots with wind 458 

damage (red) and without wind damage (blue), and ROC curve showing the ability of the 459 

maps to distinguish between damaged and non-damaged test plots for the different model 460 

methods (GLM, GAM and BRT). 461 

 462 

4. Discussion 463 

4.1 The damage probability map 464 

We created a new spatial wind damage risk product based on inventory data spanning over 465 

several years and several other data spatial sources, including information where the actual 466 

harvests have recently occurred in Finland. Validation of the map with independent and large 467 

data dataset showed that the map is able to identify vulnerable stands also in new storm 468 

events. While there have been attempts to map wind damage probability based on empirical 469 

damage models (Saarinen et al., 2016; Schindler et al., 2009; Suvanto et al., 2016), our 470 

work here uniquely provides national extent and high spatial resolution information about 471 

forest vulnerability to wind and is also tested with large external test data. 472 
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The successful identification of damage vulnerability in the independent test data is not 473 

trivial. First of all, wind damage is challenging to predict and extending the performance of 474 

statistical wind damage models to new data sets has been shown not to be straightforward 475 

(Fridman and Valinger, 1998; Kamimura et al., 2015; Lanquaye-Opoku and Mitchell, 2005). 476 

Moreover, because we wanted to test how well our map identifies forest vulnerability to wind 477 

in future events, for which we don’t have detailed information of, we did not include any 478 

information about spatial distribution of wind speeds or storm events during the time frame of 479 

the test data when we tested the map. Thus, the discrimination of damaged from non-480 

damaged plots with fair accuracy (AUC=0.72) for the entire extent of Finland indicates that 481 

the map is indeed successful in identifying the vulnerable forests, and implies that efficient 482 

combination of inventory data and several new spatial data sources is a promising way to 483 

map damage risks. 484 

A major factor contributing to the successful extension of the map to new test data was the 485 

large and systematically sampled forest and damage data that spanned over several years. 486 

Thus, our model was able to represent the different conditions (forest characteristics, soil, 487 

etc.) within the country. The need for comprehensive model data in empirical wind damage 488 

models has been demonstrated, for example, by Hart et al. (2019) who showed that it is 489 

possible to generalize to new storm events when the model data covers the variation of 490 

predictor variables in the new data set. 491 

In addition to good representation of environmental and forest conditions, our data also 492 

represents different types of wind events, since the data consisted of damage observations 493 

in a 5-year time window. Most wind disturbance studies typically concentrate on one or few 494 

storms (e.g., Hart et al., 2019; Kamimura et al., 2015; Saarinen et al., 2016; Schindler et al., 495 

2009; Suvanto et al., 2016), which limits their ability to generalize to different storm events. 496 

While modelling of multi-event data can be more challenging than single-event data 497 

(Albrecht et al., 2019), we argue that it is necessary when the purpose of the model is in 498 

assessing damage probability in future events. 499 
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Availability of high-quality and high-resolution spatial data of the model predictors was also 500 

crucial in the successful creation of the damage probability map. Additional uncertainties 501 

arise from the input data sets when model predictions are made with GIS data gathered from 502 

several different sources instead of the field-measured data that were used for fitting the 503 

model. In our case, we were able to utilize several high-quality and high-resolution data 504 

sources, such as the MS-NFI raster maps of forest characteristics (Mäkisara et al., 2019) 505 

and new data products of local wind conditions (Venäläinen et al., 2017). We were also able 506 

to use the recently opened forest use notification data from the Finnish Forest Centre that 507 

provided us with nation-wide information about the recent forest management history of the 508 

stands. This type of legacy information about forest management is typically difficult to 509 

obtain and has rarely been included in predictive wind damage risk models before, despite 510 

the clear effects of management history on forest disturbance dynamics. While all these data 511 

sources contain uncertainties, the verification of our map with independent test data showed 512 

that they were nevertheless able to represent well the main factors determining forest 513 

susceptibility to wind. 514 

With new data sources and increasing quality and availability of data in the future, the 515 

accuracy of the map could still be improved. This could mean, for example, improved 516 

accuracy of tree height information through the use of lidar data or inclusion of variables that 517 

were left out of the current map due to lack of national level spatial data about their 518 

distribution (e.g. distribution of wood decaying fungi that weaken trees’ resistance to wind). 519 

Soil data had maybe the lowest resolution and higher uncertainties of the used GIS data 520 

and, therefore, increased quality of those data sets would also be desirable. However, the 521 

effects of soil variables in the model were relatively small, and therefore the effects of only 522 

improving the soil GIS data in the prediction would most likely not be drastic. Instead, more 523 

detailed soil data would be needed for the model data to improve the description of the role 524 

of soil characteristics on tree vulnerability to wind in the model. 525 
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4.2 Drivers of forest susceptibility to wind disturbance 526 

The factors that were found to affect damage probability in our results are well in line with 527 

previously published results. For example, increasing damage probability with tree height 528 

and the higher vulnerability of Norway spruce have been shown in previous studies (Peltola 529 

et al., 1999; Suvanto et al., 2016; Valinger and Fridman, 2011). New stand edges after 530 

clearcutting of the neighboring stand and recently thinned stands have also been known to 531 

be at higher risk of windthrow (Lohmander and Helles, 1987; Peltola et al., 1999; Wallentin 532 

and Nilsson, 2014). 533 

While open stand edges did increase the risk of wind damage in our results, the effect was 534 

not as distinct as could be expected from earlier research that emphasizes the role of forest 535 

edges (e.g., Peltola et al., 1999). This may in part result from the use of stand level data, 536 

where defining and identifying the open stand borders from the NFI data is more uncertain 537 

than in the case of tree-level analysis (see section 2.3.2 for the used methodology). Earlier 538 

work with storm damage data from severe autumn storms in Finland showed that the effects 539 

of open forest edges on damage probability were more emphasized in tree-level analysis 540 

(Suvanto et al., 2018) than in the stand-level analysis of the same data (Suvanto et al., 541 

2016). In the future, potential improvements to the presentation of damage probability at the 542 

forest edges in the map could be achieved by combining tree-level results or mechanistic 543 

approaches to the current stand-level modeling approach. 544 

In the model, the effect of wind speed data (Venäläinen et al., 2017) on damage probability 545 

showed logical behaviour of increasing damage probability with increasing 10-year return 546 

rates of maximum wind speed. The wind speed data accounts for the effects of topography 547 

on general wind conditions, and therefore variables describing topographical conditions were 548 

not included in our models, even though they have been shown to be linked with wind 549 

damage probability (e.g., Schindler et al., 2009). 550 
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Large-scale geographical patterns in our results showed that the probability of wind damage 551 

in Finland decreases from south to north. This is in agreement with results form previous 552 

studies combining forest model simulations with mechanistic wind damage models (Ikonen 553 

et al., 2017; Peltola et al., 2010). The higher susceptibility of forests in southern Finland to 554 

wind disturbances is related to the shorter length of the soil frost period in southern parts of 555 

the country. When the soil is frozen, trees are well anchored to the ground and less 556 

vulnerable to windthrow and, therefore, forests located in areas with longer periods of soil 557 

frost are less likely to be damaged during winter storms (Gregow et al., 2011; Laapas et al., 558 

2019) (Gregow et al., 2011). However, other factors affecting forest wind susceptibility also 559 

change along the north-south gradient. The proportion of Scots pine, a species more 560 

resistant to wind than Norway spruce, increases towards north, and trees in the north have 561 

on average lower height-to-diameter ratio, which is linked to wind damage sensitivity (Ikonen 562 

et al., 2017; Peltola et al., 2010).  In addition, in southern parts of the country, forest stands 563 

are smaller in area and there are less protected areas compared to the north. Thus, more 564 

frequent windthrows related to new stand edges and recent thinnings may also contribute to 565 

higher damage probability in the south. Similarly, butt rot caused by Heterobasidion sp., 566 

which increases tree vulnerability to wind (Honkaniemi et al., 2017), currently affects the 567 

southern parts of the country more severely (Mattila and Nuutinen, 2007; Müller et al., 2018) 568 

and may also contribute to the north-south pattern in the wind damage probability in our 569 

results. Therefore, it is not entirely clear what are the exact mechanisms causing increased 570 

damage probability with temperature sum in our model. 571 

4.3 Comparison of methods 572 

While the results for GLM and GAM models were rather similar, the BRT showed rather 573 

different model behaviour and large scale prediction patterns. The lack of test data in the 574 

northernmost parts of the country makes the interpretation of the test results (Fig. 8) for the 575 

BRT a bit challenging, as the area with unexpected BRT predictions is mainly not covered by 576 
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the test data. In any case, the high values of BRT predictions in northernmost Finland do not 577 

seem realistic. 578 

Our results did not show improved predictive performance of the map with the more flexible 579 

methods GAM and BRT compared to the logistic regression model (GLM). This is somewhat 580 

surprising, especially in the case of BRTs, because several recent studies have shown good 581 

performance of random forest for modelling storm disturbances (Albrecht et al., 2019; Hart et 582 

al., 2019; Kabir et al., 2018). Yet, in our results BRT did not lead to better predictive 583 

performance in cross-validation or with test data, even though it is a tree-based ensemble 584 

method very similar to random forest. 585 

Our analysis differs from that of these earlier studies (Albrecht et al., 2019; Hart et al., 2019; 586 

Kabir et al., 2018) on a few aspects. First, we modelled wind damage on the level of forest 587 

stands, whereas the above mentioned studies were operating on tree-level. Second, we 588 

were using longer term NFI damage observations whereas most others used data from 589 

specific storm events. However, the study by Albrecht et al. (2019) contained both event-590 

specific and non-event-specific data and they found random forests to outperform GLMs in 591 

both types of data. Third, we performed the cross-validation without considering the spatial 592 

variation in the storm conditions (the damage density variable in our analysis). This was 593 

done because we did not want to use this variable in the prediction, as the final aim was to 594 

generalize the results to future damage events, where this information would not be 595 

available. It is possible that this approach is disadvantageous to the BRT. All these 596 

differences in the approaches and analysis may have contributed in different performance of 597 

methods between the studies. 598 

On the other hand, while the above mentioned studies did find machine learning methods 599 

outperform traditional statistical models in many ways, they also showed some positive sides 600 

of the logistic models. Most importantly, even though random forests showed superior 601 

performance when cross-validating models with data from one storm event in Hart et al. 602 
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(2019), logistic models showed the highest AUC values compared to the other methods 603 

when the model was applied to another storm event, supporting the value of GLMs when 604 

generalizing the results to new storm events. 605 

It seems that while machine learning methods such as BRT and random forest have 606 

advantages in accounting for more complex relationships and interactions in the data, they 607 

also catch patterns that are not helpful in estimating future disturbance probabilities (see, 608 

e.g., the unrealisticly high probabilities of damage with very low wind speeds in BRT, Fig. 4). 609 

This is likely to hamper the performance of BRTs so that they are not able to improve cross-610 

validation performance compared to GLM. 611 

Use of GLMs has the extra benefit of being more easily communicated to the end user, and 612 

they can be easily applied to new use cases when model coefficient estimates are 613 

published. The interpretation of relationships between predictors and the response variable 614 

is more straightforward, whereas especially in BRTs very small changes in e.g. tree height 615 

can lead to drastic changes in model prediction (Fig. 4). The unexpectedly high damage 616 

probability values in northern Finland also demonstrate the unpredictability of BRT model 617 

behaviour. This aspect is particularly important when the end product is meant to be used in 618 

practical applications. 619 

4.4 Applications and use of the maps 620 

The strength of the map is in its high resolution and large extent. The high-resolution makes 621 

it useful for assessing wind damage susceptibility of individual forest stands in fragmented 622 

forest landscapes where spatial variation of forest characteristics is high. On the other hand, 623 

the national extent of the map makes it widely available and accessible to everyone who is 624 

making forest management decisions in Finnish forests. To further improve the accessibility 625 

and usability of the map, we created an openly available web map application, where users 626 

can explore the map and find the estimated wind damage vulnerabilities of the  forests they 627 

are interested in, without expert knowledge in GIS software (see 628 
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https://metsainfo.luke.fi/en/tuulituhoriskikartta, currently only in Finnish, click “Tuulituhoriskit” 629 

box to see the wind damage vulnerability map). By providing an effective tool for identifying 630 

the vulnerable stands and for communicating wind damage risks to forest managers and 631 

owners, the map has potential to steer forest management practices towards a more 632 

disturbance-aware direction. 633 

In addition to forest management, high-resolution information about forest wind vulnerability 634 

is crucially needed also in other sectors and applications. For example, the map can help in 635 

identifying high-risk locations where windthrown trees can harm infrastructure by damaging 636 

power lines and blocking roads. Insurance companies may also use high-resolution 637 

vulnerability information for a more risk based pricing of forest insurances. 638 

While wind disturbances have major consequences from the human point of view, they are a 639 

natural process and have an important role in shaping the structure and function of forest 640 

ecosystems (Bouget and Duelli, 2004; Kuuluvainen, 2002). By exploring the drivers and 641 

spatial variability of wind disturbance dynamics, our results can therefore provide insight in 642 

current disturbance regime and its effects in the ecosystem, such as biodiversity and carbon 643 

cycling. Improved information about forest disturbances and tree mortality is also urgently 644 

needed for vegetation models from stand to global scales to understand how forests will 645 

react to the changing climate (Bugmann et al., 2019; Friend et al., 2014). 646 

When applying the map in practice, it is important to consider its limitations. First, the 647 

damage probabilities in the map are in reference to the damage happened during the study 648 

period. The amount of wind damage varies strongly between years and future conditions are 649 

not likely to exactly match the conditions during the period from which the data comes from. 650 

Therefore, instead of exact probability values, it is better to interpret the map values as 651 

relative differences in damage vulnerability. Second, it is important to note that the damage 652 

probabilities do not only refer to complete damage of the stand, as our analysis also included 653 

less severe damage cases and we did not account for damage severity. Third, it is good to 654 
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keep in mind that the map presents forest vulnerability to wind and it is not possible to 655 

predict the exact location of future wind disturbances, as there are many things - such as 656 

tracks and meteorological conditions of future storms - that can’t be accounted for in the 657 

map. The uncertainties need to be taken into consideration when using the map. 658 

Wind disturbances are strongly linked to other processes of the forest and, therefore, should 659 

be considered in larger context. Thus, the greatest benefits of our results can perhaps be 660 

achieved by combining it with information and understanding of other processes that control 661 

forest ecosystems and forest management decisions. For example, the risk model can be 662 

coupled with forest growth simulators and thereafter storm damage risks of different forest 663 

management strategies can be evaluated simultaneously when making future scenarios of 664 

forests. The map can be combined with spatial information of wood volumes and prices to 665 

assess economic risks wind disturbances. Combining wind disturbance results with the 666 

dynamics of other disturbance agents is also crucial, as wind damage is strongly linked to 667 

bark beetle outbreaks and root rot, and these interactions are becoming increasingly 668 

important with the changing climate (Seidl et al., 2017; Seidl and Rammer, 2017). A 669 

comprehensive approach is therefore needed to understand and effectively manage wind 670 

disturbances in forests. 671 

5. Conclusions 672 

In this study, we show how probability models based on NFI damage observations combined 673 

with existing spatial datasets can be used to provide a fine-scale large-extent map of wind 674 

disturbance probability. We also demonstrate the ability of the map to identify vulnerable 675 

stands in future events with an extensive external test data. These maps provide a powerful 676 

tool for supporting disturbance-aware management decisions, communicating disturbance 677 

risks to forest owners, and accounting for the effects of windthrown trees in other sectors, 678 

such as maintenance of powerline infrastructures. 679 
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Our results show that machine learning methods, such as BRT, do not always provide 680 

superior results compared to traditional statistical models. As their interpretation in also less 681 

straightforward, they can sometimes lead to unpredictable prediction outcomes. Therefore, it 682 

is crucial to always assess the benefits of different approaches and to carefully test the 683 

performance of the used method with test data that is not used in model fitting. Partial 684 

dependence plots and other ways for exploration of model predictions in different situations 685 

also provide useful tools for assessing if model behaviour is realistic and biologically 686 

plausible. 687 

The success of our results is based on large and representative model data as well as high-688 

quality and high-resolution GIS data used as map inputs. In Finland, good data sets for both 689 

the model fitting and the map inputs are available, which enabled work done in this study. 690 

However, with improving data quality and availability (for both damage observations for 691 

model fitting and GIS data for map inputs), similar work could be extended to other regions 692 

and even to other disturbance types. 693 
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