
Network Working Group D. Levi
Request for Comments: 2592 Nortel Networks
Category: Standards Track J. Schoenwaelder
 TU Braunschweig
 May 1999

 Definitions of Managed Objects for the
 Delegation of Management Scripts

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes a set of managed objects that allow the
 delegation of management scripts to distributed managers.

Table of Contents

 1. Introduction ... 2
 2. The SNMP Management Framework 2
 3. Overview ... 3
 3.1 Terms .. 4
 4. Requirements and Design Issues 5
 4.1 Script Languages ... 5
 4.2 Script Transfer .. 6
 4.3 Script Execution ... 7
 5. The Structure of the MIB 8
 5.1 The smLanguageGroup .. 9
 5.2 The smScriptGroup .. 9
 5.3 The smCodeGroup .. 10
 5.4 The smLaunchGroup .. 10
 5.5 The smRunGroup ... 11
 6 Definitions .. 11
 7. Usage Examples ... 41
 7.1 Pushing a script via SNMP 41

Levi & Schoenwaelder Standards Track [Page 1]

RFC 2592 Script MIB May 1999

 7.2 Pulling a script from a URL 42
 7.3 Modifying an existing script 42
 7.4 Removing an existing script 43
 7.5 Creating a launch button 43
 7.6 Launching a script ... 44
 7.7 Terminating a script 44
 7.8 Removing a launch button 45
 8. VACM Configuration Examples 45
 8.1 Sandbox for guests ... 45
 8.2 Sharing scripts .. 46
 8.3 Emergency scripts .. 47
 9. IANA Considerations .. 48
 10. Security Considerations 48
 11. Intellectual Property 49
 12. Acknowledgments ... 49
 13. References .. 50
 14. Editors’ Addresses .. 52
 16. Full Copyright Statement 53

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes a set of managed objects that allow the
 delegation of management scripts to distributed managers.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [21].

2. The SNMP Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2271 [1].

 o Mechanisms for describing and naming objects and events for
 the purpose of management. The first version of this Structure
 of Management Information (SMI) is called SMIv1 and described
 in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215
 [4]. The second version, called SMIv2, is described in STD 58,
 RFC 2578 [5], RFC 2579 [6] and RFC 2580 [7].

Levi & Schoenwaelder Standards Track [Page 2]

RFC 2592 Script MIB May 1999

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1
 and described in STD 15, RFC 1157 [8]. A second version of the
 SNMP message protocol, which is not an Internet standards
 track protocol, is called SNMPv2c and described in RFC 1901
 [9] and RFC 1906 [10]. The third version of the message
 protocol is called SNMPv3 and described in RFC 1906 [10], RFC
 2272 [11] and RFC 2274 [12].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [8]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [13].

 o A set of fundamental applications described in RFC 2273 [14]
 and the view-based access control mechanism described in RFC
 2275 [15].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 MIB conforming to the SMIv1 can be produced through the appropriate
 translations. The resulting translated MIB must be semantically
 equivalent, except where objects or events are omitted because no
 translation is possible (use of Counter64). Some machine readable
 information in SMIv2 will be converted into textual descriptions in
 SMIv1 during the translation process. However, this loss of machine
 readable information is not considered to change the semantics of the
 MIB.

3. Overview

 The Script MIB module defined in this memo can be used to delegate
 management functions to distributed managers. Management functions
 are defined as management scripts written in a management scripting
 language. This MIB makes no assumptions about the language itself and
 even allows distribution of compiled native code, if an
 implementation is able to execute native code under the control of
 this MIB.

 The Script MIB defines a standard interface for the delegation of
 management functions based on the Internet management framework. In
 particular, it provides the following capabilities:

 1. Capabilities to transfer management scripts to a distributed
 manager.

Levi & Schoenwaelder Standards Track [Page 3]

RFC 2592 Script MIB May 1999

 2. Capabilities for initiating, suspending, resuming and
 terminating management scripts.

 3. Capabilities to transfer arguments for management scripts.

 4. Capabilities to monitor and control running management scripts.

 5. Capabilities to transfer the results produced by running
 management scripts.

 This memo does not address any additional topics like the generation
 of notifications or how to address remote agents from a Script MIB
 implementation.

3.1. Terms

 This section defines the terms used throughout this memo.

 o A ‘distributed manager’ is a processing entity which is capable
 of performing network management functions. For the scope of
 this memo, a distributed manager is assumed to implement the
 Script MIB.

 o A ‘higher-level manager’, or just ‘manager’, is a processing
 entity or human who initiates and controls the operations
 performed by one or more distributed managers.

 o A ‘management script’ is a set of instructions written in an
 executable language which implements a management function.

 o A ‘management scripting language’ is a language used to write
 management scripts. Note, the term scripting language does not
 imply that the language must have the characteristics of
 scripting languages (e.g. string orientation, interpretation,
 weak typing). The MIB defined in this memo also allows to
 control management scripts written in arbitrary compiled system
 programming languages.

 o A ‘distributed manager’ can be decomposed into an ‘SNMP entity’
 which implements the Script MIB defined in this memo and the
 ‘runtime system’ that executes scripts. The Script MIB sees the
 runtime system as the managed resource which is controlled by
 the MIB.

 The runtime system can act as an SNMP application, according to
 the SNMP architecture defined in RFC 2271 [1]. For example, a
 runtime system which sends SNMP requests to other SNMP entities
 will act as a command generator application. The SNMP

Levi & Schoenwaelder Standards Track [Page 4]

RFC 2592 Script MIB May 1999

 applications in the runtime system may use the same SNMP engine
 which also serves the command responder application used to
 implement the Script MIB, but they are not required to do so.

 o A ‘launch button’ is the conceptual button used to start the
 execution of a management script. It assignes control parameters
 to a management script. In particular, it defines the ownership
 of the scripts started from a launch button. The ownership can
 be used by the language runtime system to enforce security
 profiles on a running management script.

4. Requirements and Design Issues

 This section discusses some general requirements that have influenced
 the design of the Script MIB.

 o The Script MIB must not make any assumptions about specific
 languages or runtime systems.

 o The Script MIB must provide mechanisms that help to avoid new
 management problems (e.g. script version problems).

 o The Script MIB must provide SNMP interfaces to all functions
 required to delegate management scripts. However, other
 protocols might be used in addition if they provide a
 significant improvement in terms of convenience for
 implementation or performance.

 o The Script MIB must be organized so that access can be
 controlled effectively by using view-based access control [15].

 The following sections discuss some design issues in more detail.

4.1. Script Languages

 The Script MIB defined in this memo makes no assumption about the
 script language. This MIB can therefore be used in combination with
 different languages (such as Tcl or Java) and/or different versions
 of the same language. No assumptions are made about the format in
 which management scripts are transferred.

 The Script MIB provides access to information about the language
 versions supported by a Script MIB implementation so that a manager
 can learn about the capabilities provided by an implementation.
 Languages and language versions are identified as follows:

Levi & Schoenwaelder Standards Track [Page 5]

RFC 2592 Script MIB May 1999

 1. The language is identified by an object identifier. Object
 identifier for well-known languages will be registered by the
 Internet Assigned Numbers Authority (IANA). Enterprise specific
 languages can also be registered in the enterprise specific OID
 subtree.

 2. A particular version of a language is identified by a language
 version number. The combination of a language object identifier
 and a language version is in most cases sufficient to decide
 whether a script can be executed or not.

 3. Different implementations of the same language version might
 have differences due to ambiguities in the language definition
 or additional language features provided by an implementor. An
 additional object identifier value is provided which identifies
 the organization which provides the implementation of a
 language. This might be used by scripts that require a
 particular implementation of a language.

 4. Finally, there might be different versions of a language
 implementation. A version number for the language implementation
 is provided so that the manager can also distinguish between
 different implementations from the same organization of a
 particular language version.

 The version numbers can either be used by a manager to select the
 language version required to execute a particular script or to select
 a script that fits the language versions supported by a particular
 Script MIB implementation.

 An additional table lists language extensions that provide features
 not provided by the core language. Language extensions are usually
 required to turn a general purpose language into a management
 language. In many cases, language extensions will come in the form of
 libraries that provide capabilities like sending SNMP requests to
 remote SNMP agents or accessing the local MIB instrumentation. Every
 extension is associated with a language and carries its own version
 numbers.

4.2. Script Transfer

 There are two different ways to transfer management scripts to a
 distributed manager. The first approach requires that the manager
 pushes the script to the distributed manager. This is therefore
 called the ‘push model’. The second approach is the ‘pull model’
 where the manager tells the distributed manager the location of the
 script and the distributed manager retrieves the script itself.

Levi & Schoenwaelder Standards Track [Page 6]

RFC 2592 Script MIB May 1999

 The MIB defined in this memo supports both models. The ‘push model’
 is realized by a table which allows a manager to write scripts by
 sending a sequence of SNMP set requests. The script can be split into
 several fragments in order to deal with SNMP message size
 limitations.

 The ‘pull model’ is realized by the use of Uniform Resource Locators
 (URLs) [17] that point to the script source. The manager writes the
 URL which points to the script source to the distributed manager by
 sending an SNMP set request. The distributed manager is then
 responsible for retrieving the document using the protocol specified
 in the URL. This allows the use of protocols like FTP [18] or HTTP
 [19] to transfer large management scripts efficiently.

 The Script MIB also allows management scripts that are hard-wired
 into the Script MIB implementation. Built-in scripts can either be
 implemented in a language runtime system, or they can be built
 natively into the Script MIB implementation. The implementation of
 the ‘push model’ or the ‘pull model’ is not required.

 Scripts can be stored in non-volatile storage. This allows a
 distributed manager to restart scripts if it is restarted (off-line
 restart). A manager is not required to push scripts back into the
 distributed manager after a restart if the script is backed up in
 non-volatile storage.

 Every script is identified by an administratively assigned name. This
 name may be used to derive the name which is used to access the
 script in non-volatile storage. This mapping is implementation
 specific. However, the mapping must ensure that the Script MIB
 implementation can handle scripts with the same administrative name
 owned by different managers. One way to achieve this is to use the
 script owner in addition to the script name in order to derive the
 internal name used to refer to a particular script in non-volatile
 storage.

4.3. Script Execution

 The Script MIB permits execution of several instances of the same or
 different management scripts. Script arguments are passed as OCTET
 STRING values. Scripts return a single result value which is also an
 OCTET STRING value. The semantic interpretation of result values is
 left to the invoking manager or other management scripts. A script
 invoker must understand the format and semantics of both the
 arguments and the results of the scripts that it invokes.

Levi & Schoenwaelder Standards Track [Page 7]

RFC 2592 Script MIB May 1999

 Scripts can also export complex results through a MIB interface. This
 allows a management application to access and use script results in
 the same manner as it processes any other MIB data. However, the
 Script MIB does not provide any special support for the
 implementation of MIBs through scripts.

 Runtime errors terminate active scripts. An exit code and a human
 readable error message is left in the MIB. A notification containing
 the exit code, the error message and a timestamp is generated when a
 script terminates with an error exit code.

 Script arguments and results do not have any size limitations other
 than the limits imposed by the SMI and the SNMP protocol. However,
 implementations of this MIB might have further restrictions. A script
 designer might therefore choose to return the results via other
 mechanisms if the script results can be very large. One possibility
 is to return a URL as a script result which points to the file
 containing the script output.

 Executing scripts have a status object attached which allows script
 execution to be suspended, resumed, or aborted. The precise
 semantics of the suspend and resume operations are language and
 runtime system dependent. Some runtime systems may choose to not
 implement the suspend/resume operations.

 A history of finished scripts is kept in the MIB. A script invoker
 can collect results at a later point in time (offline operation).
 Control objects can be used to control how entries in the history are
 aged out if the table fills up.

5. The Structure of the MIB

 This section presents the structure of the MIB. The objects are
 arranged into the following groups:

 o language group (smLanguageGroup)

 o script group (smScriptGroup)

 o script code group (smCodeGroup)

 o script launch group (smLaunchGroup)

 o running script group (smRunGroup)

Levi & Schoenwaelder Standards Track [Page 8]

RFC 2592 Script MIB May 1999

5.1. The smLanguageGroup

 The smLanguageGroup is used to provide information about the
 languages and the language extensions supported by a Script MIB
 implementation. This group includes two tables. The smLangTable
 lists all languages supported by a Script MIB implementation and the
 smExtsnTable lists the extensions that are available for a given
 language.

5.2. The smScriptGroup

 The smScriptGroup consists of a single table, called the
 smScriptTable. The smScriptTable lists all scripts known to a Script
 MIB implementation. The smScriptTable contains objects that allow the
 following operations:

 o download scripts from a URL (pull model)

 o read scripts from local non-volatile storage

 o store scripts in local non-volatile storage

 o delete scripts from local non-volatile storage

 o list permanent scripts (that can not be changed or removed)

 o read and modify the script status (enabled, disabled, editing)

 A status object called smScriptOperStatus allows a manager to obtain
 the current status of a script. It is also used to provide an error
 indication if an attempt to invoke one of the operations listed above
 fails. The status change of a script can be requested by modifying
 the associated smScriptAdminStatus object.

 The source of a script is defined by the smScriptSource object. This
 object may contain a URL pointing to a remote location which provides
 access to the management script. The script source is read from the
 smCodeTable (described below) or from non-volatile storage if the
 smScriptSource object contains an empty URL. The smScriptStorageType
 object is used to distinguish between scripts read from non-volatile
 storage and scripts read from the smCodeTable.

 Scripts are automatically loaded once the smScriptAdminStatus object
 is set to ‘enabled’. Loading a script includes retrieving the script
 (probably from a remote location), compiling the script for languages
 that require a compilation step, and making the code available to the
 runtime system. The smScriptOperStatus object is used to indicate
 the status of the loading process. This object will start in the

Levi & Schoenwaelder Standards Track [Page 9]

RFC 2592 Script MIB May 1999

 state ‘retrieving’, switch to the state ‘compiling’ and finally reach
 the state ‘enabled’. Errors during the retrieval or compilation phase
 will result in an error state such as ‘compilationFailed’.

5.3. The smCodeGroup

 The smCodeGroup consists of a single table, called the smCodeTable,
 which provides the ability to transfer and modify scripts via SNMP
 set requests. In particular, the smCodeTable allows the following
 operations:

 o download scripts via SNMP (push model)

 o modify scripts via SNMP (editing)

 The smCodeTable lists the code of a script. A script can be
 fragmented over multiple rows of the smCodeTable in order to handle
 SNMP message size limitations. Modifications of the smCodeTable are
 only possible if the associated smScriptOperStatus object has the
 value ‘editing’. The Script MIB implementation reloads the modified
 script code once the smScriptOperStatus changes to ‘enabled’ again.

 The implementation of the smCodeGroup is optional.

5.4. The smLaunchGroup

 The smLaunchGroup contains a single table, the smLaunchTable. An
 entry in the smLaunchTable represents a launch button which can be
 used to start a script. The smLaunchTable allows the following
 operations:

 o associate a script with an owner used during script execution

 o provide arguments and parameters for script invocation

 o invoke scripts with a single set operation

 The smLaunchTable describes scripts and their parameters that are
 ready to be launched. An entry in the smLaunchTable attaches an
 argument to a script and control values which, for example, define
 the maximum number of times that a script invoked from a particular
 row in the smLaunchTable may be running concurrently.

 An entry in the smLaunchTable also defines the owner which will be
 used to associate permissions with the script execution.

Levi & Schoenwaelder Standards Track [Page 10]

RFC 2592 Script MIB May 1999

5.5. The smRunGroup

 The smRunGroup contains a single table, called the smRunTable, which
 lists all scripts that are currently running or have terminated
 recently. The smRunTable contains objects that allow the following
 operations:

 o retrieve status information from running scripts

 o control running scripts (suspend, resume, abort)

 o retrieve results from recently terminated scripts

 o control the remaining maximum lifetime of a running script

 o control how long script results are accessible

 Every row in the smRunTable contains the argument passed during
 script invocation, the result produced by the script and the script
 exit code. The smRunTable also provides information about the
 current run state as well as start and end time-stamps. There are
 three writable objects in the smRunTable. The smRunLifeTime object
 defines the maximum time a running script may run before it is
 terminated by the Script MIB implementation. The smRunExpireTime
 object defines the time that a completed script can stay in the
 smRunTable before it is aged out. The smRunControl object allows
 running scripts to be suspended, resumed, or aborted.

6. Definitions

 DISMAN-SCRIPT-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Integer32, Unsigned32, mib-2
 FROM SNMPv2-SMI

 RowStatus, TimeInterval, DateAndTime, StorageType, DisplayString
 FROM SNMPv2-TC

 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF

 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB;

 scriptMIB MODULE-IDENTITY
 LAST-UPDATED "9902221800Z"

Levi & Schoenwaelder Standards Track [Page 11]

RFC 2592 Script MIB May 1999

 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 "David B. Levi
 Nortel Networks
 4401 Great America Parkway
 Santa Clara, CA 95052-8185
 U.S.A.
 Tel: +1 423 686 0432
 E-mail: dlevi@nortelnetworks.com

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany
 Tel: +49 531 391-3283
 E-mail: schoenw@ibr.cs.tu-bs.de"
 DESCRIPTION
 "This MIB module defines a set of objects that allow to
 delegate management scripts to distributed managers."
 ::= { mib-2 64 }

 --
 -- The groups defined within this MIB module:
 --

 smObjects OBJECT IDENTIFIER ::= { scriptMIB 1 }
 smNotifications OBJECT IDENTIFIER ::= { scriptMIB 2 }
 smConformance OBJECT IDENTIFIER ::= { scriptMIB 3 }

 --
 -- Script language and language extensions.
 --
 -- This group defines tables which list the languages and the
 -- language extensions supported by a script MIB implementation.
 -- Languages are uniquely identified by object identifier values.
 --

 smLangTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmLangEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table lists supported script languages."
 ::= { smObjects 1 }

 smLangEntry OBJECT-TYPE
 SYNTAX SmLangEntry

Levi & Schoenwaelder Standards Track [Page 12]

RFC 2592 Script MIB May 1999

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular language."
 INDEX { smLangIndex }
 ::= { smLangTable 1 }

 SmLangEntry ::= SEQUENCE {
 smLangIndex Integer32,
 smLangLanguage OBJECT IDENTIFIER,
 smLangVersion SnmpAdminString,
 smLangVendor OBJECT IDENTIFIER,
 smLangRevision SnmpAdminString,
 smLangDescr SnmpAdminString
 }

 smLangIndex OBJECT-TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this language entry.

 The value is expected to remain constant at least from one
 re-initialization of the entity’s network management system
 to the next re-initialization.

 Note, the data type and the range of this object must be
 consistent with the definition of smScriptLanguage."
 ::= { smLangEntry 1 }

 smLangLanguage OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The globally unique identification of the language."
 ::= { smLangEntry 2 }

 smLangVersion OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The version number of the language. The zero-length string
 shall be used if the language does not have a version
 number.

Levi & Schoenwaelder Standards Track [Page 13]

RFC 2592 Script MIB May 1999

 It is suggested that the version number consist of one or
 more decimal numbers separated by dots, where the first
 number is called the major version number."
 ::= { smLangEntry 3 }

 smLangVendor OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An object identifer which identifies the vendor who
 provides the implementation of the language. This object
 identifer SHALL point to the object identifier directly
 below the enterprise object identifier {1 3 6 1 4 1}
 allocated for the vendor. The value must be the object
 identifier {0 0} if the vendor is not known."
 ::= { smLangEntry 4 }

 smLangRevision OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The version number of the language implementation.
 The value of this object must be an empty string if
 version number of the implementation is unknown.

 It is suggested that the value consist of one or more
 decimal numbers separated by dots, where the first
 number is called the major version number."
 ::= { smLangEntry 5 }

 smLangDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of the language."
 ::= { smLangEntry 6 }

 smExtsnTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmExtsnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table lists supported language extensions."
 ::= { smObjects 2 }

Levi & Schoenwaelder Standards Track [Page 14]

RFC 2592 Script MIB May 1999

 smExtsnEntry OBJECT-TYPE
 SYNTAX SmExtsnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular language extension."
 INDEX { smLangIndex, smExtsnIndex }
 ::= { smExtsnTable 1 }

 SmExtsnEntry ::= SEQUENCE {
 smExtsnIndex Integer32,
 smExtsnExtension OBJECT IDENTIFIER,
 smExtsnVersion SnmpAdminString,
 smExtsnVendor OBJECT IDENTIFIER,
 smExtsnRevision SnmpAdminString,
 smExtsnDescr SnmpAdminString
 }

 smExtsnIndex OBJECT-TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current

 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this language extension entry.

 The value is expected to remain constant at least from one
 re-initialization of the entity’s network management system
 to the next re-initialization."
 ::= { smExtsnEntry 1}

 smExtsnExtension OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The globally unique identification of the language
 extension."
 ::= { smExtsnEntry 2 }

 smExtsnVersion OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The version number of the language extension.

Levi & Schoenwaelder Standards Track [Page 15]

RFC 2592 Script MIB May 1999

 It is suggested that the version number consist of one or
 more decimal numbers separated by dots, where the first
 number is called the major version number."
 ::= { smExtsnEntry 3 }

 smExtsnVendor OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An object identifer which identifies the vendor who
 provides the implementation of the extension. The
 object identifer value should point to the OID node
 directly below the enterprise OID {1 3 6 1 4 1}
 allocated for the vendor. The value must by the object
 identifier {0 0} if the vendor is not known."
 ::= { smExtsnEntry 4 }

 smExtsnRevision OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The version number of the extension implementation.
 The value of this object must be an empty string if
 version number of the implementation is unknown.

 It is suggested that the value consist of one or more
 decimal numbers separated by dots, where the first
 number is called the major version number."
 ::= { smExtsnEntry 5 }

 smExtsnDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A textual description of the language extension."
 ::= { smExtsnEntry 6 }

 --
 -- Scripts known by the Script MIB implementation.
 --
 -- This group defines a table which lists all known scripts.
 -- Scripts can be added and removed through manipulation of the
 -- smScriptTable.
 --

Levi & Schoenwaelder Standards Track [Page 16]

RFC 2592 Script MIB May 1999

 smScriptObjects OBJECT IDENTIFIER ::= { smObjects 3 }

 smScriptTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmScriptEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table lists and describes locally known scripts."
 ::= { smScriptObjects 1 }

 smScriptEntry OBJECT-TYPE
 SYNTAX SmScriptEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular script. Every script that
 is stored in non-volatile memory is required to appear in
 this script table."
 INDEX { smScriptOwner, smScriptName }
 ::= { smScriptTable 1 }
 SmScriptEntry ::= SEQUENCE {
 smScriptOwner SnmpAdminString,
 smScriptName SnmpAdminString,
 smScriptDescr SnmpAdminString,
 smScriptLanguage Integer32,
 smScriptSource DisplayString,
 smScriptAdminStatus INTEGER,
 smScriptOperStatus INTEGER,
 smScriptStorageType StorageType,
 smScriptRowStatus RowStatus
 }

 smScriptOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The manager who owns this row in the smScriptTable."
 ::= { smScriptEntry 1 }

 smScriptName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally-unique, administratively assigned name for this
 script. This object allows an smScriptOwner to have multiple
 entries in the smScriptTable.

Levi & Schoenwaelder Standards Track [Page 17]

RFC 2592 Script MIB May 1999

 This value of this object may be used to derive the name
 (e.g. a file name) which is used by the Script MIB
 implementation to access the script in non-volatile
 storage. The details of this mapping are implementation
 specific. However, the mapping needs to ensure that scripts
 created by different owners with the same script name do not
 map to the same name in non-volatile storage."
 ::= { smScriptEntry 2 }

 smScriptDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A description of the purpose of the script."
 ::= { smScriptEntry 3 }

 smScriptLanguage OBJECT-TYPE
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object type identifies an entry in the
 smLangTable which is used to execute this script.
 The special value 0 may be used by hard-wired scripts
 that can not be modified and that are executed by
 internal functions.

 Note, the data type and the range of this object must be
 consistent with the definition of smLangIndex."
 ::= { smScriptEntry 4 }

 smScriptSource OBJECT-TYPE
 SYNTAX DisplayString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object either contains a reference to the script
 source or an empty string. A reference must be given
 in the form of a Uniform Resource Locator (URL) as
 defined in RFC 2396. The allowed character sets and the
 encoding rules defined in RFC 2396 section 2 apply.

 When the smScriptAdminStatus object is set to ‘enabled’,
 the Script MIB implementation will ‘pull’ the script
 source from the URL contained in this object if the URL
 is not empty.

Levi & Schoenwaelder Standards Track [Page 18]

RFC 2592 Script MIB May 1999

 An empty URL indicates that the script source is loaded
 from local storage. The script is read from the smCodeTable
 if the value of smScriptStorageType is volatile. Otherwise,
 the script is read from non-volatile storage.

 Note: This document does not mandate implementation of any
 specific URL scheme. A attempt to load a script from a
 nonsupported URL scheme will cause the smScriptOperStatus
 to report an ‘unknownProtocol’ error.

 Set requests to change this object are invalid if the
 value of smScriptOperStatus is ‘enabled’, ‘editing’,
 ‘retrieving’ or ‘compiling’ and will result in an
 inconsistentValue error."
 DEFVAL { ’’H }
 ::= { smScriptEntry 5 }
 smScriptAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1),
 disabled(2),
 editing(3)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object indicates the desired status of
 the script. See the definition of smScriptOperStatus for
 a description of the values.

 When the smScriptAdminStatus object is set to ‘enabled’ and
 the smScriptOperStatus is ‘disabled’ or one of the error
 states, the Script MIB implementation will ‘pull’ the script
 source from the URL contained in the smScriptSource object
 if the URL is not empty."
 DEFVAL { disabled }
 ::= { smScriptEntry 6 }

 smScriptOperStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1),
 disabled(2),
 editing(3),
 retrieving(4),
 compiling(5),
 noSuchScript(6),
 accessDenied(7),
 wrongLanguage(8),
 wrongVersion(9),

Levi & Schoenwaelder Standards Track [Page 19]

RFC 2592 Script MIB May 1999

 compilationFailed(10),
 noResourcesLeft(11),
 unknownProtocol(12),
 protocolFailure(13),
 genericError(14)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The actual status of the script in the runtime system. The
 value of this object is only meaningful when the value of the
 smScriptRowStatus object is ‘active’.

 The smScriptOperStatus object may have the following values:
 - ‘enabled’ indicates that the script is available and can
 be started by a launch table entry.

 - ‘disabled’ indicates that the script can not be used.

 - ‘editing’ indicates that the script can be modified in the
 smCodeTable.

 - ‘retrieving’ indicates that the script is currently being
 loaded from non-volatile storage or a remote system.

 - ‘compiling’ indicates that the script is currently being
 compiled by the runtime system.

 - ‘noSuchScript’ indicates that the script does not exist
 at the smScriptSource.

 - ‘accessDenied’ indicates that the script can not be loaded
 from the smScriptSource due to a lack of permissions.

 - ‘wrongLanguage’ indicates that the script can not be loaded
 from the smScriptSource because of a language mismatch.

 - ‘wrongVersion’ indicates that the script can not be loaded
 from the smScriptSource because of a language version
 mismatch.

 - ‘compilationFailed’ indicates that the compilation failed.

 - ‘noResourcesLeft’ indicates that the runtime system does
 not have enough resources to load the script.

 - ‘unknownProtocol’ indicates that the script could not be
 loaded from the smScriptSource because the requested

Levi & Schoenwaelder Standards Track [Page 20]

RFC 2592 Script MIB May 1999

 protocol is not supported.

 - ‘protocolFailure’ indicates that the script could not be
 loaded from the smScriptSource because of a protocol
 failure.

 - ‘genericError’ indicates that the script could not be
 loaded due to an error condition not listed above.

 The ‘retrieving’ and ‘compiling’ states are transient states
 which will either lead to one of the error states or the
 ‘enabled’ state. The ‘disabled’ and ‘editing’ states are
 administrative states which are only reached by explicit
 management operations.

 All launch table entries that refer to this script table
 entry shall have an smLaunchOperStatus value of ‘disabled’
 when the value of this object is not ‘enabled’."
 DEFVAL { disabled }
 ::= { smScriptEntry 7 }

 smScriptStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this row and the script
 controlled by this row are kept in volatile storage and
 lost upon reboot or if this row is backed up by
 non-volatile or permanent storage.

 The script controlled by this row is written into local
 non-volatile storage if the following condition becomes
 true:

 (a) the URL contained in the smScriptSource object is empty
 and
 (b) the smScriptStorageType is ‘nonVolatile’
 and
 (c) the smScriptOperStatus is ‘enabled’

 Setting this object to ‘volatile’ removes a script from
 non-volatile storage if the script controlled by this row
 has been in non-volatile storage before. Attempts to set
 this object to permanent will always fail with an
 inconsistentValue error.

 The value of smScriptStorageType is only meaningful if the

Levi & Schoenwaelder Standards Track [Page 21]

RFC 2592 Script MIB May 1999

 value of the corresponding RowStatus object is ‘active’.

 If smScriptStorageType has the value permanent(4), then all
 objects whose MAX-ACCESS value is read-create must be
 writable, with the exception of the smScriptStorageType and
 smScriptRowStatus objects, which shall be read-only."
 DEFVAL { volatile }
 ::= { smScriptEntry 8 }

 smScriptRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A control that allows entries to be added and removed from
 this table.

 Changing the smScriptRowStatus from ‘active’ to ‘notInService’
 will remove the associated script from the runtime system.
 The value of smScriptOperStatus will be reset to ‘disabled’.

 Deleting conceptual rows from this table includes the
 deletion of all resources associated with this row. This
 implies that a script stored in non-volatile storage is
 removed from non-volatile storage.

 An entry may not exist in the ‘active’ state unless all
 required objects in the entry have appropriate values. Rows
 that are not complete or not in service are not known by the
 script runtime system.

 Attempts to ‘destroy’ a row or to set a row ‘notInService’
 while the script is executing will result in an
 inconsistentValue error.

 Attempts to ‘destroy’ a row or to set a row ‘notInService’
 where the value of the smScriptStorageType object is
 ‘permanent’ or ‘readOnly’ will result in an
 inconsistentValue error."
 ::= { smScriptEntry 9 }

 --
 -- Access to script code via SNMP
 --
 -- The smCodeTable allows script code to be read and modified
 -- via SNMP.
 --

Levi & Schoenwaelder Standards Track [Page 22]

RFC 2592 Script MIB May 1999

 smCodeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmCodeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table contains the script code for scripts that are
 written via SNMP write operations."
 ::= { smScriptObjects 2 }

 smCodeEntry OBJECT-TYPE
 SYNTAX SmCodeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular fragment of a script."
 INDEX { smScriptOwner, smScriptName, smCodeIndex }
 ::= { smCodeTable 1 }

 SmCodeEntry ::= SEQUENCE {
 smCodeIndex Unsigned32,
 smCodeText OCTET STRING,
 smCodeRowStatus RowStatus
 }

 smCodeIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The index value identifying this code fragment."
 ::= { smCodeEntry 1 }

 smCodeText OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (1..1024))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The code that makes up a fragment of a script. The format
 of this code fragment depends on the script language which
 is identified by the associated smScriptLanguage object."
 ::= { smCodeEntry 2 }

 smCodeRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A control that allows entries to be added and removed from

Levi & Schoenwaelder Standards Track [Page 23]

RFC 2592 Script MIB May 1999

 this table."
 ::= { smCodeEntry 3 }

 --
 -- Script execution.
 --
 -- This group defines tables which allow script execution to be
 -- initiated, suspended, resumed, and terminated. It also provides
 -- a mechanism for keeping a history of recent script executions
 -- and their results.
 --

 smRunObjects OBJECT IDENTIFIER ::= { smObjects 4 }

 smLaunchTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmLaunchEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table lists and describes scripts that are ready
 to be executed together with their parameters."
 ::= { smRunObjects 1 }

 smLaunchEntry OBJECT-TYPE
 SYNTAX SmLaunchEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular executable script."
 INDEX { smLaunchOwner, smLaunchName }
 ::= { smLaunchTable 1 }

 SmLaunchEntry ::= SEQUENCE {
 smLaunchOwner SnmpAdminString,
 smLaunchName SnmpAdminString,
 smLaunchScriptOwner SnmpAdminString,
 smLaunchScriptName SnmpAdminString,
 smLaunchArgument OCTET STRING,
 smLaunchMaxRunning Unsigned32,
 smLaunchMaxCompleted Unsigned32,
 smLaunchLifeTime TimeInterval,
 smLaunchExpireTime TimeInterval,
 smLaunchStart Integer32,
 smLaunchControl INTEGER,
 smLaunchAdminStatus INTEGER,
 smLaunchOperStatus INTEGER,
 smLaunchRunIndexNext Integer32,
 smLaunchStorageType StorageType,

Levi & Schoenwaelder Standards Track [Page 24]

RFC 2592 Script MIB May 1999

 smLaunchRowStatus RowStatus
 }

 smLaunchOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

 "The manager who owns this row in the smLaunchTable. Every
 instance of a running script started from a particular entry
 in the smLaunchTable (i.e. entries in the smRunTable) will be
 owned by the same smLaunchOwner used to index the entry in
 the smLaunchTable. This owner is not necessarily the same as
 the owner of the script itself (smLaunchScriptOwner)."
 ::= { smLaunchEntry 1 }

 smLaunchName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally-unique, administratively assigned name for this
 launch table entry. This object allows an smLaunchOwner to
 have multiple entries in the smLaunchTable. The smLaunchName
 is an arbitrary name that must be different from any other
 smLaunchTable entries with the same smLaunchOwner but can be
 the same as other entries in the smLaunchTable with different
 smLaunchOwner values. Note that the value of smLaunchName
 is not related in any way to the name of the script being
 launched."
 ::= { smLaunchEntry 2 }

 smLaunchScriptOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object in combination with the value of
 smLaunchScriptName identifies the script that can be
 launched from this smLaunchTable entry. Attempts to write
 this object will fail with an inconsistentValue error if
 the value of smLaunchOperStatus is ‘enabled’."
 ::= { smLaunchEntry 3 }

 smLaunchScriptName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-create

Levi & Schoenwaelder Standards Track [Page 25]

RFC 2592 Script MIB May 1999

 STATUS current
 DESCRIPTION
 "The value of this object in combination with the value of
 the smLaunchScriptOwner identifies the script that can be
 launched from this smLaunchTable entry. Attempts to write
 this objects will fail with an inconsistentValue error if
 the value of smLaunchOperStatus is ‘enabled’."
 ::= { smLaunchEntry 4 }

 smLaunchArgument OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The argument supplied to the script. When a script is
 invoked, the value of this object is used to initialize
 the smRunArgument object."
 DEFVAL { ’’H }
 ::= { smLaunchEntry 5 }

 smLaunchMaxRunning OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The maximum number of concurrently running scripts that may
 be invoked from this entry in the smLaunchTable. Lowering the
 current value of this object does not affect any scripts that
 are already executing."
 DEFVAL { 1 }
 ::= { smLaunchEntry 6 }

 smLaunchMaxCompleted OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The maximum number of finished scripts invoked from this
 entry in the smLaunchTable allowed to be retained in the
 smRunTable. Whenever the value of this object is changed
 and whenever a script terminates, entries in the smRunTable
 are deleted if necessary until the number of completed
 scripts is smaller than the value of this object. Scripts
 whose smRunEndTime value indicates the oldest completion
 time are deleted first."
 DEFVAL { 1 }
 ::= { smLaunchEntry 7 }

Levi & Schoenwaelder Standards Track [Page 26]

RFC 2592 Script MIB May 1999

 smLaunchLifeTime OBJECT-TYPE
 SYNTAX TimeInterval
 UNITS "centi-seconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The default maximum amount of time a script launched
 from this entry may run. The value of this object is used
 to initialize the smRunLifeTime object when a script is
 launched. Changing the value of an smLaunchLifeTime
 instance does not affect scripts previously launched from
 this entry."
 DEFVAL { 360000 }
 ::= { smLaunchEntry 8 }

 smLaunchExpireTime OBJECT-TYPE
 SYNTAX TimeInterval
 UNITS "centi-seconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The default maximum amount of time information about a
 script launched from this entry is kept in the smRunTable
 after the script has completed execution. The value of
 this object is used to initialize the smRunExpireTime
 object when a script is launched. Changing the value of an
 smLaunchExpireTime instance does not affect scripts
 previously launched from this entry."
 DEFVAL { 360000 }
 ::= { smLaunchEntry 9 }

 smLaunchStart OBJECT-TYPE
 SYNTAX Integer32 (0..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object is used to start the execution of scripts.
 When retrieved, the value will be the value of smRunIndex
 for the last script that started execution by manipulating
 this object. The value will be zero if no script started
 execution yet.

 A script is started by setting this object to an unused
 smRunIndex value. A new row in the smRunTable will be
 created which is indexed by the value supplied by the
 set-request in addition to the value of smLaunchOwner and
 smLaunchName. An unused value can be obtained by reading
 the smLaunchRunIndexNext object.

Levi & Schoenwaelder Standards Track [Page 27]

RFC 2592 Script MIB May 1999

 Setting this object to the special value 0 will start
 the script with a self-generated smRunIndex value. The
 consequence is that the script invoker has no reliable
 way to determine the smRunIndex value for this script
 invocation and that the invoker has therefore no way
 to obtain the results from this script invocation. The
 special value 0 is however useful for scheduled script
 invocations.

 If this object is set, the following checks must be
 performed:

 1) The value of the smLaunchOperStatus object in this
 entry of the smLaunchTable must be ‘enabled’.
 2) The values of smLaunchScriptOwner and
 smLaunchScriptName of this row must identify an
 existing entry in the smScriptTable.
 3) The value of smScriptOperStatus of this entry must
 be ‘enabled’.
 4) The principal performing the set operation must have
 read access to the script. This must be checked by
 calling the isAccessAllowed abstract service interface
 defined in RFC 2271 on the row in the smScriptTable
 identified by smLaunchScriptOwner and smLaunchScriptName.
 The isAccessAllowed abstract service interface must be
 called on all columnar objects in the smScriptTable with
 a MAX-ACCESS value different than ‘not-accessible’. The
 test fails as soon as a call indicates that access is
 not allowed.
 5) If the value provided by the set operation is not 0,
 a check must be made that the value is currently not
 in use. Otherwise, if the value provided by the set
 operation is 0, a suitable unused value must be
 generated.
 6) The number of currently executing scripts invoked
 from this smLaunchTable entry must be less than
 smLaunchMaxRunning.

 Attempts to start a script will fail with an
 inconsistentValue error if one of the checks described
 above fails.

 Otherwise, if all checks have been passed, a new entry
 in the smRunTable will be created indexed by smLaunchOwner,
 smLaunchName and the new value for smRunIndex. The value
 of smLaunchArgument will be copied into smRunArgument,
 the value of smLaunchLifeTime will be copied to
 smRunLifeTime, and the value of smLaunchExpireTime

Levi & Schoenwaelder Standards Track [Page 28]

RFC 2592 Script MIB May 1999

 will be copied to smRunExpireTime.

 The smRunStartTime will be set to the current time and
 the smRunState will be set to ‘initializing’ before the
 script execution is initiated in the appropriate runtime
 system.

 Note, the data type and the range of this object must
 be consistent with the smRunIndex object. Since this
 object might be written from the scheduling MIB, the
 data type Integer32 rather than Unsigned32 is used."
 DEFVAL { 0 }
 ::= { smLaunchEntry 10 }

 smLaunchControl OBJECT-TYPE
 SYNTAX INTEGER {
 abort(1),
 suspend(2),
 resume(3),
 nop(4)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object is used to request a state change for all
 running scripts in the smRunTable that were started from
 this row in the smLaunchTable.

 Setting this object to abort(1), suspend(2) or resume(3)
 will set the smRunControl object of all applicable rows
 in the smRunTable to abort(1), suspend(2) or resume(3)
 respectively. The phrase ‘applicable rows’ means the set of
 rows which were created from this entry in the smLaunchTable
 and whose value of smRunState allows the corresponding
 state change as described in the definition of the
 smRunControl object. Setting this object to nop(4) has no
 effect."
 DEFVAL { nop }
 ::= { smLaunchEntry 11 }

 smLaunchAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1),
 disabled(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

Levi & Schoenwaelder Standards Track [Page 29]

RFC 2592 Script MIB May 1999

 "The value of this object indicates the desired status of
 this launch table entry."
 DEFVAL { disabled }
 ::= { smLaunchEntry 12 }

 smLaunchOperStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1),
 disabled(2)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object indicates the actual status of
 this launch table entry. An ‘enabled’ launch table
 entry can be used to start scripts while a ‘disabled’
 launch table entry will refuse any attempts to start
 scripts. The value ‘enabled’ requires that the
 smLaunchRowStatus object is active. The value
 ‘disabled’ requires that there are no entries in the
 smRunTable associated with this smLaunchTable entry."
 DEFVAL { disabled }
 ::= { smLaunchEntry 13 }

 smLaunchRunIndexNext OBJECT-TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This variable is used for creating rows in the smRunTable.
 The value of this variable is a currently unused value
 for smRunIndex, which can be written into the smLaunchStart
 object associated with this row to launch a script.

 The value returned when reading this variable must be unique
 for the smLaunchOwner and smLauchName associated with this
 row. Subsequent attempts to read this variable must return
 different values.

 This variable will return the special value 0 if no new rows
 can be created.

 Note, the data type and the range of this object must be
 consistent with the definition of smRunIndex."
 ::= { smLaunchEntry 14 }

 smLaunchStorageType OBJECT-TYPE
 SYNTAX StorageType

Levi & Schoenwaelder Standards Track [Page 30]

RFC 2592 Script MIB May 1999

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines if this row is kept in volatile storage
 and lost upon reboot or if this row is backed up by stable
 storage.

 The value of smLaunchStorageType is only meaningful if the
 value of the corresponding RowStatus object is active.

 If smLaunchStorageType has the value permanent(4), then all
 objects whose MAX-ACCESS value is read-create must be
 writable, with the exception of the smLaunchStorageType and
 smLaunchRowStatus objects, which shall be read-only."
 DEFVAL { volatile }
 ::= { smLaunchEntry 15 }

 smLaunchRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A control that allows entries to be added and removed from
 this table.

 Attempts to ‘destroy’ a row or to set a row ‘notInService’
 while scripts started from this launch table entry are
 running will result in an inconsistentValue error.

 Attempts to ‘destroy’ a row or to set a row ‘notInService’
 where the value of the smLaunchStorageType object is
 ‘permanent’ or ‘readOnly’ will result in an
 inconsistentValue error."
 ::= { smLaunchEntry 16 }

 smRunTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmRunEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table lists and describes scripts that are currently
 running or have been running in the past."
 ::= { smRunObjects 2 }

 smRunEntry OBJECT-TYPE
 SYNTAX SmRunEntry
 MAX-ACCESS not-accessible

Levi & Schoenwaelder Standards Track [Page 31]

RFC 2592 Script MIB May 1999

 STATUS current
 DESCRIPTION
 "An entry describing a particular running or finished
 script."
 INDEX { smLaunchOwner, smLaunchName, smRunIndex }
 ::= { smRunTable 1 }

 SmRunEntry ::= SEQUENCE {
 smRunIndex Integer32,
 smRunArgument OCTET STRING,
 smRunStartTime DateAndTime,
 smRunEndTime DateAndTime,
 smRunLifeTime TimeInterval,
 smRunExpireTime TimeInterval,
 smRunExitCode INTEGER,
 smRunResult OCTET STRING,
 smRunControl INTEGER,
 smRunState INTEGER,
 smRunError SnmpAdminString
 }

 smRunIndex OBJECT-TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this running or finished script. This value must be
 unique for all rows in the smRunTable with the same
 smLaunchOwner and smLaunchName.

 Note, the data type and the range of this object must be
 consistent with the definition of smLaunchRunIndexNext
 and smLaunchStart."
 ::= { smRunEntry 1 }

 smRunArgument OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The argument supplied to the script when it started."
 DEFVAL { ’’H }
 ::= { smRunEntry 2 }

 smRunStartTime OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only

Levi & Schoenwaelder Standards Track [Page 32]

RFC 2592 Script MIB May 1999

 STATUS current
 DESCRIPTION
 "The date and time when the execution started. The value
 ’0000000000000000’H is returned if the script has not
 started yet."
 DEFVAL { ’0000000000000000’H }
 ::= { smRunEntry 3 }

 smRunEndTime OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The date and time when the execution terminated. The value
 ’0000000000000000’H is returned if the script has not
 terminated yet."
 DEFVAL { ’0000000000000000’H }
 ::= { smRunEntry 4 }

 smRunLifeTime OBJECT-TYPE
 SYNTAX TimeInterval
 UNITS "centi-seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object specifies how long the script can execute.
 This object returns the remaining time that the script
 may run. The object is initialized with the value of the
 associated smLaunchLifeTime object and ticks backwards.
 The script is aborted immediately when the value reaches 0.

 The value of this object may be set in order to increase or
 reduce the remaining time that the script may run. Setting
 this value to 0 will abort script execution immediately,
 and, if the value of smRunExpireTime is also 0, will remove
 this entry from the smRunTable once it has terminated.

 The value of smRunLifeTime reflects the real-time execution
 time as seen by the outside world. The value of this object
 will always be 0 for a script that finished execution, that
 is smRunState has the value ‘terminated’.

 The value of smRunLifeTime does not change while a script
 is suspended, that is smRunState has the value ‘suspended’.
 Note, this does not affect set operations. It is legal to
 modify smRunLifeTime via set operations while a script is
 suspended."
 ::= { smRunEntry 5 }

Levi & Schoenwaelder Standards Track [Page 33]

RFC 2592 Script MIB May 1999

 smRunExpireTime OBJECT-TYPE
 SYNTAX TimeInterval
 UNITS "centi-seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This value specifies how long this row can exist in the
 smRunTable after the script has terminated. This object
 returns the remaining time that the row may exist before it
 is aged out. The object is initialized with the value of the
 associated smLaunchExpireTime object and ticks backwards. The
 entry in the smRunTable is destroyed when the value reaches 0
 and the smRunState has the value ‘terminated’.

 The value of this object may be set in order to increase or
 reduce the remaining time that the row may exist. Setting
 the value to 0 will destroy this entry as soon as the
 smRunState has the value ‘terminated’."
 ::= { smRunEntry 6 }

 smRunExitCode OBJECT-TYPE
 SYNTAX INTEGER {
 noError(1),
 halted(2),
 lifeTimeExceeded(3),
 noResourcesLeft(4),
 languageError(5),
 runtimeError(6),
 invalidArgument(7),
 securityViolation(8),
 genericError(9)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object indicates the reason why a
 script finished execution. The smRunExitCode code may have
 one of the following values:

 - ‘noError’, which indicates that the script completed
 successfully without errors;

 - ‘halted’, which indicates that the script was halted
 by a request from an authorized manager;

 - ‘lifeTimeExceeded’, which indicates that the script
 exited because a time limit was exceeded;

Levi & Schoenwaelder Standards Track [Page 34]

RFC 2592 Script MIB May 1999

 - ‘noResourcesLeft’, which indicates that the script
 exited because it ran out of resources (e.g. memory);

 - ‘languageError’, which indicates that the script exited
 because of a language error (e.g. a syntax error in an
 interpreted language);

 - ‘runtimeError’, which indicates that the script exited
 due to a runtime error (e.g. a division by zero);

 - ‘invalidArgument’, which indicates that the script could
 not be run because of invalid script arguments;

 - ‘securityViolation’, which indicates that the script
 exited due to a security violation;

 - ‘genericError’, which indicates that the script exited
 for an unspecified reason.

 If the script has not yet begun running, or is currently
 running, the value will be ‘noError’."
 DEFVAL { noError }
 ::= { smRunEntry 7 }

 smRunResult OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The result value produced by the running script. Note that
 the result may change while the script is executing."
 DEFVAL { ’’H }
 ::= { smRunEntry 8 }

 smRunControl OBJECT-TYPE
 SYNTAX INTEGER {
 abort(1),
 suspend(2),
 resume(3),
 nop(4)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The value of this object indicates the desired status of the
 script execution defined by this row.

 Setting this object to ‘abort’ will abort execution if the

Levi & Schoenwaelder Standards Track [Page 35]

RFC 2592 Script MIB May 1999

 value of smRunState is ‘initializing’, ‘executing’,
 ‘suspending’, ‘suspended’ or ‘resuming’. Setting this object
 to ‘abort’ when the value of smRunState is ‘aborting’ or
 ‘terminated’ will result in an inconsistentValue error.

 Setting this object to ‘suspend’ will suspend execution
 if the value of smRunState is ‘executing’. Setting this
 object to ‘suspend’ will cause an inconsistentValue error
 if the value of smRunState is not ‘executing’.

 Setting this object to ‘resume’ will resume execution
 if the value of smRunState is ‘suspending’ or
 ‘suspended’. Setting this object to ‘resume’ will cause an
 inconsistentValue error if the value of smRunState is
 not ‘suspending’ or ‘suspended’.

 Setting this object to nop(4) has no effect."
 DEFVAL { nop }
 ::= { smRunEntry 9 }

 smRunState OBJECT-TYPE
 SYNTAX INTEGER {
 initializing(1),
 executing(2),
 suspending(3),
 suspended(4),
 resuming(5),
 aborting(6),
 terminated(7)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object indicates the script’s execution
 status. If the script has been invoked but has not yet
 begun execution, the value will be ‘initializing’. If the
 script is running, the value will be ‘executing’. A script
 which received a request to suspend execution but which
 did not actually suspend execution will be ‘suspending’.
 A script which has suspended execution will be ‘suspended’.
 A script which received a request to resume execution but
 which is not yet running is ‘resuming’. The resuming state
 will finally lead to the ‘executing’ state. A script which
 received a request to abort execution but which is still
 running is ‘aborting’. A script which stopped execution
 is ‘terminated’."
 ::= { smRunEntry 10 }

Levi & Schoenwaelder Standards Track [Page 36]

RFC 2592 Script MIB May 1999

 smRunError OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This contains a descriptive error message if the script
 terminates in an abnormally. An implementation must store a
 descriptive error message in this object if the script exits
 with the smRunExitCode ‘genericError’.

 The value of this object is the zero-length string as long
 as the smRunExitCode has the value ‘noError’"
 DEFVAL { ’’H }
 ::= { smRunEntry 11 }

 --
 -- Notifications. The definition of smTraps makes notification
 -- registrations reversible (see STD 58, RFC 2578).
 --

 smTraps OBJECT IDENTIFIER ::= { smNotifications 0 }

 smScriptAbort NOTIFICATION-TYPE
 OBJECTS { smRunExitCode, smRunEndTime, smRunError }
 STATUS current
 DESCRIPTION
 "This notification is generated whenever a running script
 terminates with an smRunExitCode unequal to ‘noError’."
 ::= { smTraps 1 }

 smScriptResult NOTIFICATION-TYPE
 OBJECTS { smRunResult }
 STATUS current
 DESCRIPTION
 "This notification can be used by scripts to notify other
 management applications about script results. It can be
 used to notify managers about a script result.

 This notification is not automatically generated by the
 script MIB implementation. It is the responsibility of
 the executing script to emit this notification where it
 is appropriate to do so."
 ::= { smTraps 2 }

 -- conformance information
 smCompliances OBJECT IDENTIFIER ::= { smConformance 1 }
 smGroups OBJECT IDENTIFIER ::= { smConformance 2 }

Levi & Schoenwaelder Standards Track [Page 37]

RFC 2592 Script MIB May 1999

 -- compliance statements

 smCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which implement
 the script MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 smLanguageGroup, smScriptGroup, smLaunchGroup, smRunGroup
 }
 GROUP smCodeGroup
 DESCRIPTION
 "The smCodeGroup is mandatory only for those implementations
 that support the downloading of scripts via SNMP."
 OBJECT smScriptSource
 MIN-ACCESS read-only
 DESCRIPTION
 "The smScriptSource object is read-only for implementations
 that are not able to download script code from a URL."
 OBJECT smLaunchArgument
 DESCRIPTION
 "A compliant implementation has to support a minimum size
 for smLaunchArgument of 255 octets."
 OBJECT smRunArgument
 DESCRIPTION
 "A compliant implementation has to support a minimum size
 for smRunArgument of 255 octets."
 OBJECT smRunResult
 DESCRIPTION
 "A compliant implementation has to support a minimum size
 for smRunResult of 255 octets."
 OBJECT smRunState
 DESCRIPTION
 "A compliant implementation does not have to support script
 suspension and the smRunState ‘suspended’. Such an
 implementation will change into the ‘suspending’ state
 when the smRunControl is set to ‘suspend’ and remain in this
 state until smRunControl is set to ‘resume’ or the script
 terminates."
 ::= { smCompliances 1 }

 smLanguageGroup OBJECT-GROUP
 OBJECTS {
 smLangLanguage,
 smLangVersion,
 smLangVendor,
 smLangRevision,

Levi & Schoenwaelder Standards Track [Page 38]

RFC 2592 Script MIB May 1999

 smLangDescr,
 smExtsnExtension,
 smExtsnVersion,
 smExtsnVendor,
 smExtsnRevision,
 smExtsnDescr
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing information about the
 capabilities of the scripting engine."
 ::= { smGroups 1 }

 smScriptGroup OBJECT-GROUP
 OBJECTS {
 smScriptDescr,
 smScriptLanguage,
 smScriptSource,
 smScriptAdminStatus,
 smScriptOperStatus,
 smScriptStorageType,
 smScriptRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing information about
 installed scripts."
 ::= { smGroups 2 }

 smCodeGroup OBJECT-GROUP
 OBJECTS {
 smCodeText,
 smCodeRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects used to download or modify scripts
 by using SNMP set requests."
 ::= { smGroups 3 }

 smLaunchGroup OBJECT-GROUP
 OBJECTS {
 smLaunchScriptOwner,
 smLaunchScriptName,
 smLaunchArgument,
 smLaunchMaxRunning,
 smLaunchMaxCompleted,
 smLaunchLifeTime,

Levi & Schoenwaelder Standards Track [Page 39]

RFC 2592 Script MIB May 1999

 smLaunchExpireTime,
 smLaunchStart,
 smLaunchControl,
 smLaunchAdminStatus,
 smLaunchOperStatus,
 smLaunchRunIndexNext,
 smLaunchStorageType,
 smLaunchRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing information about scripts
 that can be launched."
 ::= { smGroups 4 }

 smRunGroup OBJECT-GROUP
 OBJECTS {
 smRunArgument,
 smRunStartTime,
 smRunEndTime,
 smRunLifeTime,
 smRunExpireTime,
 smRunExitCode,
 smRunResult,
 smRunState,
 smRunControl,
 smRunError
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing information about running
 scripts."
 ::= { smGroups 5 }

 smNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 smScriptAbort,
 smScriptResult
 }
 STATUS current
 DESCRIPTION
 "The notifications emitted by the script MIB."
 ::= { smGroups 6 }

 END

Levi & Schoenwaelder Standards Track [Page 40]

RFC 2592 Script MIB May 1999

7. Usage Examples

 This section presents some examples that explain how a manager can
 use the Script MIB defined in this memo. The purpose of these
 examples is to explain the steps that are normally used to delegate
 management scripts.

7.1. Pushing a script via SNMP

 This example explains the steps performed by a manager to push a
 script into a distributed manager.

 1. The manager first checks the smLanguageTable and the
 smExtensionTable in order to select the appropriate script or
 language.

 2. The manager creates a row in the smScriptTable by issuing an
 SNMP set-request. The smScriptRowStatus object is set to
 ‘createAndWait’ and the smScriptSource object is set to an empty
 string. The smScriptLanguage object is set to the language in
 which the script was written. The smScriptStorageType object is
 set to ‘volatile’ to indicate that the script will be loaded via
 the smCodeTable. The smScriptOwner is set to a string which
 identifies the principal who owns the new row. The smScriptName
 defines the administratively assigned unique name for the
 script.

 3. The manager sets the smScriptRowStatus object to ‘active’ and
 the smScriptAdminStatus object to ‘editing’.

 4. The manager pushes the script to the distributed manager by
 issuing a couple of SNMP set-requests to fill the smCodeTable.

 5. Once the whole script has been transferred, the manager sends a
 set-request to set the smScriptAdminStatus object to ‘enabled’.
 The Script MIB implementation now makes the script accessible to
 the runtime system. This might include the compilation of the
 script if the language requires a compilation step.

 6. The manager polls the smScriptOperStatus object until the value
 is either ‘enabled’ or one of the error status codes. The
 script can only be used if the value of smScriptOperStatus is
 ‘enabled’.

 7. If the manager wants to store the script in local non-volatile
 storage, it should send a set-request which changes the
 smScriptStorageType object to ‘nonVolatile’.

Levi & Schoenwaelder Standards Track [Page 41]

RFC 2592 Script MIB May 1999

7.2. Pulling a script from a URL

 This example explains the steps performed by a manager to cause a
 distributed manager to pull a script from a URL.

 1. The manager first checks the smLanguageTable and the
 smExtensionTable in order to select the appropriate script or
 language.

 2. The manager creates a row in the smScriptTable by issuing an
 SNMP set-request. The smScriptRowStatus object is set to
 ‘createAndWait’ and the smScriptSource object is set to the URL
 which points to the script source. The smScriptLanguage object
 is set to the language in which the script was written. The
 smScriptOwner is set to a string which identifies the principal
 who owns the new row. The smScriptName defines the
 administratively assigned unique name for the script.

 3. The manager sets the smScriptRowStatus object to ‘active’.

 4. The manager sends a set-request to set the smScriptAdminStatus
 object to ‘enabled’. The Script MIB implementation now makes the
 script accessible to the runtime system. This causes a retrieval
 operation to pull the script from the URL stored in
 smScriptSource. This retrieval operation might be followed by a
 compile operation if the language requires a compilation step.

 5. The manager polls the smScriptOperStatus object until the value
 is either ‘enabled’ or one of the error status codes. The
 script can only be used if the value of smScriptOperStatus is
 ‘enabled’.

 6. If the manager wants to store the script in local non-volatile
 storage, it should send a set-request which changes the
 smScriptStorageType object to ‘nonVolatile’.

7.3. Modifying an existing script

 This section explains how a manager can modify a script by sending
 SNMP set-requests.

 1. First, the script is de-activated by setting the
 smScriptAdminStatus to ‘disabled’.

 2. The manager polls the smScriptOperStatus object until the value
 is ‘disabled’.

Levi & Schoenwaelder Standards Track [Page 42]

RFC 2592 Script MIB May 1999

 3. The manager sets smScriptSource to an empty string and
 smScriptAdminStatus to ‘editing’. This makes the script source
 available in the smCodeTable.

 4. The manager polls the smScriptOperStatus object until the value
 is ‘editing’.

 5. The manager sends SNMP set-requests to modify the script in the
 smCodeTable.

 6. The manager sends a set-request to set the smScriptAdminStatus
 object to ‘enabled’. The Script MIB implementation now makes the
 script accessible to the runtime system. This might include the
 compilation of the script if the language requires a compilation
 step.

 7. The manager polls the smScriptOperStatus object until the value
 is either ‘enabled’ or one of the error status codes. The
 script can only be used if the value of smScriptOperStatus is
 ‘enabled’.

7.4. Removing an existing script

 This section explains how a manager can remove a script from a
 distributed manager.

 1. First, the manager sets the smScriptAdminStatus to ‘disabled’.
 This will ensure that no new scripts can be started while
 running scripts finish their execution.

 2. The manager polls the smScriptOperStatus object until the value
 is ‘disabled’.

 3. The manager sends an SNMP set-request to change the
 smScriptRowStatus object to ‘destroy’. This will remove the row
 and all associated resources from the Script MIB implementation.

7.5. Creating a launch button

 This section explains how a manager can create a launch button for
 starting a script.

 1. The manager, who is identified by an smLaunchOwner value, first
 chooses a name for the new row in the smLaunchTable. The manager
 sends an SNMP set-request to set the smLaunchRowStatus object
 for this smLaunchOwner and smLaunchName to ‘createAndWait’.

Levi & Schoenwaelder Standards Track [Page 43]

RFC 2592 Script MIB May 1999

 2. The manager fills the new smLaunchTable row with all required
 parameters. The smLaunchScriptOwner and smLaunchScriptName
 values point to the script that should be started from this
 launch button.

 3. The manager sends a set-request to change smLaunchAdminStatus to
 ‘enabled’ once the new smLaunchTable row is complete.

 4. The manager polls the smLaunchOperStatus object until the value
 is ‘enabled’.

7.6. Launching a script

 This section explains the suggested way to launch a script from a
 given launch button.

 1. The manager first retrieves the value of smLaunchRunIndexNext
 from the launch button selected to start the script.

 2. The manager sends an SNMP set-request to set the smLaunchStart
 object to the value obtained in step 1. This will launch the
 script if all necessary pre-conditions are satisfied (see the
 definition of smLaunchStart for more details). The manager can
 also provide the smLaunchArgument in the same set-request that
 is used to start the script. Upon successful start, a new row
 will be created in the smRunTable indexed by smLaunchOwner,
 smLaunchName and the value written to smLaunchStart.

 Note, the first step is not required. A manager can also try to guess
 an unused value for smRunIndex if he wants to start script in a
 single transaction. A manager can also use the special value 0 if he
 does not care about the results produced by the script.

7.7. Terminating a script

 This section explains two ways to terminate a running script. The
 first approach is as follows:

 1. The manager sets the smRunControl object of the running script
 or the smLaunchControl object of the launch button used to start
 the running script to ‘abort’. Setting smLaunchControl will
 abort all running scripts started from the launch button while
 smRunControl will only abort the running script associated with
 the smRunControl instance.

Levi & Schoenwaelder Standards Track [Page 44]

RFC 2592 Script MIB May 1999

 The second way to terminate a script is to set the smRunLifeTime to
 zero which causes the runtime system to terminate the script with a
 ‘lifeTimeExceeded’ exit code:

 1. The manager changes the value of smRunLifeTime to 0. This causes
 the Script MIB implementation to abort the script because the
 remaining life time has expired.

 Note, changing the smRunLifeTime value can also be used to increase
 the permitted lifetime of a running script. For example, a manager
 can choose to set smRunLifeTime to a small fixed time interval and
 increase the value periodically. This strategy has the nice effect
 that scripts terminate automatically if the manager loses contact
 with the Script MIB engine.

7.8. Removing a launch button

 This section explains how a manager can remove a launch button from a
 distributed manager.

 1. First, the manager sets the smLaunchAdminStatus to
 ‘disabled’. This will ensure that no new scripts can be started
 from this launch button while running script will finish their
 execution.

 2. The manager polls the smLaunchOperStatus object until the value
 is ‘disabled’.

 3. The manager sends an SNMP set-request to change the
 smLaunchRowStatus object to ‘destroy’. This will remove the row
 and all associated resources from the Script MIB implementation.

8. VACM Configuration Examples

 This section shows how the view-based access control model defined in
 RFC 2275 [15] can be configured to control access to the script MIB.

8.1. Sandbox for guests

 The first example demonstrates how to configure VACM to give the
 members of the VACM group "guest" limited access to the script MIB.
 The MIB views defined below give the members of the "guest" group a
 sandbox where they can install and start their own scripts, but not
 access any other scripts maintained by the Script MIB implementation.

 vacmAccessReadView."guest"."".usm.authNoPriv = "guestReadView"
 vacmAccessWriteView."guest"."".usm.authNoPriv = "guestWriteView"

Levi & Schoenwaelder Standards Track [Page 45]

RFC 2592 Script MIB May 1999

 The guestReadView grants read access to the smLangTable, the
 smExtsnTable and to all the table entries owned by "guest":

 guestReadView:
 smLangTable (included)
 smExtsnTable (included)
 smScriptObjects.*.*.*."guest" (included)
 smRunObjects.*.*.*."guest" (included)

 The guestWriteView grants write access to all the table entries owned
 by "guest":

 guestWriteView:
 smScriptObjects.*.*.*."guest" (included)
 smRunObjects.*.*.*."guest" (included)

8.2. Sharing scripts

 This example demonstrates how VACM can be used to share a repository
 of scripts between the members of the "senior" and the members of the
 "junior" VACM group:

 vacmAccessReadView."junior"."".usm.authNoPriv = "juniorReadView"
 vacmAccessWriteView."junior"."".usm.authNoPriv = "juniorWriteView"

 juniorReadView:
 smLangTable (included)
 smExtsnTable (included)
 smScriptObjects.*.*.*."junior" (included)
 smRunObjects.*.*.*."junior" (included)
 smScriptObjects.*.*.*."utils" (included)

 juniorWriteView:
 smScriptObjects.*.*.*."junior" (included)
 smRunObjects.*.*.*."junior" (included)

 The definitions above allow the members of the "junior" VACM group to
 start the scripts owned by "utils" in addition to the script the
 members of the "junior" VACM group installed themself. This is
 accomplished by giving the members of "junior" read access to scripts
 in "utils". This allows members of "junior" to create entries in the
 smLauchTable which refer to scripts in "utils", and to launch those
 scripts using these entries in the smLaunchTable.

Levi & Schoenwaelder Standards Track [Page 46]

RFC 2592 Script MIB May 1999

 vacmAccessReadView."senior"."".usm.authNoPriv = "seniorReadView"
 vacmAccessWriteView."senior"."".usm.authNoPriv = "seniorWriteView"

 seniorReadView:
 smLangTable (included)
 smExtsnTable (included)
 smScriptObjects.*.*.*."senior" (included)
 smRunObjects.*.*.*."senior" (included)
 smScriptObjects.*.*.*."utils" (included)

 seniorWriteView:
 smScriptObjects.*.*.*."senior" (included)
 smRunObjects.*.*.*."senior" (included)
 smScriptObjects.*.*.*."utils" (included)

 The definitions for the members of the "senior" VACM group allow to
 start the scripts owned by "utils" in addition to the script the
 members of the "senior" VACM group installed themself. The third
 write access rule in the seniorWriteView also grants the permission
 to install scripts owned by "utils". The members of the "senior" VACM
 group therefore have the permissions to install and modify scripts
 that can be called by the members of the "junior" VACM group.

8.3. Emergency scripts

 This example demonstrates how VACM can be used to allow the members
 of the "junior" VACM group to launch scripts that are executed with
 the permissions associated with the "emergency" owner. This works by
 adding the following rules to the juniorReadView and the
 juniorWriteView:

 juniorReadView:
 smScriptObjects.*.*.*."emergency" (included)
 smRunObjects.*.*.*."emergency" (included)

 juniorWriteView
 smLaunchStart."emergency" (included)
 smLaunchArgument."emergency" (included)

 The rules added to the juniorReadView grant read access to the
 scripts, the launch buttons and the results owned by "emergency". The
 rules added to the juniorWriteView grant write permissions to the
 smLaunchStart and smLaunchArgument variables ownded by "emergency".
 Members of the "junior" VACM group can therefore start scripts that
 will execute under the owner "emergency".

Levi & Schoenwaelder Standards Track [Page 47]

RFC 2592 Script MIB May 1999

 seniorReadView:
 smScriptObjects.*.*.*."emergency" (included)
 smRunObjects.*.*.*."emergency" (included)

 seniorWriteView:
 smScriptObjects.*.*.*."emergency" (included)
 smRunObjects.*.*.*."emergency" (included)

 The rules added to the seniorReadView and the seniorWriteView will
 give the members of the "senior" VACM group the rights to install
 emergency scripts and to configure appropriate launch buttons.

9. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) is responsible for
 maintaining a MIB module which provides OID registrations for well-
 known languages. The IANA language registry is intented to reduce
 interoperability problems by providing a single list of well-known
 languages. However, it is of course still possible to register
 languages in private OID spaces. Registering languages in private
 spaces is especially attractive if a language is used for
 experimentation or if a language is only used in environments where
 the distribution of MIB modules with the language registration does
 not cause any maintenance problems.

 Any additions or changes to the list of languages registered via IANA
 require Designated Expert Review as defined in the IANA guidelines
 [20]. The Designated Expert will be selected by the IESG Area
 Director for the IETF Operations and Management Area.

10. Security Considerations

 This MIB provides the ability to distribute applications written in
 an arbitrary language to remote systems in a network. The security
 features of the languages available in a particular implementation
 should be taken into consideration when deploying an implementation
 of this MIB.

 To facilitate the provisioning of access control by a security
 administrator using the View-Based Access Control Model (VACM)
 defined in RFC 2275 [15] for tables in which multiple users may need
 to independently create or modify entries, the initial index is used
 as an "owner index". Such an initial index has a syntax of
 SnmpAdminString, and can thus be trivially mapped to a securityName
 or groupName as defined in VACM, in accordance with a security
 policy.

Levi & Schoenwaelder Standards Track [Page 48]

RFC 2592 Script MIB May 1999

 All entries in related tables belonging to a particular user will
 have the same value for this initial index. For a given user’s
 entries in a particular table, the object identifiers for the
 information in these entries will have the same subidentifiers
 (except for the "column" subidentifier) up to the end of the encoded
 owner index. To configure VACM to permit access to this portion of
 the table, one would create vacmViewTreeFamilyTable entries with the
 value of vacmViewTreeFamilySubtree including the owner index portion,
 and vacmViewTreeFamilyMask "wildcarding" the column subidentifier.
 More elaborate configurations are possible.

 The VACM access control mechanism described above provides control
 over SNMP access to Script MIB objects. There are a number of other
 access control issues that are outside of the scope of this MIB. For
 example, access control on URLs, especially those that use the file
 scheme, must be realized by the underlying operating system. A
 mapping of the owner index value to a local operating system security
 user identity should be used by an implementation of this MIB to
 control access to operating system resources when resolving URLs or
 executing scripts.

11. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

12. Acknowledgments

 This document was produced by the IETF Distributed Management
 (DISMAN) working group.

Levi & Schoenwaelder Standards Track [Page 49]

RFC 2592 Script MIB May 1999

13. References

 [1] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
 Describing SNMP Management Frameworks", RFC 2271, January 1998.

 [2] Rose, M. and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", STD 16, RFC
 1155, May 1990.

 [3] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
 RFC 1212, March 1991.

 [4] Rose, M., "A Convention for Defining Traps for use with the
 SNMP", RFC 1215, March 1991.

 [5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
 RFC 2579, April 1999.

 [7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
 58, RFC 2580, April 1999.

 [8] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
 Network Management Protocol", STD 15, RFC 1157, May 1990.

 [9] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901, January
 1996.

 [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
 Mappings for Version 2 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1906, January 1996.

 [11] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network Management
 Protocol (SNMP)", RFC 2272, January 1998.

 [12] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
 for version 3 of the Simple Network Management Protocol
 (SNMPv3)", RFC 2274, January 1998.

Levi & Schoenwaelder Standards Track [Page 50]

RFC 2592 Script MIB May 1999

 [13] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
 Operations for Version 2 of the Simple Network Management
 Protocol (SNMPv2)", RFC 1905, January 1996.

 [14] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
 2273, January 1998.

 [15] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", RFC 2275, January 1998.

 [16] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", BCP 11, RFC 2028, October 1996.

 [17] Berners-Lee, T., Fielding, R. and L. Masinter, " Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [18] Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9, RFC
 959, October 1985.

 [19] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC
 2068, January 1997.

 [20] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

 [21] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Levi & Schoenwaelder Standards Track [Page 51]

RFC 2592 Script MIB May 1999

14. Editors’ Addresses

 David B. Levi
 Nortel Networks
 4401 Great America Parkway
 Santa Clara, CA 95052-8185
 U.S.A.

 Phone: +1 423 686 0432
 EMail: dlevi@nortelnetworks.com

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany

 Phone: +49 531 391-3683
 EMail: schoenw@ibr.cs.tu-bs.de

Levi & Schoenwaelder Standards Track [Page 52]

RFC 2592 Script MIB May 1999

16. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Levi & Schoenwaelder Standards Track [Page 53]

