
Network Working Group W. Wimer
Request for Comments: 1542 Carnegie Mellon University
Updates: 951 October 1993
Obsoletes: 1532
Category: Standards Track

 Clarifications and Extensions for the Bootstrap Protocol

Status of this Memo

 This RFC specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" for the standardization state and status
 of this protocol. Distribution of this memo is unlimited.

Abstract

 Some aspects of the BOOTP protocol were rather loosely defined in its
 original specification. In particular, only a general description
 was provided for the behavior of "BOOTP relay agents" (originally
 called BOOTP forwarding agents"). The client behavior description
 also suffered in certain ways. This memo attempts to clarify and
 strengthen the specification in these areas. Due to some errors
 introduced into RFC 1532 in the editorial process, this memo is
 reissued as RFC 1542.

 In addition, new issues have arisen since the original specification
 was written. This memo also attempts to address some of these.

Table of Contents

 1. Introduction... 2
 1.1 Requirements.. 3
 1.2 Terminology... 3
 1.3 Data Transmission Order..................................... 4
 2. General Issues... 5
 2.1 General BOOTP Processing.................................... 5
 2.2 Definition of the ’flags’ Field............................. 5
 2.3 Bit Ordering of Hardware Addresses.......................... 7
 2.4 BOOTP Over IEEE 802.5 Token Ring Networks................... 8
 3. BOOTP Client Behavior.. 9
 3.1 Client use of the ’flags’ field............................. 9
 3.1.1 The BROADCAST flag.. 9
 3.1.2 The remainder of the ’flags’ field........................ 9
 3.2 Definition of the ’secs’ field.............................. 10
 3.3 Use of the ’ciaddr’ and ’yiaddr’ fields..................... 10

Wimer [Page 1]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 3.4 Interpretation of the ’giaddr’ field........................ 11
 3.5 Vendor information "magic cookie"........................... 12
 4. BOOTP Relay Agents... 13
 4.1 General BOOTP Processing for Relay Agents................... 14
 4.1.1 BOOTREQUEST Messages...................................... 14
 4.1.2 BOOTREPLY Messages.. 17
 5. BOOTP Server Behavior.. 18
 5.1 Reception of BOOTREQUEST Messages........................... 18
 5.2 Use of the ’secs’ field..................................... 19
 5.3 Use of the ’ciaddr’ field................................... 19
 5.4 Strategy for Delivery of BOOTREPLY Messages................. 20
 Acknowledgements.. 21
 References.. 22
 Security Considerations... 23
 Author’s Address.. 23

1. Introduction

 The Bootstrap Protocol (BOOTP) is a UDP/IP-based protocol which
 allows a booting host to configure itself dynamically and without
 user supervision. BOOTP provides a means to notify a host of its
 assigned IP address, the IP address of a boot server host, and the
 name of a file to be loaded into memory and executed [1]. Other
 configuration information such as the local subnet mask, the local
 time offset, the addresses of default routers, and the addresses of
 various Internet servers can also be communicated to a host using
 BOOTP [2].

 Unfortunately, the original BOOTP specification [1] left some issues
 of the protocol open to question. The exact behavior of BOOTP relay
 agents formerly called "BOOTP forwarding agents") was not clearly
 specified. Some parts of the overall protocol specification actually
 conflict, while other parts have been subject to misinterpretation,
 indicating that clarification is needed. This memo addresses these
 problems.

 Since the introduction of BOOTP, the IEEE 802.5 Token Ring Network
 has been developed which presents a unique problem for BOOTP’s
 particular message-transfer paradigm. This memo also suggests a
 solution for this problem.

 NOTE: Unless otherwise specified in this document or a later
 document, the information and requirements specified througout this
 document also apply to extensions to BOOTP such as the Dynamic Host
 Configuration Protocol (DHCP) [3].

Wimer [Page 2]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

1.1 Requirements

 In this memo, the words that are used to define the significance of
 particular requirements are capitalized. These words are:

 o "MUST"

 This word or the adjective "REQUIRED" means that the item
 is an absolute requirement of the specification.

 o "MUST NOT"

 This phrase means that the item is an absolute prohibition
 of the specification.

 o "SHOULD"

 This word or the adjective "RECOMMENDED" means that there
 may exist valid reasons in particular circumstances to
 ignore this item, but the full implications should be
 understood and the case carefully weighed before choosing a
 different course.

 o "SHOULD NOT"

 This phrase means that there may exist valid reasons in
 particular circumstances when the listed behavior is
 acceptable or even useful, but the full implications should
 be understood and the case carefully weighed before
 implementing any behavior described with this label.

 o "MAY"

 This word or the adjective "OPTIONAL" means that this item
 is truly optional. One vendor may choose to include the
 item because a particular marketplace requires it or
 because it enhances the product, for example; another
 vendor may omit the same item.

1.2 Terminology

 This memo uses the following terms:

 BOOTREQUEST

 A BOOTREQUEST message is a BOOTP message sent from a BOOTP
 client to a BOOTP server, requesting configuration information.

Wimer [Page 3]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 BOOTREPLY

 A BOOTREPLY message is a BOOTP message sent from a BOOTP server
 to a BOOTP client, providing configuration information.

 Silently discard

 This memo specifies several cases where a BOOTP entity is to
 "silently discard" a received BOOTP message. This means that
 the entity is to discard the message without further
 processing, and that the entity will not send any ICMP error
 message as a result. However, for diagnosis of problems, the
 entity SHOULD provide the capability of logging the error,
 including the contents of the silently-discarded message, and
 SHOULD record the event in a statistics counter.

1.3 Data Transmission Order

 The order of transmission of the header and data described in this
 document is resolved to the octet level. Whenever a diagram shows a
 group of octets, the order of transmission of those octets is the
 normal order in which they are read in English. For example, in the
 following diagram, the octets are transmitted in the order they are
 numbered.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 1 | 2 |
 +-------------------------------+
 | 3 | 4 |
 +-------------------------------+
 | 5 | 6 |
 +-------------------------------+

 Whenever an octet represents a numeric quantity, the leftmost bit in
 the diagram is the high order or most significant bit. That is, the
 bit labeled 0 is the most significant bit. For example, the
 following diagram represents the value 170 (decimal).

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1 0 1 0 1 0 1 0|
 +---------------+

 Similarly, whenever a multi-octet field represents a numeric quantity
 the leftmost bit of the whole field is the most significant bit.
 When a multi-octet quantity is transmitted the most significant octet

Wimer [Page 4]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 is transmitted first.

2. General Issues

 This section covers issues of general relevance to all BOOTP entities
 (clients, servers, and relay agents).

2.1 General BOOTP Processing

 The following consistency checks SHOULD be performed on BOOTP
 messages:

 o The IP Total Length and UDP Length must be large enough to
 contain the minimal BOOTP header of 300 octets (in the UDP
 data field) specified in [1].

 NOTE: Future extensions to the BOOTP protocol may increase the size
 of BOOTP messages. Therefore, BOOTP messages which, according to the
 IP Total Length and UDP Length fields, are larger than the minimum
 size specified by [1] MUST also be accepted.

 o The ’op’ (opcode) field of the message must contain either the
 code for a BOOTREQUEST (1) or the code for a BOOTREPLY (2).

 BOOTP messages not meeting these consistency checks MUST be silently
 discarded.

2.2 Definition of the ’flags’ Field

 The standard BOOTP message format defined in [1] includes a two-octet
 field located between the ’secs’ field and the ’ciaddr’ field. This
 field is merely designated as "unused" and its contents left
 unspecified, although Section 7.1 of [1] does offer the following
 suggestion:

 "Before setting up the packet for the first time, it is a good
 idea to clear the entire packet buffer to all zeros; this will
 place all fields in their default state."

 This memo hereby designates this two-octet field as the ’flags’
 field.

 This memo hereby defines the most significant bit of the ’flags’
 field as the BROADCAST (B) flag. The semantics of this flag are
 discussed in Sections 3.1.1 and 4.1.2 of this memo.

 The remaining bits of the ’flags’ field are reserved for future
 use. They MUST be set to zero by clients and ignored by servers

Wimer [Page 5]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 and relay agents.

 The ’flags’ field, then, appears as follows:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |B| MBZ |
 +-+-----------------------------+

 where:

 B BROADCAST flag (discussed in Sections 3.1.1 and 4.1.2)

 MBZ MUST BE ZERO (reserved for future use)

 The format of a BOOTP message is shown below. The numbers in
 parentheses indicate the size of each field in octets.

Wimer [Page 6]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | op (1) | htype (1) | hlen (1) | hops (1) |
 +---------------+---------------+---------------+---------------+
 | xid (4) |
 +-------------------------------+-------------------------------+
 | secs (2) | flags (2) |
 +-------------------------------+-------------------------------+
 | ciaddr (4) |
 +---+
 | yiaddr (4) |
 +---+
 | siaddr (4) |
 +---+
 | giaddr (4) |
 +---+
 | |
 | chaddr (16) |
 | |
 | |
 +---+
 | |
 | sname (64) |
 +---+
 | |
 | file (128) |
 +---+
 | |
 | vend (64) |
 +---+

2.3 Bit Ordering of Hardware Addresses

 The bit ordering used for link-level hardware addresses in the
 ’chaddr’ field SHOULD be the same as the ordering used for the ARP
 protocol [4] on the client’s link-level network (assuming ARP is
 defined for that network).

 The ’chaddr’ field MUST be preserved as it was specified by the BOOTP
 client. A relay agent MUST NOT reverse the bit ordering of the
 ’chaddr’ field even if it happens to be relaying a BOOTREQUEST
 between two networks which use different bit orderings.

 DISCUSSION:

 One of the primary reasons the ’chaddr’ field exists is to
 enable BOOTP servers and relay agents to communicate directly

Wimer [Page 7]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 with clients without the use of broadcasts. In practice, the
 contents of the ’chaddr’ field is often used to create an ARP-
 cache entry in exactly the same way the normal ARP protocol
 would have. Clearly, interoperability can only be achieved if
 a consistent interpretation of the ’chaddr’ field is used.

 As a practical example, this means that the bit ordering used
 for the ’chaddr’ field by a BOOTP client on an IEEE 802.5 Token
 Ring network is the opposite of the bit ordering used by a
 BOOTP client on a DIX ethernet network.

2.4 BOOTP Over IEEE 802.5 Token Ring Networks

 Special consideration of the client/server and client/relay agent
 interactions must be given to IEEE 802.5 networks because of non-
 transparent bridging.

 The client SHOULD send its broadcast BOOTREQUEST with an All Routes
 Explorer RIF. This will enable servers/relay agents to cache the
 return route if they choose to do so. For those server/relay agents
 which cannot cache the return route (because they are stateless, for
 example), the BOOTREPLY message SHOULD be sent to the client’s
 hardware address, as taken from the BOOTP message, with a Spanning
 Tree Rooted RIF. The actual bridge route will be recorded by the
 client and server/relay agent by normal ARP processing code.

 DISCUSSION:

 In the simplest case, an unbridged, single ring network, the
 broadcast behavior of the BOOTP protocol is identical to that
 of Ethernet networks. However, a BOOTP client cannot know, a
 priori, that an 802.5 network is not bridged. In fact, the
 likelihood is that the server, or relay agent, will not know
 either.

 Of the four possible scenerios, only two are interesting: where
 the assumption is that the 802.5 network is not bridged and it
 is, and the assumption that the network is bridged and it is
 not. In the former case, the Routing Information Field (RIF)
 will not be used; therefore, if the server/relay agent are on
 another segment of the ring, the client cannot reach it. In
 the latter case, the RIF field will be used, resulting in a few
 extraneous bytes on the ring. It is obvious that an almost
 immeasurable inefficiency is to be preferred over a complete
 failure to communicate.

Wimer [Page 8]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 Given that the assumption is that RIF fields will be needed, it
 is necesary to determine the optimum method for the client to
 reach the server/relay agent, and the optimum method for the
 response to be returned.

3. BOOTP Client Behavior

 This section clarifies various issues regarding BOOTP client
 behavior.

3.1 Client use of the ’flags’ field

3.1.1 The BROADCAST flag

 Normally, BOOTP servers and relay agents attempt to deliver BOOTREPLY
 messages directly to a client using unicast delivery. The IP
 destination address (in the IP header) is set to the BOOTP ’yiaddr’
 address and the link-layer destination address is set to the BOOTP
 ’chaddr’ address. Unfortunately, some client implementations are
 unable to receive such unicast IP datagrams until they know their own
 IP address (thus we have a "chicken and egg" issue). Often, however,
 they can receive broadcast IP datagrams (those with a valid IP
 broadcast address as the IP destination and the link-layer broadcast
 address as the link-layer destination).

 If a client falls into this category, it SHOULD set (to 1) the
 newly-defined BROADCAST flag in the ’flags’ field of BOOTREPLY
 messages it generates. This will provide a hint to BOOTP servers and
 relay agents that they should attempt to broadcast their BOOTREPLY
 messages to the client.

 If a client does not have this limitation (i.e., it is perfectly able
 to receive unicast BOOTREPLY messages), it SHOULD NOT set the
 BROADCAST flag (i.e., it SHOULD clear the BROADCAST flag to 0).

 DISCUSSION:

 This addition to the protocol is a workaround for old host
 implementations. Such implementations SHOULD be modified so
 that they may receive unicast BOOTREPLY messages, thus making
 use of this workaround unnecessary. In general, the use of
 this mechanism is discouraged.

3.1.2 The remainder of the ’flags’ field

 The remaining bits of the ’flags’ field are reserved for future use.
 A client MUST set these bits to zero in all BOOTREQUEST messages it
 generates. A client MUST ignore these bits in all BOOTREPLY messages

Wimer [Page 9]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 it receives.

3.2 Definition of the ’secs’ field

 The ’secs’ field of a BOOTREQUEST message SHOULD represent the
 elapsed time, in seconds, since the client sent its first BOOTREQUEST
 message. Note that this implies that the ’secs’ field of the first
 BOOTREQUEST message SHOULD be set to zero.

 Clients SHOULD NOT set the ’secs’ field to a value which is constant
 for all BOOTREQUEST messages.

 DISCUSSION:

 The original definition of the ’secs’ field was vague. It was
 not clear whether it represented the time since the first
 BOOTREQUEST message was sent or some other time period such as
 the time since the client machine was powered-up. This has
 limited its usefulness as a policy control mechanism for BOOTP
 servers and relay agents. Furthermore, certain client
 implementations have been known to simply set this field to a
 constant value or use incorrect byte-ordering. Incorrect
 byte-ordering usually makes it appear as if a client has been
 waiting much longer than it really has, so a relay agent will
 relay the BOOTREQUEST sooner than desired (usually
 immediately). These implementation errors have further
 undermined the usefulness of the ’secs’ field. These incorrect
 implementations SHOULD be corrected.

3.3 Use of the ’ciaddr’ and ’yiaddr’ fields

 If a BOOTP client does not know what IP address it should be using,
 the client SHOULD set the ’ciaddr’ field to 0.0.0.0. If the client
 has the ability to remember the last IP address it was assigned, or
 it has been preconfigured with an IP address via some alternate
 mechanism, the client MAY fill the ’ciaddr’ field with that IP
 address. If the client does place a non-zero IP address in the
 ’ciaddr’ field, the client MUST be prepared to accept incoming
 unicast datagrams addressed to that IP address and also answer ARP
 requests for that IP address (if ARP is used on that network).

 The BOOTP server is free to assign a different IP address (in the
 ’yiaddr’ field) than the client expressed in ’ciaddr’. The client
 SHOULD adopt the IP address specified in ’yiaddr’ and begin using it
 as soon as possible.

Wimer [Page 10]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 DISCUSSION:

 There are various interpretations about the purpose of the
 ’ciaddr’ field and, unfortunately, no agreement on a single
 correct interpretation. One interpretation is that if a client
 is willing to accept whatever IP address the BOOTP server
 assigns to it, the client should always place 0.0.0.0 in the
 ’ciaddr’ field, regardless of whether it knows its previously-
 assigned address. Conversely, if the client wishes to assert
 that it must have a particular IP address (e.g., the IP address
 was hand-configured by the host administrator and BOOTP is only
 being used to obtain a boot file and/or information from the
 ’vend’ field), the client will then fill the ’ciaddr’ field
 with the desired IP address and ignore the IP address assigned
 by the BOOTP server as indicated in the ’yiaddr’ field. An
 alternate interpretation holds that the client always fills the
 ’ciaddr’ field with its most recently-assigned IP address (if
 known) even if that address may be incorrect. Such a client
 will still accept and use the address assigned by the BOOTP
 server as indicated in the ’yiaddr’ field. The motivation for
 this interpretation is to aid the server in identifying the
 client and/or in delivering the BOOTREPLY to the client. Yet a
 third (mis)interpretation allows the client to use ’ciaddr’ to
 express the client’s desired IP address, even if the client has
 never used that address before or is not currently using that
 address.

 The last interpretation is incorrect as it may prevent the
 BOOTREPLY from reaching the client. The server will usually
 unicast the reply to the address given in ’ciaddr’ but the
 client may not be listening on that address yet, or the client
 may be connected to an incorrect subnet such that normal IP
 routing (correctly) routes the reply to a different subnet.

 The second interpretation also suffers from the "incorrect
 subnet" problem.

 The first interpretation seems to be the safest and most likely
 to promote interoperability.

3.4 Interpretation of the ’giaddr’ field

 The ’giaddr’ field is rather poorly named. It exists to facilitate
 the transfer of BOOTREQUEST messages from a client, through BOOTP
 relay agents, to servers on different networks than the client.
 Similarly, it facilitates the delivery of BOOTREPLY messages from the
 servers, through BOOTP relay agents, back to the client. In no case
 does it represent a general IP router to be used by the client. A

Wimer [Page 11]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 BOOTP client MUST set the ’giaddr’ field to zero (0.0.0.0) in all
 BOOTREQUEST messages it generates.

 A BOOTP client MUST NOT interpret the ’giaddr’ field of a BOOTREPLY
 message to be the IP address of an IP router. A BOOTP client SHOULD
 completely ignore the contents of the ’giaddr’ field in BOOTREPLY
 messages.

 DISCUSSION:

 The semantics of the ’giaddr’ field were poorly defined.
 Section 7.5 of [1] states:

 "If ’giaddr’ (gateway address) is nonzero, then the packets
 should be forwarded there first, in order to get to the
 server."

 In that sentence, "get to" refers to communication from the client to
 the server subsequent to the BOOTP exchange, such as a TFTP session.
 Unfortunately, the ’giaddr’ field may contain the address of a BOOTP
 relay agent that is not itself an IP router (according to [1],
 Section 8, fifth paragraph), in which case, it will be useless as a
 first-hop for TFTP packets sent to the server (since, by definition,
 non-routers don’t forward datagrams at the IP layer).

 Although now prohibited by Section 4.1.1 of this memo, the ’giaddr’
 field might contain a broadcast address according to Section 8, sixth
 paragraph of [1]. Not only would such an address be useless as a
 router address, it might also cause the client to ARP for the
 broadcast address (since, if the client didn’t receive a subnet mask
 in the BOOTREPLY message, it would be unable to recognize a subnet
 broadcast address). This is clearly undesirable.

 To reach a non-local server, clients can obtain a first-hop router
 address from the "Gateway" subfield of the "Vendor Information
 Extensions" [2] (if present), or via the ICMP router discovery
 protocol [5] or other similar mechanism.

3.5 Vendor information "magic cookie"

 It is RECOMMENDED that a BOOTP client always fill the first four
 octets of the ’vend’ (vendor information) field of a BOOTREQUEST with
 a four-octet identifier called a "magic cookie." A BOOTP client
 SHOULD do this even if it has no special information to communicate
 to the BOOTP server using the ’vend’ field. This aids the BOOTP
 server in determining what vendor information format it should use in
 its BOOTREPLY messages.

Wimer [Page 12]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 If a special vendor-specific magic cookie is not being used, a BOOTP
 client SHOULD use the dotted decimal value 99.130.83.99 as specified
 in [2]. In this case, if the client has no information to
 communicate to the server, the octet immediately following the magic
 cookie SHOULD be set to the "End" tag (255) and the remaining octets
 of the ’vend’ field SHOULD be set to zero.

 DISCUSSION:

 Sometimes different operating systems or networking packages
 are run on the same machine at different times (or even at the
 same time!). Since the hardware address placed in the ’chaddr’
 field will likely be the same, BOOTREQUESTs from completely
 different BOOTP clients on the same machine will likely be
 difficult for a BOOTP server to differentiate. If the client
 includes a magic cookie in its BOOTREQUESTs, the server will at
 least know what format the client expects and can understand in
 corresponding BOOTREPLY messages.

4. BOOTP Relay Agents

 In many cases, BOOTP clients and their associated BOOTP
 server(s) do not reside on the same IP network or subnet. In
 such cases, some kind of third-party agent is required to
 transfer BOOTP messages between clients and servers. Such an
 agent was originally referred to as a "BOOTP forwarding agent."
 However, in order to avoid confusion with the IP forwarding
 function of an IP router, the name "BOOTP relay agent" is
 hereby adopted instead.

 DISCUSSION:

 A BOOTP relay agent performs a task which is distinct from an
 IP router’s normal IP forwarding function. While a router
 normally switches IP datagrams between networks more-or-less
 transparently, a BOOTP relay agent may more properly be thought
 to receive BOOTP messages as a final destination and then
 generate new BOOTP messages as a result. It is incorrect for a
 relay agent implementation to simply forward a BOOTP message
 "straight through like a regular packet."

 This relay-agent functionality is most conveniently located in
 the routers which interconnect the clients and servers, but may
 alternatively be located in a host which is directly connected
 to the client subnet.

 Any Internet host or router which provides BOOTP relay-agent
 capability MUST conform to the specifications in this memo.

Wimer [Page 13]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

4.1 General BOOTP Processing for Relay Agents

 All locally delivered UDP messages whose UDP destination port number
 is BOOTPS (67) are considered for special processing by the host or
 router’s logical BOOTP relay agent.

 In the case of a host, locally delivered datagrams are simply all
 datagrams normally received by that host, i.e., broadcast and
 multicast datagrams as well as unicast datagrams addressed to IP
 addresses of that host.

 In the case of a router, locally delivered datagrams are broadcast
 and multicast datagrams as well as unicast datagrams addressed to IP
 addresses of that router. These are datagrams for which the router
 should be considered an end destination as opposed to an intermediate
 switching node. Thus a unicast datagram with an IP destination not
 matching any of the router’s IP addresses is not considered for
 processing by the router’s logical BOOTP relay agent.

 Hosts and routers are usually required to silently discard incoming
 datagrams containing illegal IP source addresses. This is generally
 known as "Martian address filtering." One of these illegal addresses
 is 0.0.0.0 (or actually anything on network 0). However, hosts or
 routers which support a BOOTP relay agent MUST accept for local
 delivery to the relay agent BOOTREQUEST messages whose IP source
 address is 0.0.0.0. BOOTREQUEST messages from legal IP source
 addresses MUST also be accepted.

 A relay agent MUST silently discard any received UDP messages whose
 UDP destination port number is BOOTPC (68).

 DISCUSSION:

 There should be no need for a relay agent to process messages
 addressed to the BOOTPC port. Careful reading of the original
 BOOTP specification [1] will show this. Nevertheless, some
 relay agent implementations incorrectly relay such messages.

 The consistency checks specified in Section 2.1 SHOULD be performed
 by the relay agent. BOOTP messages not meeting these consistency
 checks MUST be silently discarded.

4.1.1 BOOTREQUEST Messages

 Some configuration mechanism MUST exist to enable or disable the
 relaying of BOOTREQUEST messages. Relaying MUST be disabled by
 default.

Wimer [Page 14]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 When the BOOTP relay agent receives a BOOTREQUEST message, it MAY use
 the value of the ’secs’ (seconds since client began booting) field of
 the request as a factor in deciding whether to relay the request. If
 such a policy mechanism is implemented, its threshold SHOULD be
 configurable.

 DISCUSSION:

 To date, this feature of the BOOTP protocol has not necessarily
 been shown to be useful. See Section 3.2 for a discussion.

 The relay agent MUST silently discard BOOTREQUEST messages whose
 ’hops’ field exceeds the value 16. A configuration option SHOULD be
 provided to set this threshold to a smaller value if desired by the
 network manager. The default setting for a configurable threshold
 SHOULD be 4.

 If the relay agent does decide to relay the request, it MUST examine
 the ’giaddr’ ("gateway" IP address) field. If this field is zero,
 the relay agent MUST fill this field with the IP address of the
 interface on which the request was received. If the interface has
 more than one IP address logically associated with it, the relay
 agent SHOULD choose one IP address associated with that interface and
 use it consistently for all BOOTP messages it relays. If the
 ’giaddr’ field contains some non-zero value, the ’giaddr’ field MUST
 NOT be modified. The relay agent MUST NOT, under any circumstances,
 fill the ’giaddr’ field with a broadcast address as is suggested in
 [1] (Section 8, sixth paragraph).

 The value of the ’hops’ field MUST be incremented.

 All other BOOTP fields MUST be preserved intact.

 At this point, the request is relayed to its new destination (or
 destinations). This destination MUST be configurable. Further, this
 destination configuration SHOULD be independent of the destination
 configuration for any other so-called "broadcast forwarders" (e.g.,
 for the UDP-based TFTP, DNS, Time, etc. protocols).

 DISCUSSION:

 The network manager may wish the relaying destination to be an
 IP unicast, multicast, broadcast, or some combination. A
 configurable list of destination IP addresses provides good
 flexibility. More flexible configuration schemes are
 encouraged. For example, it may be desirable to send to the
 limited broadcast address (255.255.255.255) on specific
 physical interfaces. However, if the BOOTREQUEST message was

Wimer [Page 15]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 received as a broadcast, the relay agent MUST NOT rebroadcast
 the BOOTREQUEST on the physical interface from whence it came.

 A relay agent MUST use the same destination (or set of
 destinations) for all BOOTREQUEST messages it relays from a
 given client.

 DISCUSSION:

 At least one known relay agent implementation uses a round-
 robin scheme to provide load balancing across multiple BOOTP
 servers. Each time it receives a new BOOTREQUEST message, it
 relays the message to the next BOOTP server in a list of
 servers. Thus, with this relay agent, multiple consecutive
 BOOTREQUEST messages from a given client will be delivered to
 different servers.

 Unfortunately, this well-intentioned scheme reacts badly with
 DHCP [3] and perhaps other variations of the BOOTP protocol
 which depend on multiple exchanges of BOOTREQUEST and BOOTREPLY
 messages between clients and servers. Therefore, all
 BOOTREQUEST messages from a given client MUST be relayed to the
 same destination (or set of destinations).

 One way to meet this requirement while providing some load-
 balancing benefit is to hash the client’s link-layer address
 (or some other reliable client-identifying information) and use
 the resulting hash value to select the appropriate relay
 destination (or set of destinations). The simplest solution,
 of course, is to not use a load-balancing scheme and just relay
 ALL received BOOTREQUEST messages to the same destination (or
 set of destinations).

 When transmitting the request to its next destination, the
 relay agent may set the IP Time-To-Live field to either the
 default value for new datagrams originated by the relay agent,
 or to the TTL of the original BOOTREQUEST decremented by (at
 least) one.

 DISCUSSION:

 As an extra precaution against BOOTREQUEST loops, it is
 preferable to use the decremented TTL from the original
 BOOTREQUEST. Unfortunately, this may be difficult to do in
 some implementations.

 If the BOOTREQUEST has a UDP checksum (i.e., the UDP checksum
 is non-zero), the checksum must be recalculated before

Wimer [Page 16]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 transmitting the request.

4.1.2 BOOTREPLY Messages

 BOOTP relay agents relay BOOTREPLY messages only to BOOTP clients.
 It is the responsibility of BOOTP servers to send BOOTREPLY messages
 directly to the relay agent identified in the ’giaddr’ field.
 Therefore, a relay agent may assume that all BOOTREPLY messages it
 receives are intended for BOOTP clients on its directly-connected
 networks.

 When a relay agent receives a BOOTREPLY message, it should examine
 the BOOTP ’giaddr’, ’yiaddr’, ’chaddr’, ’htype’, and ’hlen’ fields.
 These fields should provide adequate information for the relay agent
 to deliver the BOOTREPLY message to the client.

 The ’giaddr’ field can be used to identify the logical interface from
 which the reply must be sent (i.e., the host or router interface
 connected to the same network as the BOOTP client). If the content
 of the ’giaddr’ field does not match one of the relay agent’s
 directly-connected logical interfaces, the BOOTREPLY messsage MUST be
 silently discarded.

 The ’htype’, ’hlen’, and ’chaddr’ fields supply the link-layer
 hardware type, hardware address length, and hardware address of the
 client as defined in the ARP protocol [4] and the Assigned Numbers
 document [6]. The ’yiaddr’ field is the IP address of the client, as
 assigned by the BOOTP server.

 The relay agent SHOULD examine the newly-defined BROADCAST flag (see
 Sections 2.2 and 3.1.1 for more information). If this flag is set to
 1, the reply SHOULD be sent as an IP broadcast using the IP limited
 broadcast address 255.255.255.255 as the IP destination address and
 the link-layer broadcast address as the link-layer destination
 address. If the BROADCAST flag is cleared (0), the reply SHOULD be
 sent as an IP unicast to the IP address specified by the ’yiaddr’
 field and the link-layer address specified in the ’chaddr’ field. If
 unicasting is not possible, the reply MAY be sent as a broadcast, in
 which case it SHOULD be sent to the link-layer broadcast address
 using the IP limited broadcast address 255.255.255.255 as the IP
 destination address.

 DISCUSSION:

 The addition of the BROADCAST flag to the protocol is a
 workaround to help promote interoperability with certain client
 implementations.

Wimer [Page 17]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 Note that since the ’flags’ field was previously defined in [1]
 simply as an "unused" field, it is possible that old client or
 server implementations may accidentally and unknowingly set the
 new BROADCAST flag. It is actually expected that such
 implementations will be rare (most implementations seem to
 zero-out this field), but interactions with such
 implementations must nevertheless be considered. If an old
 client or server does set the BROADCAST flag to 1 incorrectly,
 conforming relay agents will generate broadcast BOOTREPLY
 messages to the corresponding client. The BOOTREPLY messages
 should still properly reach the client, at the cost of one
 (otherwise unnecessary) additional broadcast. This, however,
 is no worse than a server or relay agent which always
 broadcasts its BOOTREPLY messages.

 Older client or server implementations which accidentally set
 the BROADCAST flag SHOULD be corrected to properly comply with
 this newer specification.

 All BOOTP fields MUST be preserved intact. The relay agent
 MUST NOT modify any BOOTP field of the BOOTREPLY message when
 relaying it to the client.

 The reply MUST have its UDP destination port set to BOOTPC
 (68).

 If the BOOTREPLY has a UDP checksum (i.e., the UDP checksum is
 non-zero), the checksum must be recalculated before
 transmitting the reply.

5. BOOTP Server Behavior

 This section provides clarifications on the behavior of BOOTP
 servers.

5.1 Reception of BOOTREQUEST Messages

 All received UDP messages whose UDP destination port number is BOOTPS
 (67) are considered for processing by the BOOTP server.

 Hosts and routers are usually required to silently discard incoming
 datagrams containing illegal IP source addresses. This is generally
 known as "Martian address filtering." One of these illegal addresses
 is 0.0.0.0 (or actually anything on network 0). However, hosts or
 routers which support a BOOTP server MUST accept for local delivery
 to the server BOOTREQUEST messages whose IP source address is
 0.0.0.0. BOOTREQUEST messages from legal IP source addresses MUST
 also be accepted.

Wimer [Page 18]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 A BOOTP server MUST silently discard any received UDP messages whose
 UDP destination port number is BOOTPC (68).

 DISCUSSION:

 There should be no need for a BOOTP server to process messages
 addressed to the BOOTPC port. Careful reading of the original
 BOOTP specification [1] will show this.

 The consistency checks specified in Section 2.1 SHOULD be
 performed by the BOOTP server. BOOTP messages not meeting
 these consistency checks MUST be silently discarded.

5.2 Use of the ’secs’ field

 When the BOOTP server receives a BOOTREQUEST message, it MAY use the
 value of the ’secs’ (seconds since client began booting) field of the
 request as a factor in deciding whether and/or how to reply to the
 request.

 DISCUSSION:

 To date, this feature of the BOOTP protocol has not necessarily
 been shown to be useful. See Section 3.2 for a discussion.

5.3 Use of the ’ciaddr’ field

 There have been various client interpretations of the ’ciaddr’ field
 for which Section 3.3 should be consulted. A BOOTP server SHOULD be
 prepared to deal with these varying interpretations. In general, the
 ’ciaddr’ field SHOULD NOT be trusted as a sole key in identifying a
 client; the contents of the ’ciaddr’, ’chaddr’, ’htype’, and ’hlen’
 fields, and probably other information (perhaps in the ’file’ and
 ’vend’ fields) SHOULD all be considered together in deciding how to
 respond to a given client.

 BOOTP servers SHOULD preserve the contents of the ’ciaddr’ field in
 BOOTREPLY messages; the contents of ’ciaddr’ in a BOOTREPLY message
 SHOULD exactly match the contents of ’ciaddr’ in the corresponding
 BOOTREQUEST message.

 DISCUSSION:

 It has been suggested that a client may wish to use the
 contents of ’ciaddr’ to further verify that a particular
 BOOTREPLY message was indeed intended for it.

Wimer [Page 19]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

5.4 Strategy for Delivery of BOOTREPLY Messages

 Once the BOOTP server has created an appropriate BOOTREPLY message,
 that BOOTREPLY message must be properly delivered to the client.

 The server SHOULD first check the ’ciaddr’ field. If the ’ciaddr’
 field is non-zero, the BOOTREPLY message SHOULD be sent as an IP
 unicast to the IP address identified in the ’ciaddr’ field. The UDP
 destination port MUST be set to BOOTPC (68). However, the server
 MUST be aware of the problems identified in Section 3.3. The server
 MAY choose to ignore the ’ciaddr’ field and act as if the ’ciaddr’
 field contains 0.0.0.0 (and thus continue with the rest of the
 delivery algorithm below).

 The server SHOULD next check the ’giaddr’ field. If this field is
 non-zero, the server SHOULD send the BOOTREPLY as an IP unicast to
 the IP address identified in the ’giaddr’ field. The UDP destination
 port MUST be set to BOOTPS (67). This action will deliver the
 BOOTREPLY message directly to the BOOTP relay agent closest to the
 client; the relay agent will then perform the final delivery to the
 client. If the BOOTP server has prior knowledge that a particular
 client cannot receive unicast BOOTREPLY messages (e.g., the network
 manager has explicitly configured the server with such knowledge),
 the server MAY set the newly-defined BROADCAST flag to indicate that
 relay agents SHOULD broadcast the BOOTREPLY message to the client.
 Otherwise, the server MUST preserve the state of the BROADCAST flag
 so that the relay agent can correctly act upon it.

 If the ’giaddr’ field is set to 0.0.0.0, then the client resides on
 one of the same networks as the BOOTP server. The server SHOULD
 examine the newly-defined BROADCAST flag (see Sections 2.2, 3.1.1 and
 4.1.2 for more information). If this flag is set to 1 or the server
 has prior knowledge that the client is unable to receive unicast
 BOOTREPLY messages, the reply SHOULD be sent as an IP broadcast using
 the IP limited broadcast address 255.255.255.255 as the IP
 destination address and the link-layer broadcast address as the
 link-layer destination address. If the BROADCAST flag is cleared
 (0), the reply SHOULD be sent as an IP unicast to the IP address
 specified by the ’yiaddr’ field and the link-layer address specified
 in the ’chaddr’ field. If unicasting is not possible, the reply MAY
 be sent as a broadcast in which case it SHOULD be sent to the link-
 layer broadcast address using the IP limited broadcast address
 255.255.255.255 as the IP destination address. In any case, the UDP
 destination port MUST be set to BOOTPC (68).

Wimer [Page 20]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

 DISCUSSION:

 The addition of the BROADCAST flag to the protocol is a
 workaround to help promote interoperability with certain client
 implementations.

 The following table summarizes server delivery decisions for
 BOOTREPLY messages based upon information in BOOTREQUEST
 messages:

 BOOTREQUEST fields BOOTREPLY values for UDP, IP, link-layer
 +-----------------------+---+
 | ’ciaddr’ ’giaddr’ B | UDP dest IP destination link dest |
 +-----------------------+---+
non-zero X X	BOOTPC (68) ’ciaddr’ normal
0.0.0.0 non-zero X	BOOTPS (67) ’giaddr’ normal
0.0.0.0 0.0.0.0 0	BOOTPC (68) ’yiaddr’ ’chaddr’
0.0.0.0 0.0.0.0 1	BOOTPC (68) 255.255.255.255 broadcast
 +-----------------------+---+

 B = BROADCAST flag

 X = Don’t care

 normal = determine from the given IP destination using normal
 IP routing mechanisms and/or ARP as for any other
 normal datagram

Acknowledgements

 The author would like to thank Gary Malkin for his contribution of
 the "BOOTP over IEEE 802.5 Token Ring Networks" section, and Steve
 Deering for his observations on the problems associated with the
 ’giaddr’ field.

 Ralph Droms and the many members of the IETF Dynamic Host
 Configuration and Router Requirements working groups provided ideas
 for this memo as well as encouragement to write it.

 Philip Almquist and David Piscitello offered many helpful suggestions
 for improving the clarity, accuracy, and organization of this memo.
 These contributions are graciously acknowledged.

Wimer [Page 21]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

References

 [1] Croft, B., and J. Gilmore, "Bootstrap Protocol (BOOTP)", RFC 951,
 Stanford University and Sun Microsystems, September 1985.

 [2] Reynolds, J., "BOOTP Vendor Information Extensions", RFC 1497,
 USC/Information Sciences Institute, August 1993. This RFC is
 occasionally reissued with a new number. Please be sure to
 consult the latest version.

 [3] Droms, R., "Dynamic Host Configuration Protocol", RFC 1541,
 Bucknell University, October 1993.

 [4] Plummer, D., "An Ethernet Address Resolution Protocol", STD 37,
 RFC 826, MIT, November 1982.

 [5] Deering, S., "ICMP Router Discovery Messages", RFC 1256, Xerox
 PARC, September 1991.

 [6] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1340,
 USC/Information Sciences Institute, July, 1992. This RFC is
 periodically reissued with a new number. Please be sure to
 consult the latest version.

Wimer [Page 22]

RFC 1542 Clarifications and Extensions for BOOTP October 1993

Security Considerations

 There are many factors which make BOOTP in its current form quite
 insecure. BOOTP is built directly upon UDP and IP which are as yet
 inherently insecure themselves. Furthermore, BOOTP is generally
 intended to make maintenance of remote and/or diskless hosts easier.
 While perhaps not impossible, configuring such hosts with passwords or
 keys may be difficult and inconvenient. This makes it difficult to
 provide any form of reasonable authentication between servers and
 clients.

 Unauthorized BOOTP servers may easily be set up. Such servers can
 then send false and potentially disruptive information to clients such
 as incorrect or duplicate IP addresses, incorrect routing information
 (including spoof routers, etc.), incorrect domain nameserver addresses
 (such as spoof nameservers), and so on. Clearly, once this "seed"
 mis-information is planted, an attacker can further compromise the
 affected systems.

 Unauthorized BOOTP relay agents may present some of the same problems
 as unauthorized BOOTP servers.

 Malicious BOOTP clients could masquerade as legitimate clients and
 retrieve information intended for those legitimate clients. Where
 dynamic allocation of resources is used, a malicious client could
 claim all resources for itself, thereby denying resources to
 legitimate clients.

Author’s Address

 Walt Wimer
 Network Development
 Carnegie Mellon University
 5000 Forbes Avenue
 Pittsburgh, PA 15213-3890

 Phone: (412) 268-6252
 EMail: Walter.Wimer@CMU.EDU

Wimer [Page 23]

