Network Working Group Request for Comments: 1515 D. McMaster SynOptics Communications, Inc. K. McCloghrie Hughes LAN Systems, Inc. S. Roberts Farallon Computing, Inc. September 1993

Definitions of Managed Objects for IEEE 802.3 Medium Attachment Units (MAUs)

Status of this Memo

This RFC specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing IEEE 802.3 Medium Attachment Units (MAUs).

Table of Contents

1. The Network Management Framework	2
2. Objects	2
3. Overview	2
3.1 Terminology	3
3.2 Structure of MIB	3
3.2.1 The Repeater MAU Basic Group Definitions	3
3.2.2 The Interface MAU Basic Group Definitions	3
3.2.3 The Broadband MAU Basic Group Definitions	3
3.3 Relationship to Other MIBs	3
3.3.1 Relationship to the 'system' group	3
3.3.2 Relationship to the 'interfaces' group	4
3.3.3 Relationship to the 802.3 Repeater MIB	4
3.4 Management of Internal MAUs	4
4. Definitions	5
4.1 Groups in the Repeater MAU MIB	5
4.1.1 The Repeater MAU Basic Group Definitions	6
4.1.2 The Interface MAU Basic Group Definitions	12
4.1.3 The Broadband MAU Basic Group Definitions	18
4.2 Traps for use by 802.3 MAUs	20

McMaster, McCloghrie & Roberts

[Page 1]

5.	Acknowledgments	21
6.	References	23
7.	Security Considerations	24
8.	Authors' Addresses	25

1. The Network Management Framework

The Internet-standard Network Management Framework consists of three components. They are:

STD 16, RFC 1155 [1] which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. STD 16, RFC 1212 [7] defines a more concise description mechanism, which is wholly consistent with the SMI.

STD 17, RFC 1213 [4] which defines MIB-II, the core set of managed objects for the Internet suite of protocols.

STD 15, RFC 1157 [3] which defines the SNMP, the protocol used for network access to managed objects.

The Framework permits new objects to be defined for the purpose of experimentation and evaluation.

2. Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type.

3. Overview

Instances of the object types defined in this document represent attributes of an IEEE 802.3 MAU. Several types of MAUs are defined in the IEEE 802.3/ISO 8802-3 CSMA/CD standard [9].

These MAUs may be connected to IEEE 802.3 repeaters or to 802.3 (Ethernet-like) interfaces. For convenience this document refers to these devices as "repeater MAUs" and "interface MAUs."

The definitions presented here are based on Draft 5 of Section 20 of IEEE P802.3p, "Layer Management for 10 Mb/s Medium Attachment Units

McMaster, McCloghrie & Roberts

[Page 2]

(MAUs), Section 20" [10] dated 11 July 1992.

3.1. Terminology

Refer to Section 3.1.2 of [13] for simple definitions of the terms "repeater," "port," and "MAU" as used in the context of this document. For a more complete and precise definition of these terms, refer to Section 9 of [9].

3.2. Structure of MIB

Objects in this MIB are arranged into MIB groups. Each MIB group is organized as a set of related objects.

3.2.1. The Repeater MAU Basic Group Definitions

This group contains all repeater MAU-related configuration, status, and control objects. Implementation of the dot3RpMauBasicGroup is mandatory for MAUs attached to repeaters.

3.2.2. The Interface MAU Basic Group Definitions

This group contains all interface MAU-related configuration, status, and control objects. Implementation of the dot3IfMauBasicGroup is mandatory for MAUs attached to interfaces.

3.2.3. The Broadband MAU Basic Group Definitions

This group contains all broadband-specific MAU-related configuration objects. Implementation of the dot3BroadMauBasicGroup is mandatory for 10BROAD36 MAUs, and is not appropriate for other types of MAUs.

3.3. Relationship to Other MIBs

It is assumed that an agent implementing this MIB will also implement (at least) the 'system' group defined in MIB-II [4]. The following sections identify other MIBs that such an agent should implement.

3.3.1. Relationship to the 'system' group

In MIB-II, the 'system' group is defined as being mandatory for all systems such that each managed entity contains one instance of each object in the 'system' group. Thus, those objects apply to the entity even if the entity's sole functionality is management of a MAU.

McMaster, McCloghrie & Roberts

[Page 3]

3.3.2. Relationship to the 'interfaces' group

The sections of this document that define interface MAU-related objects specify an extension to the 'interfaces' group of MIB-II [4]. An agent implementing these interface-MAU related objects must also implement the 'interfaces' group of MIB-II. The value of the same as the value of 'ifIndex' used to instantiate the interface to which the given MAU is connected.

It is expected that an agent implementing the interface-MAU related objects in this MIB will also implement the Ethernet-like Interfaces MIB [11].

(Note that repeater ports are not represented as interfaces in the sense of MIB-II's 'interfaces' group. See section 3.4.2 of the repeater MIB [12] for more details.)

3.3.3. Relationship to the 802.3 Repeater MIB

The section of this document that defines repeater MAU-related objects specifies an extension to the 802.3 Repeater MIB defined in [13]. An agent implementing these repeater-MAU related objects must also implement the 802.3 Repeater MIB.

The values of 'rpMauGroupIndex' and 'rpMauPortIndex' used to instantiate a repeater MAU variable shall be the same as the values of 'rptrPortGroupIndex' and 'rptrPortIndex' used to instantiate the port to which the given MAU is connected.

3.4. Management of Internal MAUs

In some situations, a MAU can be "internal" -- i.e., its functionality is implemented entirely within a device. For example, a managed repeater may contain an internal repeater- MAU and/or an internal interface-MAU through which management communications originating on one of the repeater's external ports pass in order to reach the management agent associated with the repeater. Such internal MAUs may or may not be managed. If they are managed, objects describing their attributes should appear in the appropriate MIB group -- dot3RpMauBasicGroup for internal repeater-MAUs and dot3IfMauBasicGroup for internal interface-MAUs.

McMaster, McCloghrie & Roberts

[Page 4]

802.3 MAU MIB

4. Definitions

MAU-MIB DEFINITIONS ::= BEGIN

IMPORTS

Counter	FROM	RFC1155-SMI
OBJECT-TYPE	FROM	RFC-1212
TRAP-TYPE	FROM	RFC-1215;

snmpDot3MauMgt OBJECT IDENTIFIER ::= { mib-2 26 }

References

-- The following references are used throughout this MIB: _ _ -- [RFC 1213] refers to McCloghrie, K., and M. Rose, Editors, _ _ Management Information Base for Network Management _ _ of TCP/IP-based internets: MIB-II, STD 17, RFC 1213, _ _ Hughes LAN Systems, Performance Systems International, --March 1991. _ _ _ _ -- [RFC 1368] refers to McMaster, D., and K. McCloghrie, Editors, --Definitions of Managed Objects for IEEE 802.3 Repeater --Devices, RFC 1368, SynOptics Communications, Hughes _ _ LAN Systems, October 1992. _ _ ___ -- [IEEE 802.3 MAU Mgt] _ _ refers to IEEE P802.3p, 'Layer Management for 10 Mb/s Medium Access Unit (MAUs), Section 20,' Draft Supplement -to ANSI/IEEE 802.3, Draft 5, 11 July 1992. --_ _ MIB Groups _ _ The dot3RpMauBasicGroup is mandatory for MAUs attached to _ _ repeaters. _ _ The dot3IfMauBasicGroup is mandatory for MAUs attached to _ _ DTEs (interfaces). _ _ The dot3BroadMauBasicGroup is mandatory for broadband MAUs _ _ attached to DTEs. --

dot3RpMauBasicGroup

McMaster, McCloghrie & Roberts

[Page 5]

```
OBJECT IDENTIFIER ::= { snmpDot3MauMgt 1 }
dot3IfMauBasicGroup
   OBJECT IDENTIFIER ::= { snmpDot3MauMgt 2 }
dot3BroadMauBasicGroup
   OBJECT IDENTIFIER ::= { snmpDot3MauMgt 3 }
-- object identifiers for MAU types
-- (see rpMauType and ifMauType for usage)
dot3MauType
   OBJECT IDENTIFIER ::= { snmpDot3MauMgt 4 }
dot3MauTypeAUI -- no internal MAU, view from AUI
   OBJECT IDENTIFIER ::= { dot3MauType 1 }
dot3MauType10Base5 -- thick coax MAU (per 802.3 section 8)
   OBJECT IDENTIFIER ::= { dot3MauType 2 }
dot3MauTypeFoirl -- FOIRL MAU (per 802.3 section 9.9)
   OBJECT IDENTIFIER ::= { dot3MauType 3 }
dot3MauType10Base2 -- thin coax MAU (per 802.3 section 10)
   OBJECT IDENTIFIER ::= { dot3MauType 4 }
dot3MauType10BaseT -- UTP MAU (per 802.3 section 14)
   OBJECT IDENTIFIER ::= { dot3MauType 5 }
dot3MauType10BaseFP -- passive fiber MAU (per 802.3 section 16)
   OBJECT IDENTIFIER ::= { dot3MauType 6 }
dot3MauType10BaseFB -- sync fiber MAU (per 802.3 section 17)
   OBJECT IDENTIFIER ::= { dot3MauType 7 }
dot3MauType10BaseFL -- async fiber MAU (per 802.3 section 18)
   OBJECT IDENTIFIER ::= { dot3MauType 8 }
dot3MauType10Broad36 -- broadband DTE MAU (per 802.3 section 11)
   -- note that 10BROAD36 MAUs can be attached to interfaces but
   -- not to repeaters
   OBJECT IDENTIFIER ::= { dot3MauType 9 }
_ _
_ _
                     The Repeater MAU Basic Group
_ _
-- Implementation of the Repeater MAU Basic Group is mandatory
-- for MAUs attached to repeaters.
-- The Basic Repeater MAU Table
_ _
rpMauTable OBJECT-TYPE
   SYNTAX SEQUENCE OF RpMauEntry
   ACCESS
            not-accessible
   STATUS mandatory
   DESCRIPTION
```

[Page 6]

RFC 1515

```
"Table of descriptive and status information about
            the MAU(s) attached to the ports of a repeater."
    ::= { dot3RpMauBasicGroup 1 }
rpMauEntry OBJECT-TYPE
    SYNTAX RpMauEntry
    ACCESS
            not-accessible
             mandatory
    STATUS
    DESCRIPTION
            "An entry in the table, containing information
            about a single MAU."
           { rpMauGroupIndex, rpMauPortIndex, rpMauIndex }
    INDEX
    ::= { rpMauTable 1 }
RpMauEntry ::=
    SEQUENCE {
       rpMauGroupIndex
           INTEGER,
        rpMauPortIndex
           INTEGER,
        rpMauIndex
            INTEGER,
        rpMauType
            OBJECT IDENTIFIER,
        rpMauStatus
            INTEGER,
        rpMauMediaAvailable
            INTEGER,
        rpMauMediaAvailableStateExits
            Counter,
        rpMauJabberState
           INTEGER,
        rpMauJabberingStateEnters
           Counter
    }
rpMauGroupIndex OBJECT-TYPE
    SYNTAX INTEGER (1..1024)
           read-only
    ACCESS
    STATUS
             mandatory
    DESCRIPTION
            "This variable uniquely identifies the repeater
            group containing the port to which the MAU
           described by this entry is connected."
    REFERENCE
            "Reference RFC1368, rptrGroupIndex."
    ::= { rpMauEntry 1 }
```

McMaster, McCloghrie & Roberts

[Page 7]

rpMauPortIndex OBJECT-TYPE SYNTAX INTEGER (1..1024) read-only ACCESS STATUS mandatory DESCRIPTION "This variable uniquely identifies the repeater port within group rpMauGroupIndex to which the MAU described by this entry is connected." REFERENCE "Reference RFC 1368, rptrPortIndex." ::= { rpMauEntry 2 } rpMauIndex OBJECT-TYPE INTEGER (1..9) SYNTAX read-only ACCESS STATUS mandatory DESCRIPTION "This variable uniquely identifies the MAU connected to port rpMauPortIndex within group rpMauGroupIndex that is described by this entry." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMAUID." ::= { rpMauEntry 3 } rpMauType OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-only STATUS mandatory DESCRIPTION "This object identifies the 10 Mb/s baseband MAU type. An initial set of MAU types are defined above. The assignment of OBJECT IDENTIFIERs to new types of MAUs is managed by the IANA. If the MAU type is unknown, the object identifier unknownMauType OBJECT IDENTIFIER ::= { 0 0 } is returned. Note that unknownMauType is a syntactically valid object identifier, and any conformant implementation of ASN.1 and the BER must be able to generate and recognize this value." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMAUType." ::= { rpMauEntry 4 } rpMauStatus OBJECT-TYPE

McMaster, McCloghrie & Roberts

[Page 8]

SYNTAX INTEGER { other(1), unknown(2), operational(3), standby(4), shutdown(5), reset(6) } ACCESS read-write mandatory STATUS DESCRIPTION "The current state of the MAU. This object may be implemented as a read-only object by those agents and MAUs that do not implement software control of the MAU state. Some agents may not support setting the value of this object to some of the enumerated values. The value other(1) is returned if the MAU is in a state other than one of the states 2 through 6. The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized. A MAU in the operational(3) state is fully functional, operates, and passes signals to its attached DTE or repeater port in accordance to its specification. A MAU in standby(4) state forces DI and CI and the media transmitter to idle. Standby(4) mode only applies to link type MAUs. The state of rpMauMediaAvailable is unaffected. A MAU in shutdown(5) state assumes the same condition on DI, CI, and the media transmitter as though it were powered down. The MAU may return other(1) value for the mauJabber and rpMauMediaAvailable objects when it is in this state. For an AUI, this state will remove power from the AUI. Setting this variable to the value reset(6) resets the MAU in the same manner as a power-off, poweron cycle of at least one-half second would. The agent is not required to return the value reset (6).

McMaster, McCloghrie & Roberts

[Page 9]

```
Setting this variable to the value operational(3),
            standby(4), or shutdown(5) causes the MAU to
            assume the respective state except that setting a
            mixing-type MAU or an AUI to standby(4) will cause
            the MAU to enter the shutdown state."
        REFERENCE
            "Reference IEEE 802.3 MAU Mgt, 20.2.3.2,
            aMAUAdminState, and 20.2.3.3, acMAUAdminControl
            and acResetMAUAction."
    ::= { rpMauEntry 5 }
rpMauMediaAvailable OBJECT-TYPE
    SYNTAX INTEGER {
                  other(1),
                  unknown(2),
                  available(3),
                  notAvailable(4),
                  remoteFault(5),
                  invalidSignal(6)
              }
    ACCESS
              read-only
    STATUS
             mandatory
    DESCRIPTION
            "If the MAU is a link or fiber type (FOIRL,
            10BASE-T, 10BASE-F) then this is equivalent to the
            link test fail state/low light function. For an
            AUI or a coax (including broadband) MAU this
            indicates whether or not loopback is detected on
            the DI circuit. The value of this attribute
            persists between packets for MAU types AUI,
            10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP.
            The value other(1) is returned if the
            mediaAvailable state is not one of 2 through 6.
            The value unknown(2) is returned when the MAU's
            true state is unknown; for example, when it is
            being initialized. At power-up or following a reset, the value of this attribute will be unknown
            for AUI, coax, and 10BASE-FP MAUS. For these MAUS
            loopback will be tested on each transmission
            during which no collision is detected. If DI is
            receiving input when DO returns to IDL after a
            transmission and there has been no collision
            during the transmission then loopback will be
            detected. The value of this attribute will only
            change during non-collided transmissions for AUI,
            coax, and 10BASE-FP MAUs.
```

[Page 10]

```
The value available(3) indicates that the link,
            light, or loopback is normal. The value
            notAvailable(4) indicates link loss, low light, or
            no loopback.
            The value remoteFault(5) indicates that a fault
            has been detected at the remote end of the link.
            The value invalidSignal(6) indicates that an
            invalid signal has been received from the other
            end of the link. Both remoteFault(5) and
            invalidSignal(6) apply only to MAUs of type
            10BASE-FB."
    REFERENCE
            "Reference IEEE 802.3 MAU Mgt, 20.2.3.2,
            aMediaAvailable."
    ::= { rpMauEntry 6 }
rpMauMediaAvailableStateExits OBJECT-TYPE
    SYNTAX Counter
    ACCESS
            read-only
    STATUS
            mandatory
    DESCRIPTION
            "A count of the number of times that
            rpMauMediaAvailable for this MAU instance leaves
            the state available(3)."
    REFERENCE
            "Reference IEEE 802.3 MAU Mgt, 20.2.3.2,
            lostMediaCount."
    ::= { rpMauEntry 7 }
rpMauJabberState OBJECT-TYPE
    SYNTAX
             INTEGER {
                  other(1),
                  unknown(2),
                  noJabber(3),
                  jabbering(4)
              }
    ACCESS
             read-only
    STATUS
             mandatory
    DESCRIPTION
            "The value other(1) is returned if the jabber
            state is not 2, 3, or 4. The agent must always
            return other(1) for MAU type dot3MauTypeAUI.
            The value unknown(2) is returned when the MAU's
            true state is unknown; for example, when it is
            being initialized.
```

[Page 11]

If the MAU is not jabbering the agent returns noJabber(3). This is the 'normal' state. If the MAU is in jabber state the agent returns the jabbering(4) value." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aJabber.jabberFlag." ::= { rpMauEntry 8 } rpMauJabberingStateEnters OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of the number of times that rpMauJabberState for this MAU instance enters the state jabbering(4). For a MAU of type dot3MauTypeAUI, this counter will always indicate zero." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aJabber.jabberCounter." ::= { rpMauEntry 9 } _ _ The Interface MAU Basic Group _ _ _ _ -- Implementation of the Interface MAU Basic Group is mandatory -- for MAUs attached to DTEs (interfaces). -- The Basic Interface MAU Table ifMauTable OBJECT-TYPE SYNTAX SEQUENCE OF IfMauEntry ACCESS not-accessible STATUS mandator DESCRIPTION "Table of descriptive and status information about the MAU(s) attached to an interface." ::= { dot3IfMauBasicGroup 1 } ifMauEntry OBJECT-TYPE SYNTAX If MauEntry ACCESS not-accessible

McMaster, McCloghrie & Roberts

[Page 12]

STATUS mandatory DESCRIPTION "An entry in the table, containing information about a single MAU." { ifMauIfIndex, ifMauIndex } INDEX ::= { ifMauTable 1 } IfMauEntry ::= SEQUENCE { ifMauIfIndex INTEGER, ifMauIndex INTEGER, ifMauType OBJECT IDENTIFIER, ifMauStatus INTEGER, ifMauMediaAvailable INTEGER, ifMauMediaAvailableStateExits Counter, ifMauJabberState INTEGER, ifMauJabberingStateEnters Counter } ifMaulfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "This variable uniquely identifies the interface to which the MAU described by this entry is connected." REFERENCE "Reference RFC 1213, ifIndex." ::= { ifMauEntry 1 } ifMauIndex OBJECT-TYPE SYNTAX INTEGER (1..9) ACCESS read-only STATUS mandatory DESCRIPTION "This variable uniquely identifies the MAU connected to interface ifMauIfIndex that is described by this entry." REFERENCE

McMaster, McCloghrie & Roberts

[Page 13]

802.3 MAU MIB

"Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMAUID." ::= { ifMauEntry 2 } ifMauType OBJECT-TYPE OBJECT IDENTIFIER SYNTAX ACCESS read-only STATUS mandatory DESCRIPTION "This object identifies the 10 Mb/s baseband or broadband MAU type. An initial set of MAU types are defined above. The assignment of OBJECT IDENTIFIERs to new types of MAUs is managed by the IANA. If the MAU type is unknown, the object identifier unknownMauType OBJECT IDENTIFIER ::= { 0 0 } is returned. Note that unknownMauType is a syntactically valid object identifier, and any conformant implementation of ASN.1 and the BER must be able to generate and recognize this value." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMAUType." ::= { ifMauEntry 3 } ifMauStatus OBJECT-TYPE SYNTAX INTEGER { other(1), unknown(2), operational(3), standby(4), shutdown(5), reset(6) } ACCESS read-write STATUS mandatory DESCRIPTION "The current state of the MAU. This object may be implemented as a read-only object by those agents and MAUs that do not implement software control of the MAU state. Some agents may not support setting the value of this object to some of the enumerated values. The value other(1) is returned if the MAU is in a state other than one of the states 2 through 6.

McMaster, McCloghrie & Roberts

[Page 14]

802.3 MAU MIB

The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized.

A MAU in the operational(3) state is fully functional, operates, and passes signals to its attached DTE or repeater port in accordance to its specification.

A MAU in standby(4) state forces DI and CI and the media transmitter to idle. Standby(4) mode only applies to link type MAUs. The state of ifMauMediaAvailable is unaffected.

A MAU in shutdown(5) state assumes the same condition on DI, CI, and the media transmitter as though it were powered down. The MAU may return other(1) value for the mauJabber and ifMauMediaAvailable objects when it is in this state. For an AUI, this state will remove power from the AUI.

Setting this variable to the value reset(6) resets the MAU in the same manner as a power-off, poweron cycle of at least one-half second would. The agent is not required to return the value reset (6).

Setting this variable to the value operational(3), standby(4), or shutdown(5) causes the MAU to assume the respective state except that setting a mixing-type MAU or an AUI to standby(4) will cause the MAU to enter the shutdown state." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMAUAdminState, and 20.2.3.3, acMAUAdminControl and acResetMAUAction." ::= { ifMauEntry 4 } ifMauMediaAvailable OBJECT-TYPE SYNTAX INTEGER { other(1), unknown(2), available(3),

```
available(3),
notAvailable(4),
remoteFault(5),
invalidSignal(6)
}
```

McMaster, McCloghrie & Roberts

[Page 15]

ACCESS read-only STATUS mandatory DESCRIPTION "If the MAU is a link or fiber type (FOIRL, 10BASE-T, 10BASE-F) then this is equivalent to the link test fail state/low light function. For an AUI or a coax (including broadband) MAU this indicates whether or not loopback is detected on the DI circuit. The value of this attribute persists between packets for MAU types AUI, 10BASE5, 10BASE2, 10BROAD36, and 10BASE-FP. The value other(1) is returned if the mediaAvailable state is not one of 2 through 6. The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized. At power-up or following a reset, the value of this attribute will be unknown for AUI, coax, and 10BASE-FP MAUs. For these MAUs loopback will be tested on each transmission during which no collision is detected. If DI is receiving input when DO returns to IDL after a transmission and there has been no collision during the transmission then loopback will be detected. The value of this attribute will only change during non-collided transmissions for AUI, coax, and 10BASE-FP MAUs. The value available(3) indicates that the link, light, or loopback is normal. The value notAvailable(4) indicates link loss, low light, or no loopback. The value remoteFault(5) indicates that a fault has been detected at the remote end of the link. The value invalidSignal(6) indicates that an invalid signal has been received from the other end of the link. Both remoteFault(5) and invalidSignal(6) apply only to MAUs of type 10BASE-FB." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMediaAvailable." ::= { ifMauEntry 5 } ifMauMediaAvailableStateExits OBJECT-TYPE SYNTAX Counter

McMaster, McCloghrie & Roberts

[Page 16]

ACCESS read-only mandatory STATUS DESCRIPTION "A count of the number of times that ifMauMediaAvailable for this MAU instance leaves the state available(3)." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, lostMediaCount." ::= { ifMauEntry 6 } ifMauJabberState OBJECT-TYPE SYNTAX INTEGER { other(1), unknown(2), noJabber(3), jabbering(4) } read-only ACCESS mandatory STATUS DESCRIPTION "The value other(1) is returned if the jabber state is not 2, 3, or 4. The agent must always return other(1) for MAU type dot3MauTypeAUI. The value unknown(2) is returned when the MAU's true state is unknown; for example, when it is being initialized. If the MAU is not jabbering the agent returns noJabber(3). This is the 'normal' state. If the MAU is in jabber state the agent returns the jabbering(4) value." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aJabber.jabberFlag." ::= { ifMauEntry 7 } ifMauJabberingStateEnters OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of the number of times that ifMauJabberState for this MAU instance enters the state jabbering(4). For a MAU of type dot3MauTypeAUI, this counter will always indicate

802.3 MAU MIB

McMaster, McCloghrie & Roberts

[Page 17]

```
zero."
    REFERENCE
            "Reference IEEE 802.3 MAU Mgt, 20.2.3.2,
            aJabber.jabberCounter."
    ::= { ifMauEntry 8 }
_ _
_ _
                       The Broadband MAU Basic Group
_ _
-- Implementation of the Broadband MAU Basic Group is mandatory
-- for broadband MAUs attached to DTEs.
-- The Basic Broadband MAU Table
broadMauBasicTable OBJECT-TYPE
    SYNTAX SEQUENCE OF BroadMauBasicEntry
    ACCESS not-accessible
STATUS mandatory
    DESCRIPTION
            "Table of descriptive and status information about
            the broadband MAUs connected to interfaces."
    ::= { dot3BroadMauBasicGroup 1 }
broadMauBasicEntry OBJECT-TYPE
    SYNTAX BroadMauBasicEntry
    ACCESS not-accessible
STATUS mandatory
    DESCRIPTION
            "An entry in the table, containing information
            about a single broadband MAU."
    INDEX { broadMaulfIndex, broadMauIndex }
    ::= { broadMauBasicTable 1 }
BroadMauBasicEntry ::=
    SEQUENCE {
        broadMauIfIndex
            INTEGER,
        broadMauIndex
            INTEGER,
        broadMauXmtRcvSplitType
            INTEGER,
        broadMauXmtCarrierFreq
            INTEGER,
        broadMauTranslationFreq
            INTEGER
```

[Page 18]

```
}
broadMaulfIndex OBJECT-TYPE
    SYNTAX INTEGER
    ACCESS read-only
STATUS mandatory
    DESCRIPTION
            "This variable uniquely identifies the interface
            to which the MAU described by this entry is
            connected."
    REFERENCE
            "Reference RFC 1213, ifIndex."
    ::= { broadMauBasicEntry 1 }
broadMauIndex OBJECT-TYPE
    SYNTAX INTEGER (1..9)
    ACCESS read-only
STATUS mandatory
    DESCRIPTION
            "This variable uniquely identifies the MAU
            connected to interface broadMauIfIndex that is
            described by this entry."
    REFERENCE
            "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aMAUID."
    ::= { broadMauBasicEntry 2 }
broadMauXmtRcvSplitType OBJECT-TYPE
    SYNTAX
              INTEGER {
                  other(1),
                  single(2),
                  dual(3)
              }
    ACCESS
             read-only
    STATUS
             mandatory
    DESCRIPTION
            "This object indicates the type of frequency
            multiplexing/cabling system used to separate the
            transmit and receive paths for the 10BROAD36 MAU.
            The value other(1) is returned if the split type
            is not either single or dual.
            The value single(2) indicates a single cable
            system. The value dual(3) indicates a dual cable
            system, offset normally zero."
    REFERENCE
            "Reference IEEE 802.3 MAU Mgt, 20.2.3.2,
            aBbMAUXmitRcvSplitType."
```

[Page 19]

::= { broadMauBasicEntry 3 } broadMauXmtCarrierFreq OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "This variable indicates the transmit carrier frequency of the 10BROAD36 MAU in MHz/4; that is, in units of 250 kHz." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aBroadbandFrequencies.xmitCarrierFrequency." ::= { broadMauBasicEntry 4 } broadMauTranslationFreq OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "This variable indicates the translation offset frequency of the 10BROAD36 MAU in MHz/4; that is, in units of 250 kHz." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.2, aBroadbandFrequencies.translationFrequency." ::= { broadMauBasicEntry 5 } -- Traps for use by 802.3 MAUs -- Traps are defined using the conventions in RFC 1215 [8]. rpMauJabberTrap TRAP-TYPE ENTERPRISE snmpDot3MauMgt VARIABLES { rpMauJabberState } DESCRIPTION "This trap is sent whenever a managed repeater MAU enters the jabber state. The agent must throttle the generation of consecutive rpMauJabberTraps so that there is at least a five-second gap between them." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.4, nJabberNotification." ::= 1

McMaster, McCloghrie & Roberts

[Page 20]

ifMauJabberTrap TRAP-TYPE ENTERPRISE snmpDot3MauMgt VARIABLES { ifMauJabberState } DESCRIPTION "This trap is sent whenever a managed interface MAU enters the jabber state. The agent must throttle the generation of consecutive ifMauJabberTraps so that there is at least a five-second gap between them." REFERENCE "Reference IEEE 802.3 MAU Mgt, 20.2.3.4, nJabberNotification." ::= 2

END

5. Acknowledgments

This document is the work of the IETF Hub MIB Working Group. It is based on a proposal written by Geoff Thompson and modified by the IEEE 802.3 Repeater Management Task Force. Paul Woodruff provided valuable corrections and suggestions for improvement.

Members of the IETF Hub MIB Working Group included:

Karl Auerbach Jim Barnes Steve Bostock	karl@eng.sun.com barnes@xylogics.com steveb@novell.com
David Bridgham	dab@asylum.sf.ca.us
Jack Brown	jbrown@huahuca-emh8.army.mil
Howard Brown	brown@ctron.com
Lida Canin	lida@apple.com
Jeffrey Case	case@cs.utk.edu
Carson Cheung	carson@bnr.com.ca
James Codespote	jpcodes@tycho.ncsc.mil
John Cook	cook@chipcom.com
Dave Cullerot	cullerot@ctron.com
James Davin	jrd@ptt.lcs.mit.edu
Gary Ellis	garye@hpspd.spd.hp.com
David Engel	david@cds.com
Mike Erlinger	mike@mti.com
Jeff Erwin	
Bill Fardy	fardy@ctron.com
Jeff Fried	jmf@relay.proteon.com
Bob Friesenhahn	pdrusa!bob@uunet.uu.net
Shawn Gallagher	gallagher@quiver.enet.dec.com

McMaster, McCloghrie & Roberts

[Page 21]

Mike Grieves Walter Guilarte Phillip Hasse Mark Hoerth Greg Hollingsworth Ron Jacoby Mike Janson Ken Jones Satish Joshi Frank Kastenholz Manu Kaycee Mark Kepke Mark Kerestes Kenneth Key Yoav Kluger Cheryl Krupczak Ron Lau Chao-Yu Liang Dave Lindemulder Richie McBride Keith McCloghrie Evan McGinnis Donna McMaster David Minnich Lynn Monsanto Miriam Nihart Niels Ole Brunsgaard Edison Paw David Perkins Jason Perreault John Pickens Jim Reinstedler Anil Rijsinghani Sam Roberts Dan Romascanu Marshall Rose Rick Royston Michael Sabo Jonathan Saperia Mark Schaefer Anil Singhal Timon Sloane Bob Stewart Emil Sturniolo Bruce Taber Iris Tal Mark Therieau Geoff Thompson

mgrieves@chipcom.com 70026.1715@compuserve.com phasse@honchuca-emh8.army.mil mark_hoerth@hp0400.desk.hp.com gregh@mailer.jhuapl.edu rj@sgi.com mjanson@mot.com konkord!ksj@uunet.uu.net sjoshi@synoptics.com kasten@europa.clearpoint.com kaycee@trlian.enet.dec.com mak@cnd.hp.com att!alux2!hawk@uunet.uu.net key@cs.utk.edu ykluger@fibhaifa.com cheryl@cc.gatech.edu rlau@synoptics.com cliang@synoptics.com da@mtung.att.com rm@bix.co.uk kzm@hls.com bem@3com.com mcmaster@synoptics.com dwm@fibercom.com monsanto@sun.com miriam@decwet.zso.dec.com nob@dowtyns.dk esp@3com.com dperkins@synoptics.com perreaul@interlan.interlan.com jrp@3com.com jimr@sceng.ub.com anil@levers.enet.dec.com sroberts@farallon.com dan@lannet.com mrose@dbc.mtview.ca.us rick@lsumus.sncc.lsu.edu sabo@dockmaster.ncsc.mil saperia@tcpjon.enet.dec.com schaefer@davidsys.com nsinghal@hawk.ulowell.edu peernet!timon@uunet.uu.net rlstewart@eng.xyplex.com emil@dss.com taber@interlan.com 437-3580@mcimail.com markt@python.eng.microcom.com thompson@synoptics.com

McMaster, McCloghrie & Roberts

[Page 22]

RFC 1515

Dean Throopthroop@dg-rtp.dg.comSteven Waldbusserwaldbusser@andrew.cmu.eduTimothy Waldentmwalden@saturn.sys.acc.comPhilip Wangwatadn!phil@uunet.uu.netDrew Wansleydwansley@secola.columbia.ncr.comDavid Warddward@chipcom.comSteve Wongwong@took.enet.dec.comPaul Woodruffpaul-woodruff@3com.comBrian Wyldbrianw@spider.co.ukJune-Kang Yangnatadm!yang@uunet.uu.netHenry Yipziegler@artel.comJoseph Zurzur@fibhaifa.com

6. References

- Rose, M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based internets", STD 16, RFC 1155, Performance Systems International, Hughes LAN Systems, May 1990.
- [2] McCloghrie, K., and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets", RFC 1156, Hughes LAN Systems, Performance Systems International, May 1990.
- [3] Case, J., Fedor M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol", STD 15, RFC 1157, SNMP Research, Performance Systems International, Performance Systems International, MIT Laboratory for Computer Science, May 1990.
- [4] McCloghrie, K., and M. Rose, Editors, "Management Information Base for Network Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213, Hughes LAN Systems, Performance Systems International, March 1991.
- [5] Information processing systems Open Systems Interconnection -Specification of Abstract Syntax Notation One (ASN.1), International Organization for Standardization, International Standard 8824, December 1987.
- [6] Information processing systems Open Systems Interconnection -Specification of Basic Encoding Rules for Abstract Notation One (ASN.1), International Organization for Standardization, International Standard 8825, December 1987.
- [7] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions", STD 16, RFC 1212, Performance Systems International, Hughes LAN Systems, March 1991.

McMaster, McCloghrie & Roberts

[Page 23]

802.3 MAU MIB

- [8] Rose, M., Editor, "A Convention for Defining Traps for use with the SNMP", RFC 1215, Performance Systems International, March 1991.
- [9] IEEE 802.3/ISO 8802-3 Information processing systems Local area networks - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications, 2nd edition, September 21, 1990.
- [10] IEEE P802.3p, "Layer Management for 10 Mb/s Medium Access Unit (MAUs), Section 20", Draft Supplement to ANSI/IEEE 802.3, Draft 5, July 11, 1992.
- [11] Kastenholz, F., "Definitions of Managed Objects for the Ethernet-like Interface Types", RFC 1398, FTP Software, Inc., January 1993.
- [12] McMaster, D., and K. McCloghrie, Editors, "Definitions of Managed Objects for IEEE 802.3 Repeater Devices", RFC 1368, SynOptics Communications, Hughes LAN Systems, October 1992.
- 7. Security Considerations

Security issues are not discussed in this memo.

McMaster, McCloghrie & Roberts

[Page 24]

8. Authors' Addresses

Donna McMaster SynOptics Communications, Inc. 4401 Great America Parkway P.O. Box 58185 Santa Clara, CA 95052-8185

Phone: (408) 764-1206 EMail: mcmaster@synoptics.com

Keith McCloghrie Hughes LAN Systems, Inc. 1225 Charleston Road Mountain View, CA 94043

Phone: (415) 966-7934 EMail: kzm@hls.com

Sam Roberts Farallon Computing, Inc. 2470 Mariner Square Loop Alameda, CA 94501-1010

Phone: (510) 814-5215 EMail: sroberts@farallon.com

McMaster, McCloghrie & Roberts

[Page 25]