
Network Working Group M. Mealling
Request for Comments: 3402 Verisign
Obsoletes: 2915, 2168 October 2002
Category: Standards Track

 Dynamic Delegation Discovery System (DDDS)
 Part Two: The Algorithm

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes the Dynamic Delegation Discovery System
 (DDDS) algorithm for applying dynamically retrieved string
 transformation rules to an application-unique string. Well-formed
 transformation rules will reflect the delegation of management of
 information associated with the string. This document is also part
 of a series that is completely specified in "Dynamic Delegation
 Discovery System (DDDS) Part One: The Comprehensive DDDS" (RFC 3401).
 It is very important to note that it is impossible to read and
 understand any document in this series without reading the others.

Mealling Standards Track [Page 1]

RFC 3402 DDDS - The Algorithm October 2002

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. The Algorithm . 4
 3.1 Components of a Rule . 6
 3.2 Substitution Expression Syntax 6
 3.3 The Complete Algorithm . 8
 4. Specifying An Application 9
 5. Specifying A Database . 11
 6. Examples . 12
 6.1 An Automobile Parts Identification System 12
 6.2 A Document Identification Service 14
 7. Security Considerations 15
 8. IANA Considerations . 15
 References . 15
 Author’s Address . 16
 Full Copyright Statement 17

1. Introduction

 The Dynamic Delegation Discovery System (DDDS) is used to implement
 lazy binding of strings to data, in order to support dynamically
 configured delegation systems. The DDDS functions by mapping some
 unique string to data stored within a DDDS Database by iteratively
 applying string transformation rules until a terminal condition is
 reached.

 This document describes the general DDDS algorithm, not any
 particular application or usage scenario. The entire series of
 documents is specified in "Dynamic Delegation Discovery System (DDDS)
 Part One: The Comprehensive DDDS" (RFC 3401) [1]. It is very
 important to note that it is impossible to read and understand a
 single document in that series without reading the related documents.

 The DDDS’s history is an evolution from work done by the Uniform
 Resource Name Working Group. When Uniform Resource Names (URNs) [6]
 were originally formulated there was the desire to locate an
 authoritative server for a URN that (by design) contained no
 information about network locations. A system was formulated that
 could use a database of rules that could be applied to a URN to find
 out information about specific chunks of syntax. This system was
 originally called the Resolver Discovery Service (RDS) [7] and only
 applied to URNs.

Mealling Standards Track [Page 2]

RFC 3402 DDDS - The Algorithm October 2002

 Over time other systems began to apply this same algorithm and
 infrastructure to other, non-URN related, systems (see Section 6 for
 examples of other ways of using the DDDS). This caused some of the
 underlying assumptions to change and need clarification. These
 documents are an update of those original URN specifications in order
 to allow new applications and rule databases to be developed in a
 standardized manner.

 This document obsoletes RFC 2168 [11] and RFC 2915 [9] as well as
 updates RFC 2276 [7].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

 Application Unique String
 A string that is the initial input to a DDDS application. The
 lexical structure of this string must imply a unique delegation
 path, which is analyzed and traced by the repeated selection and
 application of Rewrite Rules.

 Rewrite Rule
 A rule that is applied to an Application Unique String to produce
 either a new key to select a new rewrite rule from the rule
 database, or a final result string that is returned to the calling
 application. Also simply known as a Rule.

 First Well Known Rule
 This is a rewrite rule that is defined by the application and not
 actually in the Rule Database. It is used to produce the first
 valid key.

 Terminal Rule
 A Rewrite Rule that, when used, yields a string that is the final
 result of the DDDS process, rather than another database key.

 Application
 A set of protocols and specifications that specify actual values
 for the various generalized parts of the DDDS algorithm. An
 Application must define the syntax and semantics of the
 Application Unique String, the First Well Known Rule, and one or
 more Databases that are valid for the Application.

Mealling Standards Track [Page 3]

RFC 3402 DDDS - The Algorithm October 2002

 Rule Database
 Any store of Rules such that a unique key can identify a set of
 Rules that specify the delegation step used when that particular
 Key is used.

 Services
 A common rule database may be used to associate different services
 with a given Application Unique String; e.g., different protocol
 functions, different operational characteristics, geographic
 segregation, backwards compatibility, etc. Possible service
 differences might be message receiving services for email/fax/
 voicemail, load balancing over web servers, selection of a nearby
 mirror server, cost vs performance trade-offs, etc. These
 Services are included as part of a Rule to allow the Application
 to make branching decisions based on the applicability of one
 branch or the other from a Service standpoint.

 Flags
 Most Applications will require a way for a Rule to signal to the
 Application that some Rules provide particular outcomes that
 others do not; e.g., different output formats, extensibility
 mechanisms, terminal rule signaling, etc. Most Databases will
 define a Flags field that an Application can use to encode various
 values that express these signals.

3. The Algorithm

 The DDDS algorithm is based on the concept of Rewrite Rules. These
 rules are collected into a DDDS Rule Database, and accessed by given
 unique keys. A given Rule, when applied to an Application Unique
 String, transforms that String into new Key that can be used to
 retrieve a new Rule from the Rule Database. This new rule is then
 reapplied to the original Application Unique String and the cycle
 repeats itself until a terminating condition is reached. An
 Application MUST NOT apply a Rule to the output of a previous Rule.
 All Rewrite Rules for all Applications must ALWAYS apply to the exact
 same Application Unique String that the algorithm started with.

 It is a fundamental assumption that the Application Unique String has
 some kind of regular, lexical structure that the rules can be applied
 to. It is an assumption of the DDDS that the lexical element used to
 make a delegation decision is simple enough to be contained within
 the Application Unique String itself. The DDDS does not solve the
 case where a delegation decision is made using knowledge contained
 outside the AUS and the Rule (time of day, financial transactions,
 rights management, etc.).

Mealling Standards Track [Page 4]

RFC 3402 DDDS - The Algorithm October 2002

 Diagrammatically the algorithm looks like this:

 +--------- Application Unique String
 | +-----+
 | |input|
 | +-------+ +---------+
 | | First Well Known Rule |
 | +-------+ +--------+
 | |output|
 | +------+
 | First Key
 | |
 | +----<--------------<--------------+
 | | |
 | key (a DDDS database always |
 | +-----+ takes a key and returns |
 | |input| a rule) ^
 | +---------+ +------------+ |
 | | Lookup key in DDDS Database| |
 | +---------+ +-----------+ |
 | |output| |
 | +------+ |
 | rule set |
 | | |
 | | (the input to a rule |
 | rule set is the rule and the AUS. ^
 | +-----+ The output is always |
 +---------------->|input| either a key or the result) |
 +---------------+ +------------------+ |
 | Apply Rules to Application Unique String| |
 | until non-empty result are obtained | |
 | that meet the applications requirements | |
 +---------------+ +-----------------+ |
 |output| |
 +------+ ^
 key |
 | |
 v |
 +--------------------------------------+ |
 | Was the last matching rule terminal? | No >------+
 +--------------------------------------+
 Yes (if the rule isn’t terminal then
 | its output is the new key which
 | is used to find a new rule set)
 +------------------------------------+
 | The output of the last rule is the |
 | result desired by the application |
 +------------------------------------+

Mealling Standards Track [Page 5]

RFC 3402 DDDS - The Algorithm October 2002

3.1 Components of a Rule

 A Rule is made up of 4 pieces of information:

 A Priority
 Simply a number used to show which of two otherwise equal rules
 may have precedence. This allows the database to express rules
 that may offer roughly the same results but one delegation path
 may be faster, better, cheaper than the other.

 A Set of Flags
 Flags are used to specify attributes of the rule that determine if
 this rule is the last one to be applied. The last rule is called
 the terminal rule and its output should be the intended result for
 the application. Flags are unique across Applications. An
 Application may specify that it is using a flag defined by yet
 another Application but it must use that other Application’s
 definition. One Application cannot redefine a Flag used by
 another Application. This may mean that a registry of Flags will
 be needed in the future but at this time it is not a requirement.

 A Description of Services
 Services are used to specify semantic attributes of a particular
 delegation branch. There are many cases where two delegation
 branches are identical except that one delegates down to a result
 that provides one set of features while another provides some
 other set. Features may include operational issues such as load
 balancing, geographically based traffic segregation, degraded but
 backwardly compatible functions for older clients, etc. For
 example, two rules may equally apply to a specific delegation
 decision for a string. One rule can lead to a terminal rule that
 produces information for use in high availability environments
 while another may lead to an archival service that may be slower
 but is more stable over long periods of time.

 A Substitution Expression
 This is the actual string modification part of the rule. It is a
 combination of a POSIX Extended Regular Expression [8] and a
 replacement string similar to Unix sed-style substitution
 expression.

3.2 Substitution Expression Syntax

 The character set(s) that the substitution expression is in and can
 act on are dependent both on the Application and on the Database
 being used. An Application must define what the allowed character
 sets are for the Application Unique String. A DDDS Database
 specification must define what character sets are required for

Mealling Standards Track [Page 6]

RFC 3402 DDDS - The Algorithm October 2002

 producing its keys and for how the substitution expression itself is
 encoded. The grammar-required characters below only have meaning
 once a specific character set is defined for the Database and/or
 Application.

 The syntax of the Substitution Expression part of the rule is a
 sed-style substitution expression. True sed-style substitution
 expressions are not appropriate for use in this application for a
 variety of reasons, therefore the contents of the regexp field MUST
 follow this grammar:

subst-expr = delim-char ere delim-char repl delim-char *flags
delim-char = "/" / "!" / <Any octet not in ’POS-DIGIT’ or ’flags’>
 ; All occurrences of a delim_char in a subst_expr
 ; must be the same character.>
ere = <POSIX Extended Regular Expression>
repl = *(string / backref)
string = *(anychar / escapeddelim)
anychar = <any character other than delim-char>
escapeddelim = "\" delim-char
backref = "\" POS-DIGIT
flags = "i"
POS-DIGIT = "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9"

 The result of applying the substitution expression to the String MUST
 result in a key which obeys the rules of the Database (unless of
 course it is a Terminal Rule in which case the output follows the
 rules of the application). Since it is possible for the regular
 expression to be improperly specified, such that a non-conforming key
 can be constructed, client software SHOULD verify that the result is
 a legal database key before using it.

 Backref expressions in the repl portion of the substitution
 expression are replaced by the (possibly empty) string of characters
 enclosed by ’(’ and ’)’ in the ERE portion of the substitution
 expression. N is a single digit from 1 through 9, inclusive. It
 specifies the N’th backref expression, the one that begins with the
 N’th ’(’ and continues to the matching ’)’. For example, the ERE

 (A(B(C)DE)(F)G)

 has backref expressions:

 \1 = ABCDEFG
 \2 = BCDE
 \3 = C
 \4 = F
 \5..\9 = error - no matching subexpression

Mealling Standards Track [Page 7]

RFC 3402 DDDS - The Algorithm October 2002

 The "i" flag indicates that the ERE matching SHALL be performed in a
 case-insensitive fashion. Furthermore, any backref replacements MAY
 be normalized to lower case when the "i" flag is given. This flag
 has meaning only when both the Application and Database define a
 character set where case insensitivity is valid.

 The first character in the substitution expression shall be used as
 the character that delimits the components of the substitution
 expression. There must be exactly three non-escaped occurrences of
 the delimiter character in a substitution expression. Since escaped
 occurrences of the delimiter character will be interpreted as
 occurrences of that character, digits MUST NOT be used as delimiters.
 Backrefs would be confused with literal digits were this allowed.
 Similarly, if flags are specified in the substitution expression, the
 delimiter character must not also be a flag character.

3.3 The Complete Algorithm

 The following is the exact DDDS algorithm:

 1. The First Well Known Rule is applied to the Application Unique
 String which produces a Key.

 2. The Application asks the Database for the ordered set of Rules
 that are bound to that Key (see NOTE below on order details).

 3. The Substitution Expression for each Rule in the list is applied,
 in order, to the Application Unique String until a non-empty
 string is produced. The position in the list is noted and the
 Rule that produced the non-empty string is used for the next
 step. If the next step rejects this rule and returns to this
 step then the Substitution Expression application process
 continues at the point where it left off. If the list is
 exhausted without a valid match then the application is notified
 that no valid output was available.

 4. If the Service description of the rule does not meet the client’s
 requirements, go back to step 3 and continue through the already
 retrieved list of rules. If it does match the client’s
 requirements then this Rule is used for the next step. If and
 only if the client is capable of handling it and if it is deemed
 safe to do so by the Application’s specification, the client may
 make a note of the current Rule but still return to step 3 as
 though it had rejected it. In either case, the output of this
 step is one and only one Rule.

Mealling Standards Track [Page 8]

RFC 3402 DDDS - The Algorithm October 2002

 5. If the Flags part of the Rule designate that this Rule is NOT
 Terminal, go back to step 2 with the substitution result as the
 new Key.

 6. Notify the Application that the process has finished and provide
 the Application with the Flags and Services part of the Rule
 along with the output of the last Substitution Expression.

 NOTE 1: In some applications and/or databases the result set can
 express the case where two or more Rules are considered equal. These
 Rules are treated as the same Rule, each one possibly having a
 Priority which is used to communicate a preference for otherwise
 equivalent Rules. This allows for Rules to act as fallbacks for
 others. It should be noted that this is a real Preference, not a
 load balancing mechanism. Applications should define the difference
 carefully.

 NOTE 2: Databases may or may not have rules that determine when and
 how records within that database expire (expiration dates, times to
 live, etc.). These expiration mechanisms must be adhered to in all
 cases. Specifically, since the expiration of a databases record
 could cause a new Rule to be retrieved that is inconsistent with
 previous Rules, while in the algorithm any attempts to optimize the
 process by falling back to previous keys and Rules MUST ensure that
 no previously retrieved Rule has expired. If a Rule has expired then
 the application MUST start over at Step 1.

4. Specifying an Application

 In order for this algorithm to have any usefulness, a specification
 must be written describing an application and one or more databases.
 In order to specify an application the following pieces of
 information are required:

 Application Unique String:
 This is the only string that the rewrite rules will apply to. The
 string must have some regular structure and be unique within the
 application such that anyone applying Rules taken from the same
 Database will end up with the same Keys. For example, the URI
 Resolution application defines the Application Unique String to be
 a URI.

 No application is allowed to define an Application Unique String
 such that the Key obtained by a rewrite rule is treated as the
 Application Unique String for input to a new rule. This leads to
 sendmail style rewrite rules which are fragile and error prone.
 The one single exception to this is when an Application defines
 some flag or state where the rules for that application are

Mealling Standards Track [Page 9]

RFC 3402 DDDS - The Algorithm October 2002

 suspended and a new DDDS Application or some other arbitrary set
 of rules take over. If this is the case then, by definition, none
 of these rules apply. One such case can be found in the URI
 Resolution application which defines the ’p’ flag which states
 that the next step is ’protocol specific’ and thus outside of the
 scope of DDDS.

 First Well Known Rule:
 This is the first rule that, when applied to the Application
 Unique String, produces the first valid Key. It can be expressed
 in the same form as a Rule or it can be something more complex.
 For example, the URI Resolution application might specify that the
 rule is that the sequence of characters in the URI up to but not
 including the first colon (the URI scheme) is the first Key.

 Valid Databases:
 The application can define which Databases are valid. For each
 Database the Application must define how the First Well Known
 Rule’s output (the first Key) is turned into something that is
 valid for that Database. For example, the URI Resolution
 application could use the Domain Name System (DNS) as a Database.
 The operation for turning this first Key into something that was
 valid for the database would be to to turn it into some DNS-valid
 domain-name. Additionally, for each Database an Application
 defines, it must also specify what the valid character sets are
 that will produce the correct Keys. In the URI Resolution example
 shown here, the character set of a URI is 7 bit ASCII which
 matches fairly well with DNS’s 8 bit limitation on characters in
 its zone files.

 Expected Output:
 The Application must define what the expected output of the
 Terminal Rule should be. For example, the URI Resolution
 application is concerned with finding servers that contain
 authoritative data about a given URI. Thus the output of the
 terminal rule would be information (hosts, ports, protocols, etc.)
 that would be used to contact that authoritative server.

 In the past there has been some confusion concerning load balancing
 and the use of the DDDS ’Priority’. Applications should be aware
 that the Priority of a given rule is just that: a way of specifying
 that one rule is "better, faster, cheaper" than another. If an
 application needs some method of allowing a client to load balance
 between servers (i.e., weighted random selection, etc.) then it
 should do so outside the DDDS algorithm. For example, Applications
 that make use of the DNS Database may use the SRV record as a way of
 signifying that a particular service is actually handled by several
 hosts cooperating with each other. The difference being that load

Mealling Standards Track [Page 10]

RFC 3402 DDDS - The Algorithm October 2002

 balancing is done between hosts that are identical to each other
 where as DDDS is concerned with delegation paths that have some
 particular feature set or administrative domain.

5. Specifying A Database

 Additionally, any Application must have at least one corresponding
 Database from which to retrieve the Rules. It is important to note
 that a given Database may be used by more than one Application. If
 this is the case, each rule must be use some combination of its
 Services and/or substitution expression to match only those
 Application Unique Strings for which it is valid.

 A Database specification must include the following pieces of
 information:

 General Specification:
 The Database must have a general specification. This can
 reference other standards (SQL, DNS, etc.) or it can fully specify
 a novel database system. This specification MUST be clear as to
 what allowed character sets exist in order to know in which
 character set the Keys and Rules are encoded.

 Lookup Procedure:
 This specifies how a query is formulated and submitted to the
 database. In the case of databases that are used for other
 purposes (such as DNS), the specification must be clear as to how
 a query is formulated specifically for the database to be a DDDS
 database. For example, a DNS based Database must specify which
 Resource Records or Query Types are used.

 Key Format:
 If any operations are needed in order to turn a Key into something
 that is valid for the database then these must be clearly defined.
 For example, in the case of a DNS database, the Keys must be
 constructed as valid domain-names.

 Rule Format:
 The specification for the output format of a rule.

 Rule Insertion Procedure:
 A specification for how a Rule is inserted into the database.
 This can include policy statements about whether or not a Rule is
 allowed to be added.

Mealling Standards Track [Page 11]

RFC 3402 DDDS - The Algorithm October 2002

 Rule Collision Avoidance:
 Since a Database may be used by multiple Applications (ENUM and
 URI Resolution for example), the specification must be clear about
 how rule collisions will be avoided. There are usually two
 methods for handling this: 1) disallow one key from being valid in
 two different Applications; 2) if 1 isn’t possible then write the
 substitution expression such that the regular expression part
 contains enough of the Application Unique String as part of its
 match to differentiate between the two Applications.

6. Examples

 The examples given here are for pedagogical purposes only. They are
 specifically taken from ficticious applications that have not been
 specified in any published document.

6.1 An Automobile Parts Identification System

 In this example imagine a system setup where all automobile
 manufacturers come together and create a standardized part numbering
 system for the various parts (nuts, bolts, frames, instruments, etc.)
 that make up the automobile manufacturing and repair process. The
 problem with such a system is that the auto industry is a very
 distributed system where parts are built by various third parties
 distributed around the world. In order to find information about a
 given part a system must be able to find out who makes that part and
 contact them about it.

 To facilitate this distributed system the identification number
 assigned to a part is assigned hierarchically such that the first 5
 digits make up a parts manufacturer ID number. The next 3 digits are
 an auto line identifier (Ford, Toyota, etc.). The rest of the digits
 are assigned by the parts manufacturer according to rules that the
 manufacturer decides.

 The auto industry decides to use the DDDS to create a distributed
 information retrieval system that routes queries to the actual owner
 of the data. The industry specifies a database and a query syntax
 for retrieving rewrite rules (the APIDA Network) and then specifies
 the Auto Parts Identification DDDS Application (APIDA).

 The APIDA specification would define the following:

 o Application Unique String: the part number.

 o First Well Known Rule: take the first 5 digits (the manufacturers
 ID number) and use that as the Key.

Mealling Standards Track [Page 12]

RFC 3402 DDDS - The Algorithm October 2002

 o Valid Databases: The APIDA Network.

 o Expected Output: EDIFAC information about the part.

 The APIDA Network Database specification would define the following:

 o General Specification: a network of EDI enabled databases and
 services that, when given a subcomponent of a part number will
 return an XML encoded rewrite rule.

 o Lookup Procedure: following normal APIDA Network protocols, ask
 the network for a rewrite rule for the Key.

 o Key Format: no conversion is required.

 o Rule Format: see APIDA Network documentation for the XML DTD.

 o Rule Insertion Procedure: determined by the authority that has
 control over each section of the part number. I.e., in order to
 get a manufacturer ID you must be a member of the Auto Parts
 Manufacturers Association.

 In order to illustrate how the system would work, imagine the part
 number "4747301AB7D". The system would take the first 5 digits,
 ’47473’ and ask the network for that Rewrite Rule. This Rule would
 be provided by the parts manufacturers database and would allow the
 manufacturer to either further sub-delegate the space or point the
 querier directly at the EDIFAC information in the system.

 In this example let’s suppose that the manufacturer returns a Rule
 that states that the next 3 digits should be used as part of a query
 to their service in order to find a new Rule. This new Rule would
 allow the parts manufacturer to further delegate the query to their
 parts factories for each auto line. In our example part number the
 number ’01A’ denotes the Toyota line of cars. The Rule that the
 manufacturer returns further delegates the query to a supply house in
 Japan. This rule also denotes that this Rule is terminal and thus
 the result of this last query will be the actual information about
 the part.

Mealling Standards Track [Page 13]

RFC 3402 DDDS - The Algorithm October 2002

6.2 A Document Identification Service

 This example is very similar to the last since the documents in this
 system can simply be thought of as the auto part in the last example.
 The difference here is that the information about the document is
 kept very close to the author (usually on their desktop). Thus there
 is the probability that the number of delegations can be very deep.
 Also, in order to keep from having a large flat space of authors, the
 authors are organized by organizations and departments.

 Let’s suppose that the Application Unique String in this example
 looks like the following:

 <organization>-<department>-<author>:<project>-<bookcase>-<book>

 The Application specification would look like this:

 o Application Unique String: the Document ID string given above.

 o First Well Known Rule: the characters up to but not including the
 first ’-’ is treated as the first Key.

 o Valid Databases: the DIS LDAP Directory.

 o Expected Output: a record from an LDAP server containing
 bibliographic information about the document in XML.

 The Database specification for the DIS LDAP Directory would look like
 this:

 o General Specification: the Database uses the LDAP directory
 service. Each LDAP server has a record that contains the Rewrite
 Rule. Rules refer to other LDAP servers using the LDAP URL
 scheme.

 o Lookup Procedure: using standard LDAP queries, the client asks the
 LDAP server for information about the Key.

 o Key Format: no conversion is necessary.

 o Rule Format: See the LDAP Rewrite Rule specification.

 o Rule Insertion Procedure: See the procedures published by the
 entity that has authority over that section of the DIS tree. The
 first section, the organization, is owned by the DIS Agency.

Mealling Standards Track [Page 14]

RFC 3402 DDDS - The Algorithm October 2002

 In this example, the first lookup is for the organization’s Rule. At
 that point the organization may point the client directly at some
 large, organization wide database that contains the expected output.
 Other organizations may decentralize this process so that Rules end
 up delegating the query all the way down to the authors document
 management environment of choice.

7. Security Considerations

 This document simply defines the DDDS algorithm and thus, by itself,
 does not imply any security issues. It is when this algorithm is
 coupled with a Database and an Application that security
 considerations can be known well enough to enumerate them beyond
 simply saying that dynamic delegation points are a possible point of
 attack.

8. IANA Considerations

 This document does not create any requirements on the IANA. Database
 and Application specifications may have considerable requirements but
 they cannot be enumerated here.

References

 [1] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part One: The Comprehensive DDDS", RFC 3401, October 2002.

 [2] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Two: The Algorithm", RFC 3402, October 2002.

 [3] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Three: The Domain Name System (DNS) Database", RFC 3403,
 October 2002.

 [4] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Four: The Uniform Resource Identifiers (URI) Resolution
 Application", RFC 3404, October 2002.

 [5] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Five: URI.ARPA Assignment Procedures", RFC 3405,
 October 2002.

 [6] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [7] Sollins, K., "Architectural Principles of Uniform Resource Name
 Resolution", RFC 2276, January 1998.

Mealling Standards Track [Page 15]

RFC 3402 DDDS - The Algorithm October 2002

 [8] The Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Information Technology - Portable Operating System
 Interface (POSIX) - Part 2: Shell and Utilities (Vol. 1)", IEEE
 Std 1003.2-1992, ISBN 1-55937-255-9, January 1993.

 [9] Mealling, M. and R. Daniel, "The Naming Authority Pointer
 (NAPTR) DNS Resource Record", RFC 2915, August 2000.

 [10] Faltstrom, P., "E.164 number and DNS", RFC 2916, September
 2000.

 [11] Daniel, R. and M. Mealling, "Resolution of Uniform Resource
 Identifiers using the Domain Name System", RFC 2168, June 1997.

Author’s Address

 Michael Mealling
 VeriSign
 21345 Ridgetop Circle
 Sterling, VA 20166
 US

 EMail: michael@neonym.net
 URI: http://www.verisignlabs.com

Mealling Standards Track [Page 16]

RFC 3402 DDDS - The Algorithm October 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Mealling Standards Track [Page 17]

