
Network Working Group B. Fenner
Request for Comments: 4601 AT&T Labs - Research
Obsoletes: 2362 M. Handley
Category: Standards Track UCL

H. Holbrook
Arastra

I. Kouvelas
Cisco

August 2006

Protocol Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification (Revised)

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community,
and requests discussion and suggestions for improvements. Pleaserefer to the current
edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2006).

Abstract

This document specifies Protocol Independent Multicast - Sparse Mode (PIM-SM). PIM-
SM is a multicast routing protocol that can use the underlying unicast routing information
base or a separate multicast-capable routing information base. It builds unidirectional
shared trees rooted at a Rendezvous Point (RP) per group, and optionally creates shortest-
path trees per source.

This document obsoletes RFC 2362, an Experimental version of PIM-SM.

Fenner, et al. StandardsTrack [Page 1]

RFC 4601 PIM-SM Specification February 2006

Table of Contents

1. Introduction. 4
2. Terminology . 4

2.1. Definitions. 4
2.2. Pseudocode Notation. 5

3. PIM-SM Protocol Overview. 5
3.1. Phase One: RP Tree. 6
3.2. Phase Two: Register-Stop 6
3.3. Phase Three: Shortest-Path Tree. 7
3.4. Source-Specific Joins. 7
3.5. Source-Specific Prunes. 8
3.6. Multi-Access Transit LANs. 8
3.7. RP Discovery . 8

4. Protocol Specification. 9
4.1. PIM Protocol State . 9

4.1.1. General Purpose State. 10
4.1.2. (*,*,RP) State. 10
4.1.3. (*,G) State . 11
4.1.4. (S,G) State . 12
4.1.5. (S,G,rpt) State . 13
4.1.6. State Summarization Macros. 14

4.2. Data Packet Forwarding Rules. 18
4.2.1. Last-Hop Switchover to the SPT 20
4.2.2. Setting and Clearing the (S,G) SPTbit. 20
4.3.1. Designated Routers (DR) and Hello Messages. 21
4.3.1. Sending Hello Messages. 21
4.3.2. DR Election . 23
4.3.3. Reducing Prune Propagation Delay on LANs. 24
4.3.4. Maintaining Secondary Address Lists. 26

4.4. PIM Register Messages. 27
4.4.1. Sending Register Messages from the DR. 28
4.4.2. Receiving Register Messages at the RP. 32

4.5. PIM Join/Prune Messages. 33
4.5.1. Receiving (*,*,RP) Join/Prune Messages. 34
4.5.2. Receiving (*,G) Join/Prune Messages. 36
4.5.3. Receiving (S,G) Join/Prune Messages. 39
4.5.4. Receiving (S,G,rpt) Join/Prune Messages. 42
4.5.5. Sending (*,*,RP) Join/Prune Messages. 47
4.5.6. Sending (*,G) Join/Prune Messages. 50
4.5.7. Sending (S,G) Join/Prune Messages. 53
4.5.8. (S,G,rpt) Periodic Messages. 57
4.5.9. State Machine for (S,G,rpt) Triggered Messages. 58
4.5.10. Background: (*,*,RP) and (S,G,rpt) Interaction. 62

4.6. PIM Assert Messages. 63
4.6.1. (S,G) Assert Message State Machine. 63
4.6.2. (*,G) Assert Message State Machine. 69
4.6.3. Assert Metrics . 74
4.6.4. AssertCancel Messages. 75
4.6.5. Assert State Macros. 76

4.7. PIM Bootstrap and RP Discovery 78
4.7.1. Group-to-RP Mapping. 79

Fenner, et al. StandardsTrack [Page 2]

RFC 4601 PIM-SM Specification February 2006

4.7.2. Hash Function . 79
4.8. Source-Specific Multicast 80

4.8.1. Protocol Modifications for SSM Destination Addresses. 80
4.8.2. PIM-SSM-Only Routers 81

4.9. PIM Packet Formats. 82
4.9.1. Encoded Source and Group Address Formats. 83
4.9.2. Hello Message Format. 85
4.9.3. Register Message Format. 88
4.9.4. Register-Stop Message Format. 90
4.9.5. Join/Prune Message Format. 90

4.9.5.1. Group Set Source List Rules. 93
4.9.5.2. Group Set Fragmentation. 95

4.9.6. Assert Message Format. 96
4.10. PIM Timers . 97
4.11. Timer Values. 98

5. IANA Considerations. 101
5.1. PIM Address Family. 101
5.2. PIM Hello Options . 101

6. Security Considerations. 101
6.1. Attacks Based on Forged Messages. 102

6.1.1. Forged Link-Local Messages. 102
6.1.2. Forged Unicast Messages. 102

6.2. Non-Cryptographic Authentication Mechanisms. 102
6.3. Authentication Using IPsec. 103

6.3.1. Protecting Link-Local Multicast Messages. 103
6.3.2. Protecting Unicast Messages. 103

6.3.2.1. Register Messages. 103
6.3.2.2. Register-Stop Messages. 104

6.4. Denial-of-Service Attacks 104
7. Acknowledgements . 104
8. Normative References. 105
9. Informative References . 105
10. Appendix A: PIM Multicast Border Router Behavior. 106

10.1. Sources External to the PIM-SM Domain. 106
10.2. Sources Internal to the PIM-SM Domain. 106

11. Index . 108

List of Figures

Figure 1. Per-(S,G) register state machine at a DR. 28
Figure 2. Downstream per-interface (*,*,RP) state machine. 34
Figure 3. Downstream per-interface (*,G) state machine. 37
Figure 4. Downstream per-interface (S,G) state machine. 40
Figure 5. Downstream per-interface (S,G,rpt) state machine. 43
Figure 6. Upstream (*,*,RP) state machine. 47
Figure 7. Upstream (*,G) state machine. 50
Figure 8. Upstream (S,G) state machine. 54
Figure 9. Upstream (S,G,rpt) state machine for triggered messages. 58
Figure 10. Per-interface (S,G) Assert State machine. 63
Figure 11. Per-interface (*,G) Assert State machine. 70

Fenner, et al. StandardsTrack [Page 3]

RFC 4601 PIM-SM Specification February 2006

1. Introduction
This document specifies a protocol for efficiently routing multicast groups that may span
wide-area (and inter-domain) internets. This protocol is called Protocol Independent
Multicast - Sparse Mode (PIM-SM) because, although it may use the underlying unicast
routing to provide reverse-path information for multicast tree building, it is not dependent
on any particular unicast routing protocol.

PIM-SM version 2 was originally specified in RFC 2117 and was revised in RFC 2362, both
Experimental RFCs. This document is intended to obsolete RFC 2362, to correct a number
of deficiencies that have been identified with the way PIM-SM was previously specified,
and to bring PIM-SM onto the IETF Standards Track. Asfar as possible, this document
specifies the same protocol as RFC 2362 and only diverges from the behavior intended by
RFC 2362 when the previously specified behavior was clearly incorrect. Routers
implemented according to the specification in this document will be able to interoperate
successfully with routers implemented according to RFC 2362.

2. Terminology
In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" are to be interpreted as described in RFC 2119 [1] and indicate requirement
levels for compliant PIM-SM implementations.

2.1. Definitions
The following terms have special significance for PIM-SM:

Rendezvous Point (RP):
An RP is a router that has been configured to be used as the root of the non-source-
specific distribution tree for a multicast group. Join messages from receivers for a
group are sent towards the RP, and data from senders is sent to the RP so that
receivers can discover who the senders are and start to receive traffic destined for the
group.

Designated Router (DR):
A shared-media LAN like Ethernet may have multiple PIM-SM routers connected to
it. A single one of these routers, the DR, will act on behalf of directly connected
hosts with respect to the PIM-SM protocol.A single DR is elected per interface
(LAN or otherwise) using a simple election process.

MRIB
Multicast Routing Information Base. This is the multicast topology table, which is
typically derived from the unicast routing table, or routing protocols such as
Multiprotocol BGP (MBGP) that carry multicast-specific topology information. In
PIM-SM, the MRIB is used to decide where to send Join/Prune messages. A
secondary function of the MRIB is to provide routing metrics for destination
addresses; these metrics are used when sending and processing Assert messages.

RPF Neighbor
RPF stands for "Reverse Path Forwarding". TheRPF Neighbor of a router with
respect to an address is the neighbor that the MRIB indicates should be used to
forward packets to that address. In the case of a PIM-SM multicast group, the RPF
neighbor is the router that a Join message for that group would be directed to, in the
absence of modifying Assert state.

Fenner, et al. StandardsTrack [Page 4]

RFC 4601 PIM-SM Specification February 2006

TIB Tree Information Base. This is the collection of state at a PIM router that has been
created by receiving PIM Join/Prune messages, PIM Assert messages, and Internet
Group Management Protocol (IGMP) or Multicast Listener Discovery (MLD)
information from local hosts. It essentially stores the state of all multicast
distribution trees at that router.

MFIB MulticastForwarding Information Base. The TIB holds all the state that is
necessary to forward multicast packets at a router. Howev er, although this
specification defines forwarding in terms of the TIB, to actually forward packets
using the TIB is very inefficient. Instead,a real router implementation will normally
build an efficient MFIB from the TIB state to perform forwarding. How this is done
is implementation-specific and is not discussed in this document.

Upstream
To wards the root of the tree. The root of tree may be either the source or the RP,
depending on the context.

Downstream
Aw ay from the root of the tree.

GenID
Generation Identifier, used to detect reboots.

PMBR
PIM Multicast Border Router, joining a PIM domain with another multicast domain.

2.2. Pseudocode Notation
We use set notation in several places in this specification.

A + B is the union of two sets, A and B.

A − B is the elements of set A that are not in set B.

NULL is the empty set or list.

In addition, we use C-like syntax:

= denotes assignment of a variable.

== denotesa comparison for equality.

≠ denotes a comparison for inequality.

Braces { and } are used for grouping.

3. PIM-SM Protocol Overview
This section provides an overview of PIM-SM behavior. It is intended as an introduction to
how PIM-SM works, and it isNOT definitive. For the definitive specification, see Section
4.

PIM relies on an underlying topology-gathering protocol to populate a routing table with
routes. Thisrouting table is called the Multicast Routing Information Base (MRIB). The
routes in this table may be taken directly from the unicast routing table, or they may be
different and provided by a separate routing protocol such as MBGP [10]. Regardless of
how it is created, the primary role of the MRIB in the PIM protocol is to provide the next-
hop router along a multicast-capable path to each destination subnet. The MRIB is used to
determine the next-hop neighbor to which any PIM Join/Prune message is sent. Data flows
along the reverse path of the Join messages. Thus, in contrast to the unicast RIB, which
specifies the next hop that a data packet would take to get to some subnet, the MRIB gives

Fenner, et al. StandardsTrack [Page 5]

RFC 4601 PIM-SM Specification February 2006

reverse-path information and indicates the path that a multicast data packet would takefrom
its origin subnet to the router that has the MRIB.

Like all multicast routing protocols that implement the service model from RFC 1112 [3],
PIM-SM must be able to route data packets from sources to receivers without either the
sources or receivers knowing a priori of the existence of the others. This is essentially done
in three phases, although as senders and receivers may come and go at any time, all three
phases may occur simultaneously.

3.1. Phase One: RP Tree
In phase one, a multicast receiver expresses its interest in receiving traffic destined for a
multicast group.Typically, it does this using IGMP [2] or MLD [4], but other mechanisms
might also serve this purpose. One of the receiver’s local routers is elected as the
Designated Router (DR) for that subnet. On receiving the receiver’s expression of interest,
the DR then sends a PIM Join message towards the RP for that multicast group. This Join
message is known as a (*,G) Join because it joins group G for all sources to that group. The
(*,G) Join travels hop-by-hop towards the RP for the group, and in each router it passes
through, multicast tree state for group G is instantiated. Eventually, the (*,G) Join either
reaches the RP or reaches a router that already has (*,G) Join state for that group. When
many receivers join the group, their Join messages converge on the RP and form a
distribution tree for group G that is rooted at the RP. This is known as the RP Tree (RPT),
and is also known as the shared tree because it is shared by all sources sending to that
group. Joinmessages are resent periodically so long as the receiver remains in the group.
When all receivers on a leaf-network leave the group, the DR will send a PIM (*,G) Prune
message towards the RP for that multicast group. However, if the Prune message is not sent
for any reason, the state will eventually time out.

A multicast data sender just starts sending data destined for a multicast group. The sender’s
local router (DR) takes those data packets, unicast-encapsulates them, and sends them
directly to the RP. The RP receives these encapsulated data packets, decapsulates them, and
forwards them onto the shared tree. The packets then follow the (*,G) multicast tree state in
the routers on the RP Tree, being replicated wherever the RP Tree branches, and eventually
reaching all the receivers for that multicast group. The process of encapsulating data
packets to the RP is called registering, and the encapsulation packets are known as PIM
Register packets.

At the end of phase one, multicast traffic is flowing encapsulated to the RP, and then
natively over the RP tree to the multicast receivers.

3.2. Phase Two: Register-Stop
Register-encapsulation of data packets is inefficient for two reasons:

• Encapsulation and decapsulation may be relatively expensive operations for a router to
perform, depending on whether or not the router has appropriate hardware for these tasks.

• Traveling all the way to the RP, and then back down the shared tree may result in the
packets traveling a relatively long distance to reach receivers that are close to the sender.
For some applications, this increased latency or bandwidth consumption is undesirable.

Although Register-encapsulation may continue indefinitely, for these reasons, the RP will
normally choose to switch to native forwarding. To do this, when the RP receives a register-
encapsulated data packet from source S on group G, it will normally initiate an (S,G)
source-specific Join towards S. This Join message travels hop-by-hop towards S,
instantiating (S,G) multicast tree state in the routers along the path. (S,G) multicast tree

Fenner, et al. StandardsTrack [Page 6]

RFC 4601 PIM-SM Specification February 2006

state is used only to forward packets for group G if those packets come from source S.
Eventually the Join message reaches S’s subnet or a router that already has (S,G) multicast
tree state, and then packets from S start to flow following the (S,G) tree state towards the
RP. These data packets may also reach routers with (*,G) state along the path towards the
RP; if they do, they can shortcut onto the RP tree at this point.

While the RP is in the process of joining the source-specific tree for S, the data packets will
continue being encapsulated to the RP. When packets from S also start to arrive natively at
the RP, the RP will be receiving two copies of each of these packets. Atthis point, the RP
starts to discard the encapsulated copy of these packets, and it sends a Register-Stop
message back to S’s DR to prevent the DR from unnecessarily encapsulating the packets.

At the end of phase 2, traffic will be flowing natively from S along a source-specific tree to
the RP, and from there along the shared tree to the receivers. Wherethe two trees intersect,
traffic may transfer from the source-specific tree to the RP tree and thus avoid taking a long
detour via the RP.

Note that a sender may start sending before or after a receiver joins the group, and thus
phase two may happen before the shared tree to the receiver is built.

3.3. Phase Three: Shortest-Path Tree
Although having the RP join back towards the source removes the encapsulation overhead,
it does not completely optimize the forwarding paths.For many receivers, the route via the
RP may involve a significant detour when compared with the shortest path from the source
to the receiver.

To obtain lower latencies or more efficient bandwidth utilization, a router on the receiver’s
LAN, typically the DR, may optionally initiate a transfer from the shared tree to a source-
specific shortest-path tree (SPT).To do this, it issues an (S,G) Join towards S. This
instantiates state in the routers along the path to S. Eventually, this join either reaches S’s
subnet or reaches a router that already has (S,G) state. When this happens, data packets
from S start to flow following the (S,G) state until they reach the receiver.

At this point, the receiver (or a router upstream of the receiver) will be receiving two copies
of the data: one from the SPT and one from the RPT. When the first traffic starts to arrive
from the SPT, the DR or upstream router starts to drop the packets for G from S that arrive
via the RP tree. In addition, it sends an (S,G) Prune message towards the RP. This is
known as an (S,G,rpt) Prune. The Prune message travels hop-by-hop, instantiating state
along the path towards the RP indicating that traffic from S for G should NOT be forwarded
in this direction. The prune is propagated until it reaches the RP or a router that still needs
the traffic from S for other receivers.

By now, the receiver will be receiving traffic from S along the shortest-path tree between the
receiver and S. In addition, the RP is receiving the traffic from S, but this traffic is no longer
reaching the receiver along the RP tree. As far as the receiver is concerned, this is the final
distribution tree.

3.4. Source-Specific Joins
IGMPv3 permits a receiver to join a group and specify that it only wants to receive traffic
for a group if that traffic comes from a particular source. If a receiver does this, and no
other receiver on the LAN requires all the traffic for the group, then the DR may omit
performing a (*,G) join to set up the shared tree, and instead issue a source-specific (S,G)
join only.

Fenner, et al. StandardsTrack [Page 7]

RFC 4601 PIM-SM Specification February 2006

The range of multicast addresses from 232.0.0.0 to 232.255.255.255 is currently set aside
for source-specific multicast in IPv4.For groups in this range, receivers should only issue
source-specific IGMPv3 joins. If a PIM router receives a non-source-specific join for a
group in this range, it should ignore it, as described in Section 4.8.

3.5. Source-Specific Prunes
IGMPv3 also permits a receiver to join a group and to specify that it only wants to receive
traffic for a group if that trafficdoes notcome from a specific source or sources. In this
case, the DR will perform a (*,G) join as normal, but may combine this with an (S,G,rpt)
prune for each of the sources the receiver does not wish to receive.

3.6. Multi-Access Transit LANs
The overview so far has concerned itself with point-to-point transit links. However, using
multi-access LANs such as Ethernet for transit is not uncommon. This can cause
complications for three reasons:

• Two or more routers on the LAN may issue (*,G) Joins to different upstream routers on
the LAN because they hav einconsistent MRIB entries regarding how to reach the RP.
Both paths on the RP tree will be set up, causing two copies of all the shared tree traffic
to appear on the LAN.

• Two or more routers on the LAN may issue (S,G) Joins to different upstream routers on
the LAN because they hav einconsistent MRIB entries regarding how to reach source S.
Both paths on the source-specific tree will be set up, causing two copies of all the traffic
from S to appear on the LAN.

• A router on the LAN may issue a (*,G) Join to one upstream router on the LAN, and
another router on the LAN may issue an (S,G) Join to a different upstream router on the
same LAN. Traffic from S may reach the LAN over both the RPT and the SPT. If the
receiver behind the downstream (*,G) router doesn’t issue an (S,G,rpt) prune, then this
condition would persist.

All of these problems are caused by there being more than one upstream router with join
state for the group or source-group pair. PIM does not prevent such duplicate joins from
occurring; instead, when duplicate data packets appear on the LAN from different routers,
these routers notice this and then elect a single forwarder. This election is performed using
PIM Assert messages, which resolve the problem in favor of the upstream router that has
(S,G) state; or, if neither or both router has (S,G) state, then the problem is resolved in favor
of the router with the best metric to the RP for RP trees, or the best metric to the source to
source-specific trees.

These Assert messages are also received by the downstream routers on the LAN, and these
cause subsequent Join messages to be sent to the upstream router that won the Assert.

3.7. RP Discovery
PIM-SM routers need to know the address of the RP for each group for which they hav e
(*,G) state. This address is obtained automatically (e.g., embedded-RP), through a
bootstrap mechanism, or through static configuration.

One dynamic way to do this is to use the Bootstrap Router (BSR) mechanism [11]. One
router in each PIM domain is elected the Bootstrap Router through a simple election
process. Allthe routers in the domain that are configured to be candidates to be RPs
periodically unicast their candidacy to the BSR. From the candidates, the BSR picks an RP-

Fenner, et al. StandardsTrack [Page 8]

RFC 4601 PIM-SM Specification February 2006

set, and periodically announces this set in a Bootstrap message. Bootstrap messages are
flooded hop-by-hop throughout the domain until all routers in the domain know the RP-Set.

To map a group to an RP, a router hashes the group address into the RP-set using an order-
preserving hash function (one that minimizes changes if the RP-Set changes). The resulting
RP is the one that it uses as the RP for that group.

4. Protocol Specification
The specification of PIM-SM is broken into several parts:

• Section 4.1 details the protocol state stored.

• Section 4.2 specifies the data packet forwarding rules.

• Section 4.3 specifies Designated Router (DR) election and the rules for sending and
processing Hello messages.

• Section 4.4 specifies the PIM Register generation and processing rules.

• Section 4.5 specifies the PIM Join/Prune generation and processing rules.

• Section 4.6 specifies the PIM Assert generation and processing rules.

• Section 4.7 specifies the RP discovery mechanisms.

• The subset of PIM required to support Source-Specific Multicast, PIM-SSM, is described
in Section 4.8.

• PIM packet formats are specified in Section 4.9.

• A summary of PIM-SM timers and their default values is given in Section 4.10.

• Appendix A in Section 10 specifies the PIM Multicast Border Router behavior.

4.1. PIM Protocol State
This section specifies all the protocol state that a PIM implementation should maintain in
order to function correctly. We term this state theTr ee Information Base(TIB), as it holds
the state of all the multicast distribution trees at this router. In this specification, we define
PIM mechanisms in terms of the TIB. However, only a very simple implementation would
actually implement packet forwarding operations in terms of this state. Most
implementations will use this state to build a multicast forwarding table, which would then
be updated when the relevant state in the TIB changes.

Although we specify precisely the state to be kept, this does not mean that an
implementation of PIM-SM needs to hold the state in this form. This is actually an abstract
state definition, which is needed in order to specify the router’s behavior. A PIM-SM
implementation is free to hold whatever internal state it requires and will still be conformant
with this specification so long as it results in the same externally visible protocol behavior
as an abstract router that holds the following state.

We divide TIB state into four sections:

(*,*,RP) state
State that maintains per-RP trees, for all groups served by a given RP.

(*,G) state
State that maintains the RP tree for G.

(S,G) state
State that maintains a source-specific tree for source S and group G.

(S,G,rpt) state
State that maintains source-specific information about source S on the RP tree for G.

Fenner, et al. StandardsTrack [Page 9]

RFC 4601 PIM-SM Specification February 2006

For example, if a source is being received on the source-specific tree, it will normally
have been pruned off the RP tree. This prune state is (S,G,rpt) state.

The state that should be kept is described below. Of course, implementations will only
maintain state when it is relevant to forwarding operations; for example, the "NoInfo" state
might be assumed from the lack of other state information rather than being held explicitly.

4.1.1. GeneralPurpose State

A router holds the following non-group-specific state:

For each interface:

• Effective Override Interval

• Effective Propagation Delay

• Suppression state: One of {"Enable", "Disable"}

Neighbor State:

For each neighbor:

• Information from neighbor’s Hello

• Neighbor’s GenID.

• Neighbor Liveness Timer (NLT)

Designated Router (DR) State:

• Designated Router’s IP Address

• DR’s DR Priority

The Effective Override Interval, the Effective Propagation Delay and the Interface
suppression state are described in Section 4.3.3. Designated Router state is described in
Section 4.3.

4.1.2. (*,*,RP)State

For every RP, a router keeps the following state:

(*,*,RP) state:
For each interface:

PIM (*,*,RP) Join/Prune State:

• State: One of {"NoInfo" (NI), "Join" (J), "Prune-Pending" (PP)}

• Prune-Pending Timer (PPT)

• Join/Prune Expiry Timer (ET)

Not interface specific:

Upstream (*,*,RP) Join/Prune State:

• State: One of {"NotJoined(*,*,RP)", "Joined(*,*,RP)"}

• Upstream Join/Prune Timer (JT)

• Last RPF Neighbor towards RP that was used

PIM (*,*,RP) Join/Prune state is the result of receiving PIM (*,*,RP) Join/Prune messages
on this interface and is specified in Section 4.5.1.

The upstream (*,*,RP) Join/Prune State reflects the state of the upstream (*,*,RP) state
machine described in Section 4.5.5.

Fenner, et al. StandardsTrack [Page 10]

RFC 4601 PIM-SM Specification February 2006

The upstream (*,*,RP) Join/Prune Timer is used to send out periodic Join(*,*,RP)
messages, and to override Prune(*,*,RP) messages from peers on an upstream LAN
interface.

The last RPF neighbor towards the RP is stored because if the MRIB changes, then the RPF
neighbor towards the RP may change. If it does so, then we need to trigger a new
Join(*,*,RP) to the new upstream neighbor and a Prune(*,*,RP) to the old upstream
neighbor. Similarly, if a router detects through a changed GenID in a Hello message that
the upstream neighbor towards the RP has rebooted, then it should re-instantiate state by
sending a Join(*,*,RP). These mechanisms are specified in Section 4.5.5.

4.1.3. (*,G)State

For every group G, a router keeps the following state:

(*,G) state:
For each interface:

Local Membership:
State: One of {"NoInfo", "Include"}

PIM (*,G) Join/Prune State:

• State: One of {"NoInfo" (NI), "Join" (J), "Prune-Pending" (PP)}

• Prune-Pending Timer (PPT)

• Join/Prune Expiry Timer (ET)

(*,G) Assert Winner State

• State: One of {"NoInfo" (NI), "I lost Assert" (L), "I won Assert"
(W)}

• Assert Timer (AT)

• Assert winner’s IP Address (AssertWinner)

• Assert winner’s Assert Metric (AssertWinnerMetric)

Not interface specific:

Upstream (*,G) Join/Prune State:

• State: One of {"NotJoined(*,G)", "Joined(*,G)"}

• Upstream Join/Prune Timer (JT)

• Last RP Used

• Last RPF Neighbor towards RP that was used

Local membership is the result of the local membership mechanism (such as IGMP or
MLD) running on that interface. Itneed not be kept if this router is not the DR on that
interface unless this router won a (*,G) assert on this interface for this group, although
implementations may optionally keep this state in case they become the DR or assert
winner. We recommend storing this information if possible, as it reduces latency
converging to stable operating conditions after a failure causing a change of DR. This
information is used by thepim_include(*,G) macro described in Section 4.1.6.

PIM (*,G) Join/Prune state is the result of receiving PIM (*,G) Join/Prune messages on this
interface and is specified in Section 4.5.2. The state is used by the macros that calculate the
outgoing interface list in Section 4.1.6, and in theJoinDesired(*,G) macro (defined in
Section 4.5.6) that is used in deciding whether a Join(*,G) should be sent upstream.

Fenner, et al. StandardsTrack [Page 11]

RFC 4601 PIM-SM Specification February 2006

(*,G) Assert Winner state is the result of sending or receiving (*,G) Assert messages on this
interface. Itis specified in Section 4.6.2.

The upstream (*,G) Join/Prune State reflects the state of the upstream (*,G) state machine
described in Section 4.5.6.

The upstream (*,G) Join/Prune Timer is used to send out periodic Join(*,G) messages, and
to override Prune(*,G) messages from peers on an upstream LAN interface.

The last RP used must be stored because if the RP-Set changes (Section 4.7), then state
must be torn down and rebuilt for groups whose RP changes.

The last RPF neighbor towards the RP is stored because if the MRIB changes, then the RPF
neighbor towards the RP may change. If it does so, then we need to trigger a new Join(*,G)
to the new upstream neighbor and a Prune(*,G) to the old upstream neighbor. Similarly, if a
router detects through a changed GenID in a Hello message that the upstream neighbor
towards the RP has rebooted, then it should re-instantiate state by sending a Join(*,G).
These mechanisms are specified in Section 4.5.6.

4.1.4. (S,G)State

For every source/group pair (S,G), a router keeps the following state:

(S,G) state:

For each interface:

Local Membership:
State: One of {"NoInfo", "Include"}

PIM (S,G) Join/Prune State:

• State: One of {"NoInfo" (NI), "Join" (J), "Prune-Pending" (PP)}

• Prune-Pending Timer (PPT)

• Join/Prune Expiry Timer (ET)

(S,G) Assert Winner State

• State: One of {"NoInfo" (NI), "I lost Assert" (L), "I won Assert"
(W)}

• Assert Timer (AT)

• Assert winner’s IP Address (AssertWinner)

• Assert winner’s Assert Metric (AssertWinnerMetric)

Not interface specific:

Upstream (S,G) Join/Prune State:

• State: One of {"NotJoined(S,G)", "Joined(S,G)"}

• Upstream (S,G) Join/Prune Timer (JT)

• Last RPF Neighbor towards S that was used

• SPTbit (indicates (S,G) state is active)

• (S,G) Keepalive Timer (KAT)

Additional (S,G) state at the DR:

• Register state: One of {"Join" (J), "Prune" (P), "Join-Pending"
(JP), "NoInfo" (NI)}

• Register-Stop timer

Fenner, et al. StandardsTrack [Page 12]

RFC 4601 PIM-SM Specification February 2006

Additional (S,G) state at the RP:

• PMBR: the first PMBR to send a Register for this source with the
Border bit set.

Local membership is the result of the local source-specific membership mechanism (such as
IGMP version 3) running on that interface and specifying that this particular source should
be included. As stored here, this state is the resulting state after any IGMPv3
inconsistencies have been resolved. Itneed not be kept if this router is not the DR on that
interface unless this router won a (S,G) assert on this interface for this group. However, we
recommend storing this information if possible, as it reduces latency converging to stable
operating conditions after a failure causing a change of DR. This information is used by the
pim_include(S,G) macro described in Section 4.1.6.

PIM (S,G) Join/Prune state is the result of receiving PIM (S,G) Join/Prune messages on this
interface and is specified in Section 4.5.2. The state is used by the macros that calculate the
outgoing interface list in Section 4.1.6, and in theJoinDesired(S,G) macro (defined in
Section 4.5.7) that is used in deciding whether a Join(S,G) should be sent upstream.

(S,G) Assert Winner state is the result of sending or receiving (S,G) Assert messages on this
interface. Itis specified in Section 4.6.1.

The upstream (S,G) Join/Prune State reflects the state of the upstream (S,G) state machine
described in Section 4.5.7.

The upstream (S,G) Join/Prune Timer is used to send out periodic Join(S,G) messages, and
to override Prune(S,G) messages from peers on an upstream LAN interface.

The last RPF neighbor towards S is stored because if the MRIB changes, then the RPF
neighbor towards S may change. If it does so, then we need to trigger a new Join(S,G) to
the new upstream neighbor and a Prune(S,G) to the old upstream neighbor. Similarly, if the
router detects through a changed GenID in a Hello message that the upstream neighbor
towards S has rebooted, then it should re-instantiate state by sending a Join(S,G). These
mechanisms are specified in Section 4.5.7.

The SPTbit is used to indicate whether forwarding is taking place on the (S,G) Shortest Path
Tree (SPT) or on the (*,G) tree.A router can have (S,G) state and still be forwarding on
(*,G) state during the interval when the source-specific tree is being constructed. When
SPTbit is FALSE, only (*,G) forwarding state is used to forward packets from S to G.
When SPTbit is TRUE, both (*,G) and (S,G) forwarding state are used.

The (S,G) Keepalive Timer is updated by data being forwarded using this (S,G) forwarding
state. Itis used to keep (S,G) state alive in the absence of explicit (S,G) Joins. Amongst
other things, this is necessary for the so-called "turnaround rules" — when the RP uses
(S,G) joins to stop encapsulation, and then (S,G) prunes to prevent traffic from
unnecessarily reaching the RP.

On a DR, the (S,G) Register State is used to keep track of whether to encapsulate data to the
RP on the Register Tunnel; the (S,G) Register-Stop timer tracks how long before
encapsulation begins again for a given (S,G).

On an RP, the PMBR value must be cleared when the Keepalive Timer expires.

4.1.5. (S,G,rpt) State

For every source/group pair (S,G) for which a router also has (*,G) state, it also keeps the
following state:

(S,G,rpt) state:

Fenner, et al. StandardsTrack [Page 13]

RFC 4601 PIM-SM Specification February 2006

For each interface:

Local Membership:
State: One of {"NoInfo", "Exclude"}

PIM (S,G,rpt) Join/Prune State:

• State: One of {"NoInfo", "Pruned", "Prune-Pending"}

• Prune-Pending Timer (PPT)

• Join/Prune Expiry Timer (ET)

Not interface specific:

Upstream (S,G,rpt) Join/Prune State:

• State: One of {"RPTNotJoined(G)", "NotPruned(S,G,rpt)",
"Pruned(S,G,rpt)"}

• Override Timer (OT)

Local membership is the result of the local source-specific membership mechanism (such as
IGMPv3) running on that interface and specifying that although there is (*,G) Include state,
this particular source should be excluded. Asstored here, this state is the resulting state
after any IGMPv3 inconsistencies between LAN members have been resolved. Itneed not
be kept if this router is not the DR on that interface unless this router won a (*,G) assert on
this interface for this group. However, we recommend storing this information if possible,
as it reduces latency converging to stable operating conditions after a failure causing a
change of DR. This information is used by thepim_exclude(S,G) macro described in
Section 4.1.6.

PIM (S,G,rpt) Join/Prune state is the result of receiving PIM (S,G,rpt) Join/Prune messages
on this interface and is specified in Section 4.5.4. The state is used by the macros that
calculate the outgoing interface list in Section 4.1.6, and in the rules for adding
Prune(S,G,rpt) messages to Join(*,G) messages specified in Section 4.5.8.

The upstream (S,G,rpt) Join/Prune state is used along with the Override Timer to send the
correct override messages in response to Join/Prune messages sent by upstream peers on a
LAN. This state and behavior are specified in Section 4.5.9.

4.1.6. StateSummarization Macros

Using this state, we define the following "macro" definitions, which we will use in the
descriptions of the state machines and pseudocode in the following sections.

The most important macros are those that define the outgoing interface list (or "olist") for
the relevant state. An olist can be "immediate" if it is built directly from the state of the
relevant type. For example, the immediate_olist(S,G) is the olist that would be built if the
router only had (S,G) state and no (*,G) or (S,G,rpt) state. In contrast, the "inherited" olist
inherits state from other types.For example, the inherited_olist(S,G) is the olist that is
relevant for forwarding a packet from S to G using both source-specific and group-specific
state.

There is no immediate_olist(S,G,rpt) as (S,G,rpt) state is negative state; it removes
interfaces in the (*,G) olist from the olist that is actually used to forward traffic. The
inherited_olist(S,G,rpt) is therefore the olist that would be used for a packet from S to G
forwarding on the RP tree. It is a strict subset of (immediate_olist(*,*,RP)+
immediate_olist(*,G)).

Generally speaking, the inherited olists are used for forwarding, and the immediate_olists
are used to make decisions about state maintenance.

Fenner, et al. StandardsTrack [Page 14]

RFC 4601 PIM-SM Specification February 2006

immediate_olist(*,*,RP) =
joins(*,*,RP)

immediate_olist(*,G) =
joins(*,G) + pim_include(*,G) − lost_assert(*,G)

immediate_olist(S,G) =
joins(S,G) + pim_include(S,G) − lost_assert(S,G)

inherited_olist(S,G,rpt) =
(joins(*,*,RP(G)) + joins(*,G) − prunes(S,G,rpt))

+ (pim_include(*,G) − pim_exclude(S,G))
− (lost_assert(*,G) + lost_assert(S,G,rpt))

inherited_olist(S,G) =
inherited_olist(S,G,rpt) +
joins(S,G) + pim_include(S,G) − lost_assert(S,G)

The macros pim_include(*,G) and pim_include(S,G) indicate the interfaces to which traffic
might be forwarded because of hosts that are local members on that interface. Notethat
normally only the DR cares about local membership, but when an assert happens, the assert
winner takes over responsibility for forwarding traffic to local members that have requested
traffic on a group or source/group pair.

pim_include(*,G) =
{ all interfaces I such that:

((I_am_DR(I) AND lost_assert(*,G,I) == FALSE)
OR AssertWinner(*,G,I) == me)

AND local_receiver_include(*,G,I) }

pim_include(S,G) =
{ all interfaces I such that:

((I_am_DR(I) AND lost_assert(S,G,I) == FALSE)
OR AssertWinner(S,G,I) == me)

AND local_receiver_include(S,G,I) }

pim_exclude(S,G) =
{ all interfaces I such that:

((I_am_DR(I) AND lost_assert(*,G,I) == FALSE)
OR AssertWinner(*,G,I) == me)

AND local_receiver_exclude(S,G,I) }

The clause "local_receiver_include(S,G,I)" is true if the IGMP/MLD module or other local
membership mechanism has determined that local members on interface I desire to receive
traffic sent specifically by S to G. "local_receiver_include(*,G,I)" is true if the IGMP/MLD
module or other local membership mechanism has determined that local members on
interface I desire to receive all traffic sent to G (possibly excluding traffic from a specific set
of sources). "local_receiver_exclude(S,G,I) is true if "local_receiver_include(*,G,I)" is true
but none of the local members desire to receive traffic from S.

Fenner, et al. StandardsTrack [Page 15]

RFC 4601 PIM-SM Specification February 2006

The set "joins(*,*,RP)" is the set of all interfaces on which the router has received (*,*,RP)
Joins:

joins(*,*,RP) =
{ all interfaces I such that

DownstreamJPState(*,*,RP,I) is either Join or
Prune-Pending }

DownstreamJPState(*,*,RP,I) is the state of the finite state machine in Section 4.5.1.

The set "joins(*,G)" is the set of all interfaces on which the router has received (*,G) Joins:

joins(*,G) =
{ all interfaces I such that

DownstreamJPState(*,G,I) is either Join or Prune-
Pending }

DownstreamJPState(*,G,I) is the state of the finite state machine in Section 4.5.2.

The set "joins(S,G)" is the set of all interfaces on which the router has received (S,G) Joins:

joins(S,G) =
{ all interfaces I such that

DownstreamJPState(S,G,I) is either Join or Prune-
Pending }

DownstreamJPState(S,G,I) is the state of the finite state machine in Section 4.5.3.

The set "prunes(S,G,rpt)" is the set of all interfaces on which the router has received (*,G)
joins and (S,G,rpt) prunes.

prunes(S,G,rpt) =
{ all interfaces I such that

DownstreamJPState(S,G,rpt,I) is Prune or PruneTmp }

DownstreamJPState(S,G,rpt,I) is the state of the finite state machine in Section 4.5.4.

The set "lost_assert(*,G)" is the set of all interfaces on which the router has received (*,G)
joins but has lost a (*,G) assert. The macro lost_assert(*,G,I) is defined in Section 4.6.5.

lost_assert(*,G) =
{ all interfaces I such that

lost_assert(*,G,I) == TRUE }

The set "lost_assert(S,G,rpt)" is the set of all interfaces on which the router has received
(*,G) joins but has lost an (S,G) assert. The macro lost_assert(S,G,rpt,I) is defined in
Section 4.6.5.

lost_assert(S,G,rpt) =
{ all interfaces I such that

lost_assert(S,G,rpt,I) == TRUE }

The set "lost_assert(S,G)" is the set of all interfaces on which the router has received (S,G)
joins but has lost an (S,G) assert. The macro lost_assert(S,G,I) is defined in Section 4.6.5.

lost_assert(S,G) =
{ all interfaces I such that

lost_assert(S,G,I) == TRUE }

The following pseudocode macro definitions are also used in many places in the
specification. Basically, RPF’ is the RPF neighbor towards an RP or source unless a PIM-
Assert has overridden the normal choice of neighbor.

Fenner, et al. StandardsTrack [Page 16]

RFC 4601 PIM-SM Specification February 2006

neighbor RPF’(*,G) {
if (I_Am_Assert_Loser(*, G, RPF_interface(RP(G)))) {

return AssertWinner(*, G, RPF_interface(RP(G)))
} else {

return NBR(RPF_interface(RP(G)), MRIB.next_hop(RP(G)))
}

}

neighbor RPF’(S,G,rpt) {
if(I_Am_Assert_Loser(S, G, RPF_interface(RP(G)))) {

return AssertWinner(S, G, RPF_interface(RP(G)))
} else {

return RPF’(*,G)
}

}

neighbor RPF’(S,G) {
if (I_Am_Assert_Loser(S, G, RPF_interface(S))) {

return AssertWinner(S, G, RPF_interface(S))
} else {

return NBR(RPF_interface(S), MRIB.next_hop(S))
}

}

RPF’(*,G) and RPF’(S,G) indicate the neighbor from which data packets should be coming
and to which joins should be sent on the RP tree and SPT, respectively.

RPF’(S,G,rpt) is basically RPF’(*,G) modified by the result of an Assert(S,G) on
RPF_interface(RP(G)). Insuch a case, packets from S will be originating from a different
router than RPF’(*,G). If we only have active (*,G) Join state, we need to accept packets
from RPF’(S,G,rpt) and add a Prune(S,G,rpt) to the periodic Join(*,G) messages that we
send to RPF’(*,G) (see Section 4.5.8).

The functionMRIB.next_hop(S) returns an address of the next-hop PIM neighbor
toward the host S, as indicated by the current MRIB. If S is directly adjacent, then
MRIB.next_hop(S) returns NULL. At the RP for G,MRIB.next_hop(RP(G))
returns NULL.

The functionNBR(I, A) uses information gathered through PIM Hello messages to
map the IP address A of a directly connected PIM neighbor router on interface I to the
primary IP address of the same router (Section 4.3.4). The primary IP address of a neighbor
is the address that it uses as the source of its PIM Hello messages. Note that a neighbor’s IP
address may be non-unique within the PIM neighbor database due to scope issues. The
address must, however, be unique amongst the addresses of all the PIM neighbors on a
specific interface.

I_Am_Assert_Loser(S, G, I) is true if the Assert state machine (in Section 4.6.1) for (S,G)
on Interface I is in "I am Assert Loser" state.

I_Am_Assert_Loser(*, G, I) is true if the Assert state machine (in Section 4.6.2) for (*,G)
on Interface I is in "I am Assert Loser" state.

Fenner, et al. StandardsTrack [Page 17]

RFC 4601 PIM-SM Specification February 2006

4.2. Data Packet Forwarding Rules
The PIM-SM packet forwarding rules are defined below in pseudocode.

iif is the incoming interface of the packet.
S is the source address of the packet.
G is the destination address of the packet (group address).
RP is the address of the Rendezvous Point for this group.
RPF_interface(S) is the interface the MRIB indicates would be used to route
packets to S.
RPF_interface(RP) is the interface the MRIB indicates would be used to route
packets to RP, except at the RP when it is the decapsulation interface (the "virtual"
interface on which register packets are received).

First, we restart (or start) the Keepalive Timer if the source is on a directly connected
subnet.

Second, we check to see if the SPTbit should be set because we’ve now switched from the
RP tree to the SPT.

Next, we check to see whether the packet should be accepted based on TIB state and the
interface that the packet arrived on.

If the packet should be forwarded using (S,G) state, we then build an outgoing interface list
for the packet. If this list is not empty, then we restart the (S,G) state Keepalive Timer.

If the packet should be forwarded using (*,*,RP) or (*,G) state, then we just build an
outgoing interface list for the packet. We also check if we should initiate a switch to start
receiving this source on a shortest path tree.

Finally we remove the incoming interface from the outgoing interface list we’ve created,
and if the resulting outgoing interface list is not empty, we forward the packet out of those
interfaces.

Fenner, et al. StandardsTrack [Page 18]

RFC 4601 PIM-SM Specification February 2006

On receipt of data from S to G on interface iif:
if(DirectlyConnected(S) == TRUE AND iif == RPF_interface(S)) {

set KeepaliveTimer(S,G) to Keepalive_Period
Note: a register state transition or UpstreamJPState(S,G)
transition may happen as a result of restarting
KeepaliveTimer, and must be dealt with here.

}

if(iif == RPF_interface(S) AND UpstreamJPState(S,G) == Joined AND
inherited_olist(S,G) ≠ NULL) {

set KeepaliveTimer(S,G) to Keepalive_Period
}

Update_SPTbit(S,G,iif)
oiflist = NULL

if(iif == RPF_interface(S) AND SPTbit(S,G) == TRUE) {
oiflist = inherited_olist(S,G)

} else if(iif == RPF_interface(RP(G)) AND SPTbit(S,G) == FALSE) {
oiflist = inherited_olist(S,G,rpt)
CheckSwitchToSpt(S,G)

} else {
Note: RPF check failed
A transition in an Assert FSM may cause an Assert(S,G)
or Assert(*,G) message to be sent out interface iif.
See section 4.6 for details.
if (SPTbit(S,G) == TRUE AND iif is in inherited_olist(S,G)) {

send Assert(S,G) on iif
} else if (SPTbit(S,G) == FALSE AND

iif is in inherited_olist(S,G,rpt) {
send Assert(*,G) on iif

}
}

oiflist = oiflist − iif
forward packet on all interfaces in oiflist

This pseudocode employs several "macro" definitions:

DirectlyConnected(S) is TRUE if the source S is on any subnet that is directly
connected to this router (or for packets originating on this router).

inherited_olist(S,G) andinherited_olist(S,G,rpt) are defined in
Section 4.1.

Basically,inherited_olist(S,G) is the outgoing interface list for packets forwarded
on (S,G) state, taking into account (*,*,RP) state, (*,G) state, asserts, etc.

inherited_olist(S,G,rpt) is the outgoing interface list for packets forwarded on
(*,*,RP) or (*,G) state, taking into account (S,G,rpt) prune state, asserts, etc.

Update_SPTbit(S,G,iif) is defined in Section 4.2.2.

CheckSwitchToSpt(S,G) is defined in Section 4.2.1.

Fenner, et al. StandardsTrack [Page 19]

RFC 4601 PIM-SM Specification February 2006

UpstreamJPState(S,G) is the state of the finite state machine in Section 4.5.7.

Keepalive_Period is defined in Section 4.10.

Data-triggered PIM-Assert messages sent from the above forwarding code should be rate-
limited in a implementation-dependent manner.

4.2.1. Last-HopSwitchover to t he SPT

In Sparse-Mode PIM, last-hop routers join the shared tree towards the RP. Once traffic from
sources to joined groups arrives at a last-hop router, it has the option of switching to receive
the traffic on a shortest path tree (SPT).

The decision for a router to switch to the SPT is controlled as follows:

void
CheckSwitchToSpt(S,G) {
if ((pim_include(*,G) − pim_exclude(S,G)

+ pim_include(S,G) ≠ NULL)
AND SwitchToSptDesired(S,G)) {
Note: Restarting the KAT will result in the SPT switch
set KeepaliveTimer(S,G) to Keepalive_Period

}
}

SwitchToSptDesired(S,G) is a policy function that is implementation defined. An "infinite
threshold" policy can be implemented by making SwitchToSptDesired(S,G) return false all
the time. A "switch on first packet" policy can be implemented by making
SwitchToSptDesired(S,G) return true once a single packet has been received for the source
and group.

4.2.2. Settingand Clearing the (S,G) SPTbit

The (S,G) SPTbit is used to distinguish whether to forward on (*,*,RP)/(*,G) or on (S,G)
state. Whenswitching from the RP tree to the source tree, there is a transition period when
data is arriving due to upstream (*,*,RP)/(*,G) state while upstream (S,G) state is being
established, during which time a router should continue to forward only on (*,*,RP)/(*,G)
state. Thisprevents temporary black-holes that would be caused by sending a
Prune(S,G,rpt) before the upstream (S,G) state has finished being established.

Thus, when a packet arrives, the (S,G) SPTbit is updated as follows:

void
Update_SPTbit(S,G,iif) {
if (iif == RPF_interface(S)

AND JoinDesired(S,G) == TRUE
AND (DirectlyConnected(S) == TRUE

OR RPF_interface(S) ≠ RPF_interface(RP(G))
OR inherited_olist(S,G,rpt) == NULL
OR ((RPF’(S,G) == RPF’(*,G)) AND

(RPF’(S,G) ≠ NULL))
OR (I_Am_Assert_Loser(S,G,iif)) {

Set SPTbit(S,G) to TRUE
}

}

Additionally, a router can set SPTbit(S,G) to TRUE in other cases, such as when it receives

Fenner, et al. StandardsTrack [Page 20]

RFC 4601 PIM-SM Specification February 2006

an Assert(S,G) on RPF_interface(S) (see Section 4.6.1).

JoinDesired(S,G) is defined in Section 4.5.7 and indicates whether we have the
appropriate (S,G) Join state to wish to send a Join(S,G) upstream.

Basically, Update_SPTbit will set the SPTbit if we have the appropriate (S,G) join state, and
if the packet arrived on the correct upstream interface for S, and if one or more of the
following conditions applies:

1. Thesource is directly connected, in which case the switch to the SPT is a no-op.

2. TheRPF interface to S is different from the RPF interface to the RP. The packet
arrived on RPF_interface(S), and so the SPT must have been completed.

3. Noonewants the packet on the RP tree.

4. RPF’(S,G)== RPF’(*,G). In this case, the router will never be able to tell if the SPT
has been completed, so it should just switch immediately.

In the case where the RPF interface is the same for the RP and for S, but RPF’(S,G) and
RPF’(*,G) differ, we wait for an Assert(S,G), which indicates that the upstream router with
(S,G) state believes the SPT has been completed. However, item (3) above is needed
because there may not be any (*,G) state to trigger an Assert(S,G) to happen.

The SPTbit is cleared in the (S,G) upstream state machine (see Section 4.5.7) when
JoinDesired(S,G) becomes FALSE.

4.3. Designated Routers (DR) and Hello Messages
A shared-media LAN like Ethernet may have multiple PIM-SM routers connected to it. A
single one of these routers, the DR, will act on behalf of directly connected hosts with
respect to the PIM-SM protocol. Because the distinction between LANs and point-to-point
interfaces can sometimes be blurred, and because routers may also have multicast host
functionality, the PIM-SM specification makes no distinction between the two. Thus,DR
election will happen on all interfaces, LAN or otherwise.

DR election is performed using Hello messages. Hello messages are also the way that
option negotiation takes place in PIM, so that additional functionality can be enabled, or
parameters tuned.

4.3.1. SendingHello Messages

PIM Hello messages are sent periodically on each PIM-enabled interface. They allow a
router to learn about the neighboring PIM routers on each interface. Hellomessages are
also the mechanism used to elect a Designated Router (DR), and to negotiate additional
capabilities. Arouter must record the Hello information received from each PIM neighbor.

Hello messages MUST be sent on all active interfaces, including physical point-to-point
links, and are multicast to the ’ALL-PIM-ROUTERS’ group address (’224.0.0.13’ for IPv4
and ’ff02::d’ for IPv6).

We note that some implementations do not send Hello messages on point-to-
point interfaces. This is non-compliant behavior. A compliant PIM router
MUST send Hello messages, even on point-to-point interfaces.

A per-interface Hello Timer (HT(I)) is used to trigger sending Hello messages on each
active interface. WhenPIM is enabled on an interface or a router first starts, the Hello
Timer of that interface is set to a random value between 0 and
Triggered_Hello_Delay. This prevents synchronization of Hello messages if

Fenner, et al. StandardsTrack [Page 21]

RFC 4601 PIM-SM Specification February 2006

multiple routers are powered on simultaneously. After the initial randomized interval, Hello
messages must be sent every Hello_Period seconds. TheHello Timer should not be
reset except when it expires.

Note that neighbors will not accept Join/Prune or Assert messages from a router unless they
have first heard a Hello message from that router. Thus, if a router needs to send a
Join/Prune or Assert message on an interface on which it has not yet sent a Hello message
with the currently configured IP address, then it MUST immediately send the relevant Hello
message without waiting for the Hello Timer to expire, followed by the Join/Prune or Assert
message.

The DR_Priority Option allows a network administrator to give preference to a particular
router in the DR election process by giving it a numerically larger DR Priority. The
DR_Priority Option SHOULD be included in every Hello message, even if no DR Priority
is explicitly configured on that interface. Thisis necessary because priority-based DR
election is only enabled when all neighbors on an interface advertise that they are capable of
using the DR_Priority Option. The default priority is 1.

The Generation_Identifier (GenID) Option SHOULD be included in all Hello messages.
The GenID option contains a randomly generated 32-bit value that is regenerated each time
PIM forwarding is started or restarted on the interface, including when the router itself
restarts. Whena Hello message with a new GenID is received from a neighbor, any old
Hello information about that neighbor SHOULD be discarded and superseded by the
information from the new Hello message. This may cause a new DR to be chosen on that
interface.

The LAN Prune Delay Option SHOULD be included in all Hello messages sent on multi-
access LANs. This option advertises a router’s capability to use values other than the
defaults for the Propagation_Delay and Override_Interval, which affect the setting of the
Prune-Pending, Upstream Join, and Override Timers (defined in Section 4.10).

The Address List Option advertises all the secondary addresses associated with the source
interface of the router originating the message. The option MUST be included in all Hello
messages if there are secondary addresses associated with the source interface and MAY be
omitted if no secondary addresses exist.

To allow new or rebooting routers to learn of PIM neighbors quickly, when a Hello message
is received from a new neighbor, or a Hello message with a new GenID is received from an
existing neighbor, a new Hello message should be sent on this interface after a randomized
delay between 0 andTriggered_Hello_Delay. This triggered message need not
change the timing of the scheduled periodic message. If a router needs to send a Join/Prune
to the new neighbor or send an Assert message in response to an Assert message from the
new neighbor before this randomized delay has expired, then it MUST immediately send
the relevant Hello message without waiting for the Hello Timer to expire, followed by the
Join/Prune or Assert message. If it does not do this, then the new neighbor will discard the
Join/Prune or Assert message.

Fenner, et al. StandardsTrack [Page 22]

RFC 4601 PIM-SM Specification February 2006

Before an interface goes down or changes primary IP address, a Hello message with a zero
HoldTime should be sent immediately (with the old IP address if the IP address changed).
This will cause PIM neighbors to remove this neighbor (or its old IP address) immediately.
After an interface has changed its IP address, it MUST send a Hello message with its new
IP address. If an interface changes one of its secondary IP addresses, a Hello message with
an updated Address_List option and a non-zero HoldTime should be sent immediately. This
will cause PIM neighbors to update this neighbor’s list of secondary addresses immediately.

4.3.2. DRElection

When a PIM Hello message is received on interface I, the following information about the
sending neighbor is recorded:

neighbor.interface
The interface on which the Hello message arrived.

neighbor.primary_ip_address
The IP address that the PIM neighbor used as the source address of the Hello
message.

neighbor.genid
The Generation ID of the PIM neighbor.

neighbor.dr_priority
The DR Priority field of the PIM neighbor, if it is present in the Hello message.

neighbor.dr_priority_present
A flag indicating if the DR Priority field was present in the Hello message.

neighbor.timeout
A timer value to time out the neighbor state when it becomes stale, also known as
the Neighbor Liveness Timer.

The Neighbor Liveness Timer (NLT(N,I)) is reset toHello_Holdtime (from
the Hello Holdtime option) whenever a Hello message is received containing a
Holdtime option, or toDefault_Hello_Holdtime if the Hello message
does not contain the Holdtime option.

Neighbor state is deleted when the neighbor timeout expires.

The function for computing the DR on interface I is:

host
DR(I) {

dr = me
for each neighbor on interface I {

if (dr_is_better(neighbor, dr, I) == TRUE) {
dr = neighbor

}
}
return dr

}

Fenner, et al. StandardsTrack [Page 23]

RFC 4601 PIM-SM Specification February 2006

The function used for comparing DR "metrics" on interface I is:

bool
dr_is_better(a,b,I) {

if(there is a neighbor n on I for which n.dr_priority_present
is false) {

return a.primary_ip_address > b.primary_ip_address
} else {

return (a.dr_priority > b.dr_priority) OR
(a.dr_priority == b.dr_priority AND

a.primary_ip_address > b.primary_ip_address)
}

}

The trivial functionI_am_DR(I) is defined to aid readability:

bool
I_am_DR(I) {

return DR(I) == me
}

The DR Priority is a 32-bit unsigned number, and the numerically larger priority is always
preferred. Arouter’s idea of the current DR on an interface can change when a PIM Hello
message is received, when a neighbor times out, or when a router’s own DR Priority
changes. Ifthe router becomes the DR or ceases to be the DR, this will normally cause the
DR Register state machine to change state. Subsequent actions are determined by that state
machine.

We note that some PIM implementations do not send Hello messages on point-
to-point interfaces and thus cannot perform DR election on such interfaces.
This is non-compliant behavior. DR election MUST be performed on ALL active
PIM-SM interfaces.

4.3.3. ReducingPrune Propagation Delay on LANs

In addition to the information recorded for the DR Election, the following per neighbor
information is obtained from the LAN Prune Delay Hello option:

neighbor.lan_prune_delay_present
A flag indicating if the LAN Prune Delay option was present in the Hello
message.

neighbor.tracking_support
A flag storing the value of the T bit in the LAN Prune Delay option if it is present
in the Hello message. This indicates the neighbor’s capability to disable Join
message suppression.

neighbor.propagation_delay
The Propagation Delay field of the LAN Prune Delay option (if present) in the
Hello message.

neighbor.override_interval
The Override_Interval field of the LAN Prune Delay option (if present) in the
Hello message.

The additional state described above is deleted along with the DR neighbor state when the
neighbor timeout expires.

Fenner, et al. StandardsTrack [Page 24]

RFC 4601 PIM-SM Specification February 2006

Just like the DR_Priority option, the information provided in the LAN Prune Delay option
is not used unless all neighbors on a link advertise the option. The function below computes
this state:

bool
lan_delay_enabled(I) {

for each neighbor on interface I {
if (neighbor.lan_prune_delay_present == false) {

return false
}

}
return true

}

The Propagation Delay inserted by a router in the LAN Prune Delay option expresses the
expected message propagation delay on the link and should be configurable by the system
administrator. It is used by upstream routers to figure out how long they should wait for a
Join override message before pruning an interface.

PIM implementers should enforce a lower bound on the permitted values for this delay to
allow for scheduling and processing delays within their router. Such delays may cause
received messages to be processed later as well as triggered messages to be sent later than
intended. Settingthis Propagation Delay to too low a value may result in temporary
forwarding outages because a downstream router will not be able to override a neighbor’s
Prune message before the upstream neighbor stops forwarding.

When all routers on a link are in a position to negotiate a Propagation Delay different from
the default, the largest value from those advertised by each neighbor is chosen. The
function for computing the Effective_Propagation_Delay of interface I is:

time_interval
Effective_Propagation_Delay(I) {

if (lan_delay_enabled(I) == false) {
return Propagation_delay_default

}
delay = Propagation_Delay(I)
for each neighbor on interface I {

if (neighbor.propagation_delay > delay) {
delay = neighbor.propagation_delay

}
}
return delay

}

To avoid synchronization of override messages when multiple downstream routers share a
multi-access link, sending of such messages is delayed by a small random amount of time.
The period of randomization should represent the size of the PIM router population on the
link. Eachrouter expresses its view of the amount of randomization necessary in the
Override Interval field of the LAN Prune Delay option.

Fenner, et al. StandardsTrack [Page 25]

RFC 4601 PIM-SM Specification February 2006

When all routers on a link are in a position to negotiate an Override Interval different from
the default, the largest value from those advertised by each neighbor is chosen. The
function for computing the Effective Override Interval of interface I is:

time_interval
Effective_Override_Interval(I) {

if (lan_delay_enabled(I) == false) {
return t_override_default

}
delay = Override_Interval(I)
for each neighbor on interface I {

if (neighbor.override_interval > delay) {
delay = neighbor.override_interval

}
}
return delay

}

Although the mechanisms are not specified in this document, it is possible for upstream
routers to explicitly track the join membership of individual downstream routers if Join
suppression is disabled.A router can advertise its willingness to disable Join suppression
by using the T bit in the LAN Prune Delay Hello option. Unless all PIM routers on a link
negotiate this capability, explicit tracking and the disabling of the Join suppression
mechanism are not possible. The function for computing the state of Suppression on
interface I is:

bool
Suppression_Enabled(I) {

if (lan_delay_enabled(I) == false) {
return true

}
for each neighbor on interface I {

if (neighbor.tracking_support == false) {
return true

}
}
return false

}

Note that the setting of Suppression_Enabled(I) affects the value of t_suppressed (see
Section 4.10).

4.3.4. MaintainingSecondary Address Lists

Communication of a router’s interface secondary addresses to its PIM neighbors is
necessary to provide the neighbors with a mechanism for mapping next_hop information
obtained through their MRIB to a primary address that can be used as a destination for
Join/Prune messages. The mapping is performed through the NBR macro. The primary
address of a PIM neighbor is obtained from the source IP address used in its PIM Hello
messages. Secondaryaddresses are carried within the Hello message in an Address List
Hello option. The primary address of the source interface of the router MUST NOT be
listed within the Address List Hello option.

Fenner, et al. StandardsTrack [Page 26]

RFC 4601 PIM-SM Specification February 2006

In addition to the information recorded for the DR Election, the following per neighbor
information is obtained from the Address List Hello option:

neighbor.secondary_address_list
The list of secondary addresses used by the PIM neighbor on the interface
through which the Hello message was transmitted.

When processing a received PIM Hello message containing an Address List Hello option,
the list of secondary addresses in the message completely replaces any previously
associated secondary addresses for that neighbor. If a received PIM Hello message does not
contain an Address List Hello option, then all secondary addresses associated with the
neighbor must be deleted. If a received PIM Hello message contains an Address List Hello
option that includes the primary address of the sending router in the list of secondary
addresses (although this is not expected), then the addresses listed in the message, excluding
the primary address, are used to update the associated secondary addresses for that
neighbor.

All the advertised secondary addresses in received Hello messages must be checked against
those previously advertised by all other PIM neighbors on that interface. Ifthere is a
conflict and the same secondary address was previously advertised by another neighbor,
then only the most recently received mapping MUST be maintained, and an error message
SHOULD be logged to the administrator in a rate-limited manner.

Within one Address List Hello option, all the addresses MUST be of the same address
family. It is not permitted to mix IPv4 and IPv6 addresses within the same message. In
addition, the address family of the fields in the message SHOULD be the same as the IP
source and destination addresses of the packet header.

4.4. PIM Register Messages
The Designated Router (DR) on a LAN or point-to-point link encapsulates multicast packets
from local sources to the RP for the relevant group unless it recently received a Register-
Stop message for that (S,G) or (*,G) from the RP. When the DR receives a Register-Stop
message from the RP, it starts a Register-Stop Timer to maintain this state. Just before the
Register-Stop Timer expires, the DR sends a Null-Register Message to the RP to allow the
RP to refresh the Register-Stop information at the DR. If the Register-Stop Timer actually
expires, the DR will resume encapsulating packets from the source to the RP.

Fenner, et al. StandardsTrack [Page 27]

RFC 4601 PIM-SM Specification February 2006

4.4.1. SendingRegister Messages from the DR

Every PIM-SM router has the capability to be a DR. The state machine below is used to
implement Register functionality. For the purposes of specification, we represent the
mechanism to encapsulate packets to the RP as a Register-Tunnel interface, which is added
to or removed from the (S,G) olist. The tunnel interface then takes part in the normal packet
forwarding rules as specified in Section 4.2.

If register state is maintained, it is maintained only for directly connected sources and is
per-(S,G). Thereare four states in the DR’s per-(S,G) Register state machine:

Join (J)
The register tunnel is "joined" (the join is actually implicit, but the DR acts as if the
RP has joined the DR on the tunnel interface).

Prune (P)
The register tunnel is "pruned" (this occurs when a Register-Stop is received).

Join-Pending (JP)
The register tunnel is pruned but the DR is contemplating adding it back.

NoInfo (NI)
No information. This is the initial state, and the state when the router is not the DR.

In addition, a Register-Stop Timer (RST) is kept if the state machine is not in the NoInfo
state.

Join

No
Info Prune

JP

Note: RegStop
Timer doesn’t
run in NoInfo
state

CouldRegister(S,G)
−>TRUE
[Add reg tunnel]

CouldRegister(S,G)
−> FALSE
[Remove reg tunnel]

CouldRegister(S,G)
−> FALSE

RP Changed
[Add reg tunnel]
[Cancel RegStop Timer]

RegStop Timer expires
[Add reg tunnel]

CouldRegister(S,G)
−> FALSE

RP Changed
[Update reg tunnel]

RP Changed
[Add reg tunnel]
[Cancel RegStop Timer]

RegStop Timer
expired
[Set RegStop Timer
to probetime]
[Send Null−Register]

RegStop received from RP
[Remove reg tunnel]
[Set RegStop Timer to
randomized RST − probetime] RegStop received

from RP
[Set RegStop Timer
to randomized RST
−probetime]

Figure 1: Per-(S,G) register state machine at a DR

Fenner, et al. StandardsTrack [Page 28]

RFC 4601 PIM-SM Specification February 2006

Per-(S,G) register state machine at a DR in tabular form:

Event

Prev State Register-
Stop Timer
expires

Could
Register
→Tr ue

Could
Register
→False

Register-
Stop
received

RP changed

- - - -→ J state
NoInfo (NI) add reg

tunnel
- - → NI state → P state → J state

Join (J)
remove reg
tunnel

remove reg
tunnel; set
Register-Stop
Timer(*)

update reg
tunnel

-→ J state → NI state → P state → J state

Join-
Pending (JP)

add reg
tunnel

set Register-
Stop
Timer(*)

add reg
tunnel; cancel
Register-Stop
Timer

- -→ JP state → NI state → J state

Prune (P)

set Register-
Stop
Timer(**);
send Null-
Register

add reg
tunnel; cancel
Register-Stop
Timer

Notes:

(*) The Register-Stop Timer is set to a random value chosen uniformly from the interval (
0.5 * Register_Suppression_Time, 1.5 * Register_Suppression_Time) minus
Register_Probe_Time.

Subtracting off Register_Probe_Time is a bit unnecessary because it is really small
compared to Register_Suppression_Time, but this was in the old spec and is kept for
compatibility.

(**) The Register-Stop Timer is set to Register_Probe_Time.

The following three actions are defined:

Add Register Tunnel

A Register-Tunnel virtual interface, VI, is created (if it doesn’t already exist) with its
encapsulation target being RP(G). DownstreamJPState(S,G,VI) is set to Join state,
causing the tunnel interface to be added toimmediate_olist(S,G) and
inherited_olist(S,G).

Remove Register Tunnel

VI is the Register-Tunnel virtual interface with encapsulation target of RP(G).
DownstreamJPState(S,G,VI) is set to NoInfo state, causing the tunnel interface to be
removed fromimmediate_olist(S,G) andinherited_olist(S,G). If
DownstreamJPState(S,G,VI) is NoInfo for all (S,G), then VI can be deleted.

Fenner, et al. StandardsTrack [Page 29]

RFC 4601 PIM-SM Specification February 2006

Update Register Tunnel

This action occurs when RP(G) changes.

VI_old is the Register-Tunnel virtual interface with encapsulation target old_RP(G).
A Register-Tunnel virtual interface, VI_new, is created (if it doesn’t already exist)
with its encapsulation target being new_RP(G). DownstreamJPState(S,G,VI_old) is
set to NoInfo state and DownstreamJPState(S,G,VI_new) is set to Join state. If
DownstreamJPState(S,G,VI_old) is NoInfo for all (S,G), then VI_old can be deleted.

Note that we cannot simply change the encapsulation target of VI_old because not all
groups using that encapsulation tunnel will have moved to the same new RP.

CouldRegister(S,G)

The macro "CouldRegister" in the state machine is defined as:

bool CouldRegister(S,G) {
return (I_am_DR(RPF_interface(S)) AND

KeepaliveTimer(S,G) is running AND
DirectlyConnected(S) == TRUE)

}

Note that on reception of a packet at the DR from a directly connected source,
KeepaliveTimer(S,G) needs to be set by the packet forwarding rulesbefore
computingCouldRegister(S,G) in the register state machine, or the first packet from
a source won’t be registered.

Encapsulating Data Packets in the Register Tunnel

Conceptually, the Register Tunnel is an interface with a smaller MTU than the underlying IP
interface towards the RP. IP fragmentation on packets forwarded on the Register Tunnel is
performed based upon this smaller MTU. The encapsulating DR may perform Path MTU
Discovery to the RP to determine the effective MTU of the tunnel. Fragmentation for the
smaller MTU should take both the outer IP header and the PIM register header overhead
into account. If a multicast packet is fragmented on the way into the Register Tunnel, each
fragment is encapsulated individually so it contains IP, PIM, and inner IP headers.

In IPv6, the DR MUST perform Path MTU discovery, and an ICMP Packet Too Big
message MUST be sent by the encapsulating DR if it receives a packet that will not fit in the
effective MTU of the tunnel. If the MTU between the DR and the RP results in the effective
tunnel MTU being smaller than 1280 (the IPv6 minimum MTU), the DR MUST send
Fragmentation Required messages with an MTU value of 1280 and MUST fragment its PIM
register messages as required, using an IPv6 fragmentation header between the outer IPv6
header and the PIM Register header.

The TTL of a forwarded data packet is decremented before it is encapsulated in the Register
Tunnel. Theencapsulating packet uses the normal TTL that the router would use for any
locally-generated IP packet.

The IP ECN bits should be copied from the original packet to the IP header of the
encapsulating packet. They SHOULD NOT be set independently by the encapsulating
router.

The Diffserv Code Point (DSCP) should be copied from the original packet to the IP header
of the encapsulating packet. ItMAY be set independently by the encapsulating router,
based upon static configuration or traffic classification. See [12] for more discussion on
setting the DSCP on tunnels.

Fenner, et al. StandardsTrack [Page 30]

RFC 4601 PIM-SM Specification February 2006

Handling Register-Stop(*,G) Messages at the DR

An old RP might send a Register-Stop message with the source address set to all zeros.
This was the normal course of action in RFC 2362 when the Register message matched
against (*,G) state at the RP, and it was defined as meaning "stop encapsulating all sources
for this group". However, the behavior of such a Register-Stop(*,G) is ambiguous or
incorrect in some circumstances.

We specify that an RP should not send Register-Stop(*,G) messages, but for compatibility, a
DR should be able to accept one if it is received.

A Register-Stop(*,G) should be treated as a Register-Stop(S,G) for all (S,G) Register state
machines that are not in the NoInfo state.A router should not apply a Register-Stop(*,G) to
sources that become active after the Register-Stop(*,G) was received.

Fenner, et al. StandardsTrack [Page 31]

RFC 4601 PIM-SM Specification February 2006

4.4.2. Receiving Register Messages at the RP

When an RP receives a Register message, the course of action is decided according to the
following pseudocode:

packet_arrives_on_rp_tunnel(pkt) {
if(outer.dst is not one of my addresses) {

drop the packet silently.
Note: this may be a spoofing attempt

}
if(I_am_RP(G) AND outer.dst == RP(G)) {

sentRegisterStop = FALSE;
if (register.borderbit == TRUE) {

if (PMBR(S,G) == unknown) {
PMBR(S,G) = outer.src

} else if (outer.src != PMBR(S,G)) {
send Register-Stop(S,G) to outer.src
drop the packet silently.

}
}
if (SPTbit(S,G) OR

(SwitchToSptDesired(S,G) AND
(inherited_olist(S,G) == NULL))) {

send Register-Stop(S,G) to outer.src
sentRegisterStop = TRUE;

}
if (SPTbit(S,G) OR SwitchToSptDesired(S,G)) {

if (sentRegisterStop == TRUE) {
set KeepaliveTimer(S,G) to RP_Keepalive_Period;

} else {
set KeepaliveTimer(S,G) to Keepalive_Period;

}
}
if(!SPTbit(S,G) AND ! pkt.NullRegisterBit) {

decapsulate and forward the inner packet to
inherited_olist(S,G,rpt) # Note (†)

}
} else {

send Register-Stop(S,G) to outer.src
Note (*)

}
}

outer.dst is the IP destination address of the encapsulating header.

outer.src is the IP source address of the encapsulating header, i.e., the DR’s address.

I_am_RP(G) is true if the group-to-RP mapping indicates that this router is the RP for the
group.

Note (*): This may block traffic from S for Register_Suppression_Time if the DR learned
about a new group-to-RP mapping before the RP did. However, this doesn’t matter
unless we figure out some way for the RP also to accept (*,G) joins when it doesn’t

Fenner, et al. StandardsTrack [Page 32]

RFC 4601 PIM-SM Specification February 2006

yet realize that it is about to become the RP for G. This will all get sorted out once the
RP learns the new group-to-rp mapping.We decided to do nothing about this and just
accept the fact that PIM may suffer interrupted (*,G) connectivity following an RP
change.

Note (†): Implementations are advised not to make this a special case, but to arrange that
this path rejoin the normal packet forwarding path. All of the appropriate actions from
the "On receipt of data from S to G on interface iif" pseudocode in Section 4.2 should
be performed.

KeepaliveTimer(S,G) is restarted at the RP when packets arrive on the proper tunnel
interface and the RP desires to switch to the SPT or the SPTbit is already set. This may
cause the upstream (S,G) state machine to trigger a join if the inherited_olist(S,G) is not
NULL.

An RP should preserve (S,G) state that was created in response to a Register message for at
least (3 * Register_Suppression_Time); otherwise, the RP may stop joining (S,G) before
the DR for S has restarted sending registers. Traffic would then be interrupted until the
Register-Stop Timer expires at the DR.

Thus, at the RP, KeepaliveTimer(S,G) should be restarted to (3 *
Register_Suppression_Time + Register_Probe_Time).

When forwarding a packet from the Register Tunnel, the TTL of the original data packet is
decremented after it is decapsulated.

The IP ECN bits should be copied from the IP header of the Register packet to the
decapsulated packet.

The Diffserv Code Point (DSCP) should be copied from the IP header of the Register packet
to the decapsulated packet. TheRP MAY retain the DSCP of the inner packet or re-classify
the packet and apply a different DSCP. Scenarios where each of these might be useful are
discussed in [12].

4.5. PIM Join/Prune Messages
A PIM Join/Prune message consists of a list of groups and a list of Joined and Pruned
sources for each group. When processing a received Join/Prune message, each Joined or
Pruned source for a Group is effectively considered individually, and applies to one or more
of the following state machines. When considering a Join/Prune message whose Upstream
Neighbor Address field addresses this router, (*,G) Joins and Prunes can affect both the
(*,G) and (S,G,rpt) downstream state machines, while (*,*,RP), (S,G), and (S,G,rpt) Joins
and Prunes can only affect their respective downstream state machines. When considering a
Join/Prune message whose Upstream Neighbor Address field addresses another router, most
Join or Prune messages could affect each upstream state machine.

In general, a PIM Join/Prune message should only be accepted for processing if it comes
from a known PIM neighbor. A PIM router hears about PIM neighbors through PIM Hello
messages. Ifa router receives a Join/Prune message from a particular IP source address and
it has not seen a PIM Hello message from that source address, then the Join/Prune message
SHOULD be discarded without further processing. In addition, if the Hello message from a
neighbor was authenticated using IPsec AH (see Section 6.3), then all Join/Prune messages
from that neighbor MUST also be authenticated using IPsec AH.

We note that some older PIM implementations incorrectly fail to send Hello messages on
point-to-point interfaces, so we also RECOMMEND that a configuration option be provided
to allow interoperation with such older routers, but that this configuration option SHOULD

Fenner, et al. StandardsTrack [Page 33]

RFC 4601 PIM-SM Specification February 2006

NOT be enabled by default.

4.5.1. Receiving (*,*,RP) Join/Prune Messages

The per-interface state machine for receiving (*,*,RP) Join/Prune Messages is given below.
There are three states:

NoInfo (NI)
The interface has no (*,*,RP) Join state and no timers running.

Join (J)
The interface has (*,*,RP) Join state, which will cause the router to forward
packets destined for any group handled by RP from this interface except if there
is also (S,G,rpt) prune information (see Section 4.5.4) or the router lost an assert
on this interface.

Prune-Pending (PP)
The router has received a Prune(*,*,RP) on this interface from a downstream
neighbor and is waiting to see whether the prune will be overridden by another
downstream router. For forwarding purposes, the Prune-Pending state functions
exactly like the Join state.

In addition, the state machine uses two timers:

ExpiryTimer (ET)
This timer is restarted when a valid Join(*,*,RP) is received. Expiryof the
ExpiryTimer causes the interface state to revert to NoInfo for this RP.

Prune-Pending Timer (PPT)
This timer is set when a valid Prune(*,*,RP) is received. Expiryof the Prune-
Pending Timer causes the interface state to revert to NoInfo for this RP.

NI

J

PP

(*,*,RP) Join
[Restart ET]

(*,*,RP) Prune

ET Expires

(*,*,RP) Join
[Restart ET]

ET
Expires

(*,*,RP) Join
[Start ET]

(*,*,RP) Prune

(*,*,RP) Prune
[Start PPT]

PPT Expires
[Send PruneEcho]

Figure 2: Downstream per-interface (*,*,RP) state machine

Fenner, et al. StandardsTrack [Page 34]

RFC 4601 PIM-SM Specification February 2006

Downstream per-interface (*,*,RP) state machine in tabular form:

Event
Prev State Receive

Join(*,*,RP)
Receive Prune
(*,*,RP)

Prune-Pending
Timer Expires

Expiry Timer
Expires

→ J state → NI state - -
NoInfo (NI) start Expiry

Timer
→ J state → PP state - → NI state

Join (J) restart Expiry
Timer

start Prune-
Pending Timer

→ J state → PP state → NI state → NI state
Prune-Pending
(PP)

restart Expiry
Timer

Send Prune-
Echo(*,*,RP)

The transition events "Receive Join(*,*,RP)" and "Receive Prune(*,*,RP)" imply receiving
a Join or Prune targeted to this router’s primary IP address on the received interface. Ifthe
upstream neighbor address field is not correct, these state transitions in this state machine
must not occur, although seeing such a packet may cause state transitions in other state
machines.

On unnumbered interfaces on point-to-point links, the router’s address should be the same
as the source address it chose for the Hello message it sent over that interface. However, on
point-to-point links we also recommend that for backwards compatibility PIM Join/Prune
messages with an upstream neighbor address field of all zeros are also accepted.

Transitions from NoInfo State

When in NoInfo state, the following event may trigger a transition:

Receive Join(*,*,RP)
A Join(*,*,RP) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (*,*,RP) downstream state machine on interface I transitions to the Join
state. TheExpiry Timer (ET) is started and set to the HoldTime from the
triggering Join/Prune message.

Note that it is possible to receive a Join(*,*,RP) message for an RP for which we
do not have information telling us that it is an RP. In the case of (*,*,RP) state,
so long as we have a route to the RP, this will not cause a problem, and the
transition should still take place.

Transitions from Join State

When in Join state, the following events may trigger a transition:

Receive Join(*,*,RP)
A Join(*,*,RP) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (*,*,RP) downstream state machine on interface I remains in Join state, and
the Expiry Timer (ET) is restarted, set to maximum of its current value and the
HoldTime from the triggering Join/Prune message.

Fenner, et al. StandardsTrack [Page 35]

RFC 4601 PIM-SM Specification February 2006

Receive Prune(*,*,RP)
A Prune(*,*,RP) is received on interface I with its Upstream Neighbor Address
set to the router’s primary IP address on I.

The (*,*,RP) downstream state machine on interface I transitions to the Prune-
Pending state. The Prune-Pending Timer is started. It is set to the
J/P_Override_Interval(I) if the router has more than one neighbor on that
interface; otherwise, it is set to zero, causing it to expire immediately.

Expiry Timer Expires
The Expiry Timer for the (*,*,RP) downstream state machine on interface I
expires.

The (*,*,RP) downstream state machine on interface I transitions to the NoInfo
state.

Transitions from Prune-Pending State

When in Prune-Pending state, the following events may trigger a transition:

Receive Join(*,*,RP)
A Join(*,*,RP) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (*,*,RP) downstream state machine on interface I transitions to the Join
state. ThePrune-Pending Timer is canceled (without triggering an expiry event).
The Expiry Timer is restarted, set to maximum of its current value and the
HoldTime from the triggering Join/Prune message.

Expiry Timer Expires
The Expiry Timer for the (*,*,RP) downstream state machine on interface I
expires.

The (*,*,RP) downstream state machine on interface I transitions to the NoInfo
state.

Prune-Pending Timer Expires
The Prune-Pending Timer for the (*,*,RP) downstream state machine on
interface I expires.

The (*,*,RP) downstream state machine on interface I transitions to the NoInfo
state. APruneEcho(*,*,RP) is sent onto the subnet connected to interface I.

The action "Send PruneEcho(*,*,RP)" is triggered when the router stops
forwarding on an interface as a result of a prune.A PruneEcho(*,*,RP) is simply
a Prune(*,*,RP) message sent by the upstream router on a LAN with its own
address in the Upstream Neighbor Address field. Its purpose is to add additional
reliability so that if a Prune that should have been overridden by another router is
lost locally on the LAN, then the PruneEcho may be received and cause the
override to happen.A PruneEcho(*,*,RP) need not be sent on an interface that
contains only a single PIM neighbor during the time this state machine was in
Prune-Pending state.

4.5.2. Receiving (*,G) Join/Prune Messages

When a router receives a Join(*,G), it must first check to see whether the RP in the message
matches RP(G) (the router’s idea of who the RP is). If the RP in the message does not
match RP(G), the Join(*,G) should be silently dropped. (Note that other source list entries,
such as (S,G,rpt) or (S,G), in the same Group-Specific Set should still be processed.) If a

Fenner, et al. StandardsTrack [Page 36]

RFC 4601 PIM-SM Specification February 2006

router has no RP information (e.g., has not recently received a BSR message), then it may
choose to accept Join(*,G) and treat the RP in the message as RP(G). Received Prune(*,G)
messages are processed even if the RP in the message does not match RP(G).

The per-interface state machine for receiving (*,G) Join/Prune Messages is given below.
There are three states:

NoInfo (NI)
The interface has no (*,G) Join state and no timers running.

Join (J)
The interface has (*,G) Join state, which will cause the router to forward packets
destined for G from this interface except if there is also (S,G,rpt) prune
information (see Section 4.5.4) or the router lost an assert on this interface.

Prune-Pending (PP)
The router has received a Prune(*,G) on this interface from a downstream
neighbor and is waiting to see whether the prune will be overridden by another
downstream router. For forwarding purposes, the Prune-Pending state functions
exactly like the Join state.

In addition, the state machine uses two timers:

Expiry Timer (ET)
This timer is restarted when a valid Join(*,G) is received. Expiryof the Expiry
Timer causes the interface state to revert to NoInfo for this group.

Prune-Pending Timer (PPT)
This timer is set when a valid Prune(*,G) is received. Expiryof the Prune-
Pending Timer causes the interface state to revert to NoInfo for this group.

NI

J

PP

ET Expires

ET
Expires

PPT Expires
[Send PruneEcho]

Join(*,G)
[Restart ET]

Prune(*,G)
[Start PPT]

Prune(*,G)
Join(*,G)
[Restart ET]

Join(*,G)
[Start ET]

Prune(*,G)

Figure 3: Downstream per-interface (*,G) state machine

Fenner, et al. StandardsTrack [Page 37]

RFC 4601 PIM-SM Specification February 2006

Downstream per-interface (*,G) state machine in tabular form:

Event
Prev State Receive

Join(*,G)
Receive
Prune(*,G)

Prune-Pending
Timer Expires

Expiry Timer
Expires

→ J state → NI state - -
NoInfo (NI) start Expiry

Timer
→ J state → PP state - → NI state

Join (J) restart Expiry
Timer

start Prune-
Pending Timer

→ J state → PP state → NI state → NI state
Prune-Pending
(PP)

restart Expiry
Timer

Send Prune-
Echo(*,G)

The transition events "Receive Join(*,G)" and "Receive Prune(*,G)" imply receiving a Join
or Prune targeted to this router’s primary IP address on the received interface. Ifthe
upstream neighbor address field is not correct, these state transitions in this state machine
must not occur, although seeing such a packet may cause state transitions in other state
machines.

On unnumbered interfaces on point-to-point links, the router’s address should be the same
as the source address it chose for the Hello message it sent over that interface. However, on
point-to-point links we also recommend that for backwards compatibility PIM Join/Prune
messages with an upstream neighbor address field of all zeros are also accepted.

Transitions from NoInfo State

When in NoInfo state, the following event may trigger a transition:

Receive Join(*,G)
A Join(*,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (*,G) downstream state machine on interface I transitions to the Join state.
The Expiry Timer (ET) is started and set to the HoldTime from the triggering
Join/Prune message.

Transitions from Join State

When in Join state, the following events may trigger a transition:

Receive Join(*,G)
A Join(*,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (*,G) downstream state machine on interface I remains in Join state, and the
Expiry Timer (ET) is restarted, set to maximum of its current value and the
HoldTime from the triggering Join/Prune message.

Receive Prune(*,G)
A Prune(*,G) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (*,G) downstream state machine on interface I transitions to the Prune-
Pending state. The Prune-Pending Timer is started. It is set to the
J/P_Override_Interval(I) if the router has more than one neighbor on that

Fenner, et al. StandardsTrack [Page 38]

RFC 4601 PIM-SM Specification February 2006

interface; otherwise, it is set to zero, causing it to expire immediately.

Expiry Timer Expires
The Expiry Timer for the (*,G) downstream state machine on interface I expires.

The (*,G) downstream state machine on interface I transitions to the NoInfo
state.

Transitions from Prune-Pending State

When in Prune-Pending state, the following events may trigger a transition:

Receive Join(*,G)
A Join(*,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (*,G) downstream state machine on interface I transitions to the Join state.
The Prune-Pending Timer is canceled (without triggering an expiry event). The
Expiry Timer is restarted, set to maximum of its current value and the HoldTime
from the triggering Join/Prune message.

Expiry Timer Expires
The Expiry Timer for the (*,G) downstream state machine on interface I expires.

The (*,G) downstream state machine on interface I transitions to the NoInfo
state.

Prune-Pending Timer Expires
The Prune-Pending Timer for the (*,G) downstream state machine on interface I
expires.

The (*,G) downstream state machine on interface I transitions to the NoInfo
state. APruneEcho(*,G) is sent onto the subnet connected to interface I.

The action "Send PruneEcho(*,G)" is triggered when the router stops forwarding
on an interface as a result of a prune.A PruneEcho(*,G) is simply a Prune(*,G)
message sent by the upstream router on a LAN with its own address in the
Upstream Neighbor Address field. Its purpose is to add additional reliability so
that if a Prune that should have been overridden by another router is lost locally
on the LAN, then the PruneEcho may be received and cause the override to
happen. APruneEcho(*,G) need not be sent on an interface that contains only a
single PIM neighbor during the time this state machine was in Prune-Pending
state.

4.5.3. Receiving (S,G) Join/Prune Messages

The per-interface state machine for receiving (S,G) Join/Prune messages is given below and
is almost identical to that for (*,G) messages. There are three states:

NoInfo (NI)
The interface has no (S,G) Join state and no (S,G) timers running.

Join (J)
The interface has (S,G) Join state, which will cause the router to forward packets
from S destined for G from this interface if the (S,G) state is active (the SPTbit is
set) except if the router lost an assert on this interface.

Prune-Pending (PP)
The router has received a Prune(S,G) on this interface from a downstream
neighbor and is waiting to see whether the prune will be overridden by another

Fenner, et al. StandardsTrack [Page 39]

RFC 4601 PIM-SM Specification February 2006

downstream router. For forwarding purposes, the Prune-Pending state functions
exactly like the Join state.

In addition, there are two timers:

Expiry Timer (ET)
This timer is set when a valid Join(S,G) is received. Expiryof the Expiry Timer
causes this state machine to revert to NoInfo state.

Prune-Pending Timer (PPT)
This timer is set when a valid Prune(S,G) is received. Expiryof the Prune-
Pending Timer causes this state machine to revert to NoInfo state.

NI

J

PP

ET Expires

ET
Expires

PPT Expires
[Send PruneEcho]

Join(S,G)
[Restart ET]

Prune(S,G)
[Start PPT]

Prune(S,G)
Join(S,G)
[Restart ET]

Join(S,G)
[Start ET]

Prune(S,G)

Figure 4: Downstream per-interface (S,G) state machine

Downstream per-interface (S,G) state machine in tabular form:

Event
Prev State Receive

Join(S,G)
Receive
Prune(S,G)

Prune-Pending
Timer Expires

Expiry Timer
Expires

→ J state → NI state - -
NoInfo (NI) start Expiry

Timer
→ J state → PP state - → NI state

Join (J) restart Expiry
Timer

start Prune-
Pending Timer

→ J state → PP state → NI state → NI state
Prune-Pending
(PP)

restart Expiry
Timer

Send Prune-
Echo(S,G)

Fenner, et al. StandardsTrack [Page 40]

RFC 4601 PIM-SM Specification February 2006

The transition events "Receive Join(S,G)" and "Receive Prune(S,G)" imply receiving a Join
or Prune targeted to this router’s primary IP address on the received interface. Ifthe
upstream neighbor address field is not correct, these state transitions in this state machine
must not occur, although seeing such a packet may cause state transitions in other state
machines.

On unnumbered interfaces on point-to-point links, the router’s address should be the same
as the source address it chose for the Hello message it sent over that interface. However, on
point-to-point links we also recommend that for backwards compatibility PIM Join/Prune
messages with an upstream neighbor address field of all zeros are also accepted.

Transitions from NoInfo State

When in NoInfo state, the following event may trigger a transition:

Receive Join(S,G)
A Join(S,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (S,G) downstream state machine on interface I transitions to the Join state.
The Expiry Timer (ET) is started and set to the HoldTime from the triggering
Join/Prune message.

Transitions from Join State

When in Join state, the following events may trigger a transition:

Receive Join(S,G)
A Join(S,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (S,G) downstream state machine on interface I remains in Join state, and the
Expiry Timer (ET) is restarted, set to maximum of its current value and the
HoldTime from the triggering Join/Prune message.

Receive Prune(S,G)
A Prune(S,G) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (S,G) downstream state machine on interface I transitions to the Prune-
Pending state. The Prune-Pending Timer is started. It is set to the
J/P_Override_Interval(I) if the router has more than one neighbor on that
interface; otherwise, it is set to zero, causing it to expire immediately.

Expiry Timer Expires
The Expiry Timer for the (S,G) downstream state machine on interface I expires.

The (S,G) downstream state machine on interface I transitions to the NoInfo
state.

Transitions from Prune-Pending State

When in Prune-Pending state, the following events may trigger a transition:

Receive Join(S,G)
A Join(S,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

Fenner, et al. StandardsTrack [Page 41]

RFC 4601 PIM-SM Specification February 2006

The (S,G) downstream state machine on interface I transitions to the Join state.
The Prune-Pending Timer is canceled (without triggering an expiry event). The
Expiry Timer is restarted, set to maximum of its current value and the HoldTime
from the triggering Join/Prune message.

Expiry Timer Expires
The Expiry Timer for the (S,G) downstream state machine on interface I expires.

The (S,G) downstream state machine on interface I transitions to the NoInfo
state.

Prune-Pending Timer Expires
The Prune-Pending Timer for the (S,G) downstream state machine on interface I
expires.

The (S,G) downstream state machine on interface I transitions to the NoInfo
state. APruneEcho(S,G) is sent onto the subnet connected to interface I.

The action "Send PruneEcho(S,G)" is triggered when the router stops forwarding
on an interface as a result of a prune.A PruneEcho(S,G) is simply a Prune(S,G)
message sent by the upstream router on a LAN with its own address in the
Upstream Neighbor Address field. Its purpose is to add additional reliability so
that if a Prune that should have been overridden by another router is lost locally
on the LAN, then the PruneEcho may be received and cause the override to
happen. APruneEcho(S,G) need not be sent on an interface that contains only a
single PIM neighbor during the time this state machine was in Prune-Pending
state.

4.5.4. Receiving (S,G,rpt) Join/Prune Messages

The per-interface state machine for receiving (S,G,rpt) Join/Prune messages is given below.
There are five states:

NoInfo (NI)
The interface has no (S,G,rpt) Prune state and no (S,G,rpt) timers running.

Prune (P)
The interface has (S,G,rpt) Prune state, which will cause the router not to forward
packets from S destined for G from this interface even though the interface has
active (*,G) Join state.

Prune-Pending (PP)
The router has received a Prune(S,G,rpt) on this interface from a downstream
neighbor and is waiting to see whether the prune will be overridden by another
downstream router. For forwarding purposes, the Prune-Pending state functions
exactly like the NoInfo state.

PruneTmp (P’)
This state is a transient state that for forwarding purposes behaves exactly like the
Prune state.A (*,G) Join has been received (which may cancel the (S,G,rpt)
Prune). Aswe parse the Join/Prune message from top to bottom, we first enter
this state if the message contains a (*,G) Join. Later in the message, we will
normally encounter an (S,G,rpt) prune to reinstate the Prune state. However, if
we reach the end of the message without encountering such a (S,G,rpt) prune,
then we will revert to NoInfo state in this state machine.

As no time is spent in this state, no timers can expire.

Fenner, et al. StandardsTrack [Page 42]

RFC 4601 PIM-SM Specification February 2006

Prune-Pending-Tmp (PP’)
This state is a transient state that is identical to P’ except that it is associated with
the PP state rather than the P state.For forwarding purposes, PP’ behaves exactly
like PP state.

In addition, there are two timers:

Expiry Timer (ET)
This timer is set when a valid Prune(S,G,rpt) is received. Expiryof the Expiry
Timer causes this state machine to revert to NoInfo state.

Prune-Pending Timer (PPT)
This timer is set when a valid Prune(S,G,rpt) is received. Expiryof the Prune-
Pending Timer causes this state machine to move on to Prune state.

PP’ PP

P

NI

P’

End of message
for G

End of message
for G

Join(*,G)

Prune(S,G,rpt)
[Restart ET]

Join
(S,G,rpt)

Join
(S,G,rpt) Prune(S,G,rpt)

[Restart ET]

Join(*,G)

Prune(S,G,rpt)
[Restart ET]

Join(S,G,rpt)

Prune(S,G,rpt)
[Start ET]
[Start PPT]

ET
Expires

PP Timer
ExpiresPrune(S,G,rpt)

Figure 5: Downstream per-interface (S,G,rpt) state machine

Fenner, et al. StandardsTrack [Page 43]

RFC 4601 PIM-SM Specification February 2006

Downstream per-interface (S,G,rpt) state machine in tabular form:

Event

Prev State
Receive
Join(*,G)

Receive
Join
(S,G,rpt)

Receive
Prune
(S,G,rpt)

End of
Message

Prune-
Pending
Timer
Expires

Expiry
Timer
Expires

- - - - -→ PP state

NoInfo
(NI)

start Prune-
Pending
Timer; start
Expiry
Timer

- -→ P’ state → NI state → P state → NI state

Prune (P)
restart
Expiry
Timer
- - -Prune-

Pending
(PP)

→ PP’ state → NI state → P state

- - - -→ P state → NI state
PruneTmp
(P’)

restart
Expiry
Timer

- - - -→ PP state → NI state
Prune-
Pending-
Tmp (PP’)

restart
Expiry
Timer

The transition events "Receive Join(S,G,rpt)", "Receive Prune(S,G,rpt)", and "Receive
Join(*,G)" imply receiving a Join or Prune targeted to this router’s primary IP address on
the received interface. Ifthe upstream neighbor address field is not correct, these state
transitions in this state machine must not occur, although seeing such a packet may cause
state transitions in other state machines.

On unnumbered interfaces on point-to-point links, the router’s address should be the same
as the source address it chose for the Hello message it sent over that interface. However, on
point-to-point links we also recommend that PIM Join/Prune messages with an upstream
neighbor address field of all zeros are also accepted.

Fenner, et al. StandardsTrack [Page 44]

RFC 4601 PIM-SM Specification February 2006

Transitions from NoInfo State

When in NoInfo (NI) state, the following event may trigger a transition:

Receive Prune(S,G,rpt)
A Prune(S,G,rpt) is received on interface I with its Upstream Neighbor Address
set to the router’s primary IP address on I.

The (S,G,rpt) downstream state machine on interface I transitions to the Prune-
Pending state. The Expiry Timer (ET) is started and set to the HoldTime from
the triggering Join/Prune message. The Prune-Pending Timer is started. It is set
to the J/P_Override_Interval(I) if the router has more than one neighbor on that
interface; otherwise, it is set to zero, causing it to expire immediately.

Transitions from Prune-Pending State

When in Prune-Pending (PP) state, the following events may trigger a transition:

Receive Join(*,G)
A Join(*,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (S,G,rpt) downstream state machine on interface I transitions to Prune-
Pending-Tmp state whilst the remainder of the compound Join/Prune message
containing the Join(*,G) is processed.

Receive Join(S,G,rpt)
A Join(S,G,rpt) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (S,G,rpt) downstream state machine on interface I transitions to NoInfo state.
ET and PPT are canceled.

Prune-Pending Timer Expires
The Prune-Pending Timer for the (S,G,rpt) downstream state machine on
interface I expires.

The (S,G,rpt) downstream state machine on interface I transitions to the Prune
state.

Transitions from Prune State

When in Prune (P) state, the following events may trigger a transition:

Receive Join(*,G)
A Join(*,G) is received on interface I with its Upstream Neighbor Address set to
the router’s primary IP address on I.

The (S,G,rpt) downstream state machine on interface I transitions to PruneTmp
state whilst the remainder of the compound Join/Prune message containing the
Join(*,G) is processed.

Receive Join(S,G,rpt)
A Join(S,G,rpt) is received on interface I with its Upstream Neighbor Address set
to the router’s primary IP address on I.

The (S,G,rpt) downstream state machine on interface I transitions to NoInfo state.
ET and PPT are canceled.

Fenner, et al. StandardsTrack [Page 45]

RFC 4601 PIM-SM Specification February 2006

Receive Prune(S,G,rpt)
A Prune(S,G,rpt) is received on interface I with its Upstream Neighbor Address
set to the router’s primary IP address on I.

The (S,G,rpt) downstream state machine on interface I remains in Prune state.
The Expiry Timer (ET) is restarted, set to maximum of its current value and the
HoldTime from the triggering Join/Prune message.

Expiry Timer Expires
The Expiry Timer for the (S,G,rpt) downstream state machine on interface I
expires.

The (S,G,rpt) downstream state machine on interface I transitions to the NoInfo
state.

Transitions from Prune-Pending-Tmp State

When in Prune-Pending-Tmp (PP’) state and processing a compound Join/Prune message,
the following events may trigger a transition:

Receive Prune(S,G,rpt)
The compound Join/Prune message contains a Prune(S,G,rpt).

The (S,G,rpt) downstream state machine on interface I transitions back to the
Prune-Pending state. The Expiry Timer (ET) is restarted, set to maximum of its
current value and the HoldTime from the triggering Join/Prune message.

End of Message
The end of the compound Join/Prune message is reached.

The (S,G,rpt) downstream state machine on interface I transitions to the NoInfo
state. ETand PPT are canceled.

Transitions from PruneTmp State

When in PruneTmp (P’) state and processing a compound Join/Prune message, the
following events may trigger a transition:

Receive Prune(S,G,rpt)
The compound Join/Prune message contains a Prune(S,G,rpt).

The (S,G,rpt) downstream state machine on interface I transitions back to the
Prune state. The Expiry Timer (ET) is restarted, set to maximum of its current
value and the HoldTime from the triggering Join/Prune message.

End of Message
The end of the compound Join/Prune message is reached.

The (S,G,rpt) downstream state machine on interface I transitions to the NoInfo
state. ETis canceled.

Notes:

Receiving a Prune(*,G) does not affect the (S,G,rpt) downstream state machine.

Receiving a Join(*,*,RP) does not affect the (S,G,rpt) downstream state machine. If a
router has originated Join(*,*,RP) and pruned a source off it using Prune(S,G,rpt), then to
receive that source again it should explicitly re-join using Join(S,G,rpt) or Join(*,G). In
some LAN topologies it is possible for a router sending a new Join(*,*,RP) to have to wait
as much as a Join/Prune Interval before noticing that it needs to override a neighbor’s
preexisting Prune(S,G,rpt). This is considered acceptable, as (*,*,RP) state is intended to be
used only in long-lived and persistent scenarios.

Fenner, et al. StandardsTrack [Page 46]

RFC 4601 PIM-SM Specification February 2006

4.5.5. Sending(*,*,RP) Join/Prune Messages

The per-interface state machines for (*,*,RP) hold join state from downstream PIM routers.
This state then determines whether a router needs to propagate a Join(*,*,RP) upstream
towards the RP.

If a router wishes to propagate a Join(*,*,RP) upstream, it must also watch for messages on
its upstream interface from other routers on that subnet, and these may modify its behavior.
If it sees a Join(*,*,RP) to the correct upstream neighbor, it should suppress its own
Join(*,*,RP). If it sees a Prune(*,*,RP) to the correct upstream neighbor, it should be
prepared to override that prune by sending a Join(*,*,RP) almost immediately. Finally, if i t
sees the Generation ID (see Section 4.3) of the correct upstream neighbor change, it knows
that the upstream neighbor has lost state, and it should be prepared to refresh the state by
sending a Join(*,*,RP) almost immediately.

In addition, if the MRIB changes to indicate that the next hop towards the RP has changed,
the router should prune off f rom the old next hop and join towards the new next hop.

The upstream (*,*,RP) state machine contains only two states:

Not Joined
The downstream state machines and local membership information do not indicate
that the router needs to join the (*,*,RP) tree for this RP.

Joined
The downstream state machines and local membership information indicate that the
router should join the (*,*,RP) tree for this RP.

In addition, one timer JT(*,*,RP) is kept that is used to trigger the sending of a Join(*,*,RP)
to the upstream next hop towards the RP, NBR(RPF_interface(RP), MRIB.next_hop(RP)).

not
joined joined

MRIB.next_hop(RP)
GenID changes

See Prune(*,*,RP)
to MRIB.next_hop(RP)

JoinDesired(*,*,RP)−>FALSE
[Send Prune(*,*,RP)]
[Cancel Join Timer]

See Join(*,*,RP) to MRIB.next_hop(RP)
[Raise Join Timer to t_joinsuppress]

JoinDesired(*,*,RP)−>TRUE
[Send Join(*,*,RP)]
[Set Join Timer to t_periodic]

NBR(RPF_interface(RP), MRIB.next_hop(RP)) changes
[Send Join(*,*,RP) to new next hop]
[Send Prune(*,*,RP) to old next hop]
[Set Join Timer to t_periodic]

[Lower Join Timer to
randomized
prune−override interval]

Join Timer Expires
[Send Join(*,*,RP)]
[Set Join Timer to t_periodic]

Figure 6: Upstream (*,*,RP) state machine

Fenner, et al. StandardsTrack [Page 47]

RFC 4601 PIM-SM Specification February 2006

Upstream (*,*,RP) state machine in tabular form:

Event
Prev State JoinDesired(*,*,RP)

→Tr ue
JoinDesired(*,*,RP)
→False

-→ J state
NotJoined (NJ) Send Join(*,*,RP); Set

Join Timer to t_periodic
-Joined (J) → NJ state

Send Prune(*,*,RP);
Cancel Join Timer

In addition, we have the following transitions, which occur within the Joined state:

In Joined (J) State

Timer Expires See Join(*,*,RP)
to MRIB.
next_hop(RP)

See Prune(*,*,RP)
to MRIB.
next_hop(RP)

Send Join(*,*,RP);
Set Join Timer to
t_periodic

Increase Join
Timer to
t_joinsuppress

Decrease Join
Timer to t_override

In Joined (J) State

NBR(RPF_interface(RP),
MRIB.next_hop(RP)) changes

MRIB.next_hop(RP) GenID
changes

Send Join(*,*,RP) to new next
hop; Send Prune(*,*,RP) to old
next hop; set Join Timer to
t_periodic

Decrease Join Timer to
t_override

This state machine uses the following macro:

bool JoinDesired(*,*,RP) {
if immediate_olist(*,*,RP) ≠ NULL

return TRUE
else

return FALSE
}

JoinDesired(*,*,RP) is true when the router has received (*,*,RP) Joins from any
downstream interface. Notethat although JoinDesired is true, the router’s sending of a
Join(*,*,RP) message may be suppressed by another router sending a Join(*,*,RP) onto the
upstream interface.

Fenner, et al. StandardsTrack [Page 48]

RFC 4601 PIM-SM Specification February 2006

Transitions from NotJoined State

When the upstream (*,*,RP) state machine is in NotJoined state, the following event may
trigger a state transition:

JoinDesired(*,*,RP) becomes True
The downstream state for (*,*,RP) has changed so that at least one interface is in
immediate_olist(*,*,RP), making JoinDesired(*,*,RP) become True.

The upstream (*,*,RP) state machine transitions to Joined state. Send
Join(*,*,RP) to the appropriate upstream neighbor, which is
NBR(RPF_interface(RP), MRIB.next_hop(RP)). Setthe Join Timer (JT) to
expire after t_periodic seconds.

Transitions from Joined State

When the upstream (*,*,RP) state machine is in Joined state, the following events may
trigger state transitions:

JoinDesired(*,*,RP) becomes False
The downstream state for (*,*,RP) has changed so no interface is in
immediate_olist(*,*,RP), making JoinDesired(*,*,RP) become False.

The upstream (*,*,RP) state machine transitions to NotJoined state. Send
Prune(*,*,RP) to the appropriate upstream neighbor, which is
NBR(RPF_interface(RP), MRIB.next_hop(RP)). Cancelthe Join Timer (JT).

Join Timer Expires
The Join Timer (JT) expires, indicating time to send a Join(*,*,RP)

Send Join(*,*,RP) to the appropriate upstream neighbor, which is
NBR(RPF_interface(RP), MRIB.next_hop(RP)). Restartthe Join Timer (JT) to
expire after t_periodic seconds.

See Join(*,*,RP) to MRIB.next_hop(RP)
This event is only relevant if RPF_interface(RP) is a shared medium. This router
sees another router on RPF_interface(RP) send a Join(*,*,RP) to
NBR(RPF_interface(RP), MRIB.next_hop(RP)). Thiscauses this router to
suppress its own Join.

The upstream (*,*,RP) state machine remains in Joined state.

Let t_joinsuppress be the minimum of t_suppressed and the HoldTime from the
Join/Prune message triggering this event.

If the Join Timer is set to expire in less than t_joinsuppress seconds, reset it so
that it expires after t_joinsuppress seconds. If the Join Timer is set to expire in
more than t_joinsuppress seconds, leave it unchanged.

See Prune(*,*,RP) to MRIB.next_hop(RP)
This event is only relevant if RPF_interface(RP) is a shared medium. This router
sees another router on RPF_interface(RP) send a Prune(*,*,RP) to
NBR(RPF_interface(RP), MRIB.next_hop(RP)). Asthis router is in Joined state,
it must override the Prune after a short random interval.

The upstream (*,*,RP) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds. If the Join Timer is set to expire in less than t_override
seconds, leave it unchanged.

Fenner, et al. StandardsTrack [Page 49]

RFC 4601 PIM-SM Specification February 2006

NBR(RPF_interface(RP), MRIB.next_hop(RP)) changes
A change in the MRIB routing base causes the next hop towards the RP to
change.

The upstream (*,*,RP) state machine remains in Joined state. Send Join(*,*,RP)
to the new upstream neighbor, which is the new value of
NBR(RPF_interface(RP), MRIB.next_hop(RP)). SendPrune(*,*,RP) to the old
upstream neighbor, which is the old value of NBR(RPF_interface(RP),
MRIB.next_hop(RP)). Setthe Join Timer (JT) to expire after t_periodic seconds.

MRIB.next_hop(RP) GenID changes
The Generation ID of the router that is MRIB.next_hop(RP) changes. This
normally means that this neighbor has lost state, and so the state must be
refreshed.

The upstream (*,*,RP) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds.

4.5.6. Sending(*,G) Join/Prune Messages

The per-interface state machines for (*,G) hold join state from downstream PIM routers.
This state then determines whether a router needs to propagate a Join(*,G) upstream
towards the RP.

If a router wishes to propagate a Join(*,G) upstream, it must also watch for messages on its
upstream interface from other routers on that subnet, and these may modify its behavior. If
it sees a Join(*,G) to the correct upstream neighbor, it should suppress its own Join(*,G). If
it sees a Prune(*,G) to the correct upstream neighbor, it should be prepared to override that
prune by sending a Join(*,G) almost immediately. Finally, if it sees the Generation ID (see
Section 4.3) of the correct upstream neighbor change, it knows that the upstream neighbor
has lost state, and it should be prepared to refresh the state by sending a Join(*,G) almost
immediately.

If a (*,G) Assert occurs on the upstream interface, and this changes this router’s idea of the
upstream neighbor, it should be prepared to ensure that the Assert winner is aware of
downstream routers by sending a Join(*,G) almost immediately.

In addition, if the MRIB changes to indicate that the next hop towards the RP has changed,
and either the upstream interface changes or there is no Assert winner on the upstream
interface, the router should prune off f rom the old next hop and join towards the new next
hop.

The upstream (*,G) state machine only contains two states:

Not Joined
The downstream state machines indicate that the router does not need to join the RP
tree for this group.

Joined
The downstream state machines indicate that the router should join the RP tree for this
group.

In addition, one timer JT(*,G) is kept that is used to trigger the sending of a Join(*,G) to the
upstream next hop towards the RP, RPF’(*,G).

Fenner, et al. StandardsTrack [Page 50]

RFC 4601 PIM-SM Specification February 2006

not
joined

See Prune(*,G)
to RPF’(*,G)

RPF’(*,G) GenID
changesjoined

JoinDesired(*,G)−>FALSE
[Send Prune(*,G)]
[Cancel Join Timer]

Join Timer Expires
[Send Join(*,G)]
[Set Join Timer to t_periodic]

See Join(*,G) to RPF’(*,G)
[Raise Join Timer to t_joinsuppress]

[Lower Join Timer to
randomized
prune−override interval]

RPF’(*,G) changes not due to assert
[Send Join(*,G) to new RPF’(*,G)]
[Send Prune(*,G) to old RPF’(*,G)]
[Set Join Timer to t_periodic]

JoinDesired(*,G)−>TRUE
[Send Join(*,G)]
[Set Join Timer to t_ periodic]

RPF’(*,G) changes
due to an Assert

Figure 7: Upstream (*,G) state machine

Upstream (*,G) state machine in tabular form:

Event
Prev State JoinDesired(*,G)

→Tr ue
JoinDesired(*,G)
→False

-→ J state
NotJoined (NJ) Send Join(*,G); Set Join

Timer to t_periodic
-Joined (J) → NJ state

Send Prune(*,G);
Cancel Join Timer

In addition, we have the following transitions, which occur within the Joined state:

In Joined (J) State

Timer Expires See Join(*,G) to
RPF’(*,G)

See Prune(*,G) to
RPF’(*,G)

RPF’(*,G)
changes due to an
Assert

Send Join(*,G);
Set Join Timer to
t_periodic

Increase Join
Timer to
t_joinsuppress

Decrease Join
Timer to t_override

Decrease Join
Timer to t_override

In Joined (J) State

RPF’(*,G) changes not due to
an Assert

RPF’(*,G) GenID changes

Send Join(*,G) to new next hop;
Send Prune(*,G) to old next
hop; Set Join Timer to
t_periodic

Decrease Join Timer to
t_override

Fenner, et al. StandardsTrack [Page 51]

RFC 4601 PIM-SM Specification February 2006

This state machine uses the following macro:

bool JoinDesired(*,G) {
if (immediate_olist(*,G) ≠ NULL OR

(JoinDesired(*,*,RP(G)) AND
AssertWinner(*, G, RPF_interface(RP(G))) ≠ NULL))
return TRUE

else
return FALSE

}

JoinDesired(*,G) is true when the router has forwarding state that would cause it to forward
traffic for G using shared tree state. Note that although JoinDesired is true, the router’s
sending of a Join(*,G) message may be suppressed by another router sending a Join(*,G)
onto the upstream interface.

Transitions from NotJoined State

When the upstream (*,G) state machine is in NotJoined state, the following event may
trigger a state transition:

JoinDesired(*,G) becomes True
The macro JoinDesired(*,G) becomes True, e.g., because the downstream state
for (*,G) has changed so that at least one interface is in immediate_olist(*,G).

The upstream (*,G) state machine transitions to Joined state. Send Join(*,G) to
the appropriate upstream neighbor, which is RPF’(*,G). Set the Join Timer (JT)
to expire after t_periodic seconds.

Transitions from Joined State

When the upstream (*,G) state machine is in Joined state, the following events may trigger
state transitions:

JoinDesired(*,G) becomes False
The macro JoinDesired(*,G) becomes False, e.g., because the downstream state
for (*,G) has changed so no interface is in immediate_olist(*,G).

The upstream (*,G) state machine transitions to NotJoined state. Send
Prune(*,G) to the appropriate upstream neighbor, which is RPF’(*,G). Cancel
the Join Timer (JT).

Join Timer Expires
The Join Timer (JT) expires, indicating time to send a Join(*,G)

Send Join(*,G) to the appropriate upstream neighbor, which is RPF’(*,G).
Restart the Join Timer (JT) to expire after t_periodic seconds.

See Join(*,G) to RPF’(*,G)
This event is only relevant if RPF_interface(RP(G)) is a shared medium. This
router sees another router on RPF_interface(RP(G)) send a Join(*,G) to
RPF’(*,G). Thiscauses this router to suppress its own Join.

The upstream (*,G) state machine remains in Joined state.

Let t_joinsuppress be the minimum of t_suppressed and the HoldTime from the
Join/Prune message triggering this event. If the Join Timer is set to expire in less
than t_joinsuppress seconds, reset it so that it expires after t_joinsuppress
seconds. Ifthe Join Timer is set to expire in more than t_joinsuppress seconds,
leave it unchanged.

Fenner, et al. StandardsTrack [Page 52]

RFC 4601 PIM-SM Specification February 2006

See Prune(*,G) to RPF’(*,G)
This event is only relevant if RPF_interface(RP(G)) is a shared medium. This
router sees another router on RPF_interface(RP(G)) send a Prune(*,G) to
RPF’(*,G). Asthis router is in Joined state, it must override the Prune after a
short random interval.

The upstream (*,G) state machine remains in Joined state. If the Join Timer is set
to expire in more than t_override seconds, reset it so that it expires after
t_override seconds. If the Join Timer is set to expire in less than t_override
seconds, leave it unchanged.

RPF’(*,G) changes due to an Assert
The current next hop towards the RP changes due to an Assert(*,G) on the
RPF_interface(RP(G)).

The upstream (*,G) state machine remains in Joined state. If the Join Timer is set
to expire in more than t_override seconds, reset it so that it expires after
t_override seconds. If the Join Timer is set to expire in less than t_override
seconds, leave it unchanged.

RPF’(*,G) changes not due to an Assert
An event occurred that caused the next hop towards the RP for G to change. This
may be caused by a change in the MRIB routing database or the group-to-RP
mapping. Notethat this transition does not occur if an Assert is active and the
upstream interface does not change.

The upstream (*,G) state machine remains in Joined state. Send Join(*,G) to the
new upstream neighbor, which is the new value of RPF’(*,G). Send Prune(*,G)
to the old upstream neighbor, which is the old value of RPF’(*,G). Use the new
value of RP(G) in the Prune(*,G) message or all zeros if RP(G) becomes
unknown (old value of RP(G) may be used instead to improve behavior in routers
implementing older versions of this spec). Set the Join Timer (JT) to expire after
t_periodic seconds.

RPF’(*,G) GenID changes
The Generation ID of the router that is RPF’(*,G) changes. This normally means
that this neighbor has lost state, and so the state must be refreshed.

The upstream (*,G) state machine remains in Joined state. If the Join Timer is set
to expire in more than t_override seconds, reset it so that it expires after
t_override seconds.

4.5.7. Sending(S,G) Join/Prune Messages

The per-interface state machines for (S,G) hold join state from downstream PIM routers.
This state then determines whether a router needs to propagate a Join(S,G) upstream
towards the source.

If a router wishes to propagate a Join(S,G) upstream, it must also watch for messages on its
upstream interface from other routers on that subnet, and these may modify its behavior. If
it sees a Join(S,G) to the correct upstream neighbor, it should suppress its own Join(S,G). If
it sees a Prune(S,G), Prune(S,G,rpt), or Prune(*,G) to the correct upstream neighbor
towards S, it should be prepared to override that prune by scheduling a Join(S,G) to be sent
almost immediately. Finally, if it sees the Generation ID of its upstream neighbor change, it
knows that the upstream neighbor has lost state, and it should refresh the state by scheduling
a Join(S,G) to be sent almost immediately.

Fenner, et al. StandardsTrack [Page 53]

RFC 4601 PIM-SM Specification February 2006

If a (S,G) Assert occurs on the upstream interface, and this changes the this router’s idea of
the upstream neighbor, it should be prepared to ensure that the Assert winner is aware of
downstream routers by scheduling a Join(S,G) to be sent almost immediately.

In addition, if MRIB changes cause the next hop towards the source to change, and either
the upstream interface changes or there is no Assert winner on the upstream interface, the
router should send a prune to the old next hop and a join to the new next hop.

The upstream (S,G) state machine only contains two states:

Not Joined
The downstream state machines and local membership information do not indicate
that the router needs to join the shortest-path tree for this (S,G).

Joined
The downstream state machines and local membership information indicate that the
router should join the shortest-path tree for this (S,G).

In addition, one timer JT(S,G) is kept that is used to trigger the sending of a Join(S,G) to the
upstream next hop towards S, RPF’(S,G).

not
joined joined

See Prune(S,G)
to RPF’(S,G)

(note 1)

RPF’(S,G) GenID
changes

Note 1: For interoperability with
implemtations of RFC 2362

See Prune(S,G,rpt)
to RPF’(S,G)

See Prune(*,G)
to RPF’(S,G)

Join Timer Expires
[Send Join(S,G)]
[Set Join Timer to t_ periodic]

See Join(S,G) to RPF’(S,G)
[Raise Join Timer to t_joinsuppress]

[Lower Join Timer to
randomized
prune−override interval]

JoinDesired(S,G)−>FALSE
[Send Prune(S,G)]
[Set SPTbit(S,G) to FALSE]
[Cancel Join Timer]

JoinDesired(S,G)−>TRUE
[Send Join(S,G)]
[Set Join Timer to t_periodic]

RPF’(S,G) changes
due to an Assert

(note 1)

RPF’(S,G) changes not due to assert
[Send Join(S,G) to new RPF’(S,G)]
[Send Prune(S,G) to old RPF’(S,G)]
[Set Join Timer to t_periodic]

Figure 8: Upstream (S,G) state machine

Fenner, et al. StandardsTrack [Page 54]

RFC 4601 PIM-SM Specification February 2006

Upstream (S,G) state machine in tabular form:

Event
Prev State JoinDesired(S,G)

→Tr ue
JoinDesired(S,G)
→False

→ J state -NotJoined (NJ)
Send Join(S,G); Set
Join Timer to t_periodic
- → NJ stateJoined (J)

Send Prune(S,G); Set
SPTbit(S,G) to FALSE;
Cancel Join Timer

In addition, we have the following transitions, which occur within the Joined state:

In Joined (J) State

Timer Expires See Join(S,G) to
RPF’(S,G)

See Prune(S,G) to
RPF’(S,G)

See Prune
(S,G,rpt) to
RPF’(S,G)

Send Join(S,G);
Set Join Timer to
t_periodic

Increase Join
Timer to
t_joinsuppress

Decrease Join
Timer to t_override

Decrease Join
Timer to t_override

In Joined (J) State

See Prune(*,G) to
RPF’(S,G)

RPF’(S,G)
changes not due
to an Assert

RPF’(S,G) GenID
changes

RPF’(S,G)
changes due to an
Assert

Decrease Join
Timer to t_override

Send Join(S,G) to
new next hop;
Send Prune(S,G) to
old next hop; Set
Join Timer to
t_periodic

Decrease Join
Timer to t_override

Decrease Join
Timer to t_override

This state machine uses the following macro:

bool JoinDesired(S,G) {
return(immediate_olist(S,G) ≠ NULL

OR (KeepaliveTimer(S,G) is running
AND inherited_olist(S,G) ≠ NULL))

}

JoinDesired(S,G) is true when the router has forwarding state that would cause it to forward
traffic for G using source tree state. The source tree state can be as a result of either active
source-specific join state, or the (S,G) Keepalive Timer and active non-source-specific state.
Note that although JoinDesired is true, the router’s sending of a Join(S,G) message may be
suppressed by another router sending a Join(S,G) onto the upstream interface.

Transitions from NotJoined State

When the upstream (S,G) state machine is in NotJoined state, the following event may
trigger a state transition:

Fenner, et al. StandardsTrack [Page 55]

RFC 4601 PIM-SM Specification February 2006

JoinDesired(S,G) becomes True
The macro JoinDesired(S,G) becomes True, e.g., because the downstream state
for (S,G) has changed so that at least one interface is in inherited_olist(S,G).

The upstream (S,G) state machine transitions to Joined state. Send Join(S,G) to
the appropriate upstream neighbor, which is RPF’(S,G). Set the Join Timer (JT)
to expire after t_periodic seconds.

Transitions from Joined State

When the upstream (S,G) state machine is in Joined state, the following events may trigger
state transitions:

JoinDesired(S,G) becomes False
The macro JoinDesired(S,G) becomes False, e.g., because the downstream state
for (S,G) has changed so no interface is in inherited_olist(S,G).

The upstream (S,G) state machine transitions to NotJoined state. Send
Prune(S,G) to the appropriate upstream neighbor, which is RPF’(S,G). Cancel
the Join Timer (JT), and set SPTbit(S,G) to FALSE.

Join Timer Expires
The Join Timer (JT) expires, indicating time to send a Join(S,G)

Send Join(S,G) to the appropriate upstream neighbor, which is RPF’(S,G).
Restart the Join Timer (JT) to expire after t_periodic seconds.

See Join(S,G) to RPF’(S,G)
This event is only relevant if RPF_interface(S) is a shared medium. This router
sees another router on RPF_interface(S) send a Join(S,G) to RPF’(S,G). This
causes this router to suppress its own Join.

The upstream (S,G) state machine remains in Joined state.

Let t_joinsuppress be the minimum of t_suppressed and the HoldTime from the
Join/Prune message triggering this event. If the Join Timer is set to expire in less
than t_joinsuppress seconds, reset it so that it expires after t_joinsuppress
seconds. Ifthe Join Timer is set to expire in more than t_joinsuppress seconds,
leave it unchanged.

See Prune(S,G) to RPF’(S,G)
This event is only relevant if RPF_interface(S) is a shared medium. This router
sees another router on RPF_interface(S) send a Prune(S,G) to RPF’(S,G). As
this router is in Joined state, it must override the Prune after a short random
interval.

The upstream (S,G) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds.

See Prune(S,G,rpt) to RPF’(S,G)
This event is only relevant if RPF_interface(S) is a shared medium. This router
sees another router on RPF_interface(S) send a Prune(S,G,rpt) to RPF’(S,G). If
the upstream router is an RFC-2362-compliant PIM router, then the
Prune(S,G,rpt) will cause it to stop forwarding. For backwards compatibility, this
router should override the prune so that forwarding continues.

The upstream (S,G) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds.

Fenner, et al. StandardsTrack [Page 56]

RFC 4601 PIM-SM Specification February 2006

See Prune(*,G) to RPF’(S,G)
This event is only relevant if RPF_interface(S) is a shared medium. This router
sees another router on RPF_interface(S) send a Prune(*,G) to RPF’(S,G). If the
upstream router is an RFC-2362-compliant PIM router, then the Prune(*,G) will
cause it to stop forwarding. For backwards compatibility, this router should
override the prune so that forwarding continues.

The upstream (S,G) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds.

RPF’(S,G) changes due to an Assert
The current next hop towards S changes due to an Assert(S,G) on the
RPF_interface(S).

The upstream (S,G) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds. If the Join Timer is set to expire in less than t_override
seconds, leave it unchanged.

RPF’(S,G) changes not due to an Assert
An event occurred that caused the next hop towards S to change. Note that this
transition does not occur if an Assert is active and the upstream interface does not
change.

The upstream (S,G) state machine remains in Joined state. Send Join(S,G) to the
new upstream neighbor, which is the new value of RPF’(S,G). Send Prune(S,G)
to the old upstream neighbor, which is the old value of RPF’(S,G). Set the Join
Timer (JT) to expire after t_periodic seconds.

RPF’(S,G) GenID changes
The Generation ID of the router that is RPF’(S,G) changes. This normally means
that this neighbor has lost state, and so the state must be refreshed.

The upstream (S,G) state machine remains in Joined state. If the Join Timer is
set to expire in more than t_override seconds, reset it so that it expires after
t_override seconds.

4.5.8. (S,G,rpt) Periodic Messages

(S,G,rpt) Joins and Prunes are (S,G) Joins or Prunes sent on the RP tree with the RPT bit
set, either to modify the results of (*,G) Joins, or to override the behavior of other upstream
LAN peers. The next section describes the rules for sending triggered messages. This
section describes the rules for including a Prune(S,G,rpt) message with a Join(*,G).

Fenner, et al. StandardsTrack [Page 57]

RFC 4601 PIM-SM Specification February 2006

When a router is going to send a Join(*,G), it should use the following pseudocode, for each
(S,G) for which it has state, to decide whether to include a Prune(S,G,rpt) in the compound
Join/Prune message:

if(SPTbit(S,G) == TRUE) {
Note: If receiving (S,G) on the SPT, we only prune off the
shared tree if the RPF neighbors differ.
if(RPF’(*,G) ≠ RPF’(S,G)) {

add Prune(S,G,rpt) to compound message
}

} else if (inherited_olist(S,G,rpt) == NULL) {
Note: all (*,G) olist interfaces received RPT prunes for (S,G).
add Prune(S,G,rpt) to compound message

} else if (RPF’(*,G) ≠ RPF’(S,G,rpt) {
Note: we joined the shared tree, but there was an (S,G) assert
and the source tree RPF neighbor is different.
add Prune(S,G,rpt) to compound message

}

Note that Join(S,G,rpt) is normally sent not as a periodic message, but only as a triggered
message.

4.5.9. StateMachine for (S,G,rpt) Triggered Messages

The state machine for (S,G,rpt) triggered messages is required per-(S,G) when there is (*,G)
or (*,*,RP) join state at a router, and the router or any of its upstream LAN peers wishes to
prune S off the RP tree.

There are three states in the state machine. One of the states is when there is neither (*,G)
nor (*,*,RP(G)) join state at this router. If there is (*,G) or (*,*,RP(G)) join state at the
router, then the state machine must be at one of the other two states. Thethree states are:

Pruned(S,G,rpt)
(*,G) or (*,*,RP(G)) Joined, but (S,G,rpt) pruned

NotPruned(S,G,rpt)
(*,G) or (*,*,RP(G)) Joined, and (S,G,rpt) not pruned

RPTNotJoined(G)
neither (*,G) nor (*,*,RP(G)) has been joined.

In addition, there is an (S,G,rpt) Override Timer, OT(S,G,rpt), which is used to delay
triggered Join(S,G,rpt) messages to prevent implosions of triggered messages.

Fenner, et al. StandardsTrack [Page 58]

RFC 4601 PIM-SM Specification February 2006

Pruned

Not
Pruned

PruneDesired
(S,G,rpt)
−>TRUE

Inherited_olist(S,G,rpt)
−>NON−NULL

See (S,G)
Prune to
RPF’(S,G,rpt)

RPF’(S,G,rpt)
changes to be
the same as
RPF’(*,G)

RPTNot
Joined(G)

RPTJoinDesired(G)
−> FALSE

See (S,G,rpt)
Prune to
RPF’(S,G,rpt)

PruneDesired
(S,G,rpt)−>FALSE
[Send Join(S,G,rpt)]

RPTJoinDesired(G)
−>FALSE
[Cancel OT]

PruneDesired
(S,G,rpt)−>TRUE
[Send Prune(S,G,rpt)]
[Cancel Override Timer]

See Join(S,G,rpt)
to RPF’(S,G,rpt)
[Cancel Override Timer]

(S,G,rpt) Overide Timer Fires
[Send Join(S,G,rpt)]
[Leave Override Timer unset]

Set/lower
(don’t raise)
(S,G,rpt)
Override Timer
to randomized
prune_override
interval

Figure 9: Upstream (S,G,rpt) state machine for triggered messages

Upstream (S,G,rpt) state machine for triggered messages in tabular form:

Event

Prev State PruneDesired
(S,G,rpt)
→Tr ue

PruneDesired
(S,G,rpt)
→False

RPTJoin
Desired(G)
→False

inherited_olist
(S,G,rpt)
→non-NULL

→ P state - - → NP stateRPTNotJoined
(G) (NJ)

- → NP state → NJ state -
Pruned
(S,G,rpt) (P)

Send Join
(S,G,rpt)

→ P state - → NJ state -
NotPruned
(S,G,rpt) (NP)

Send Prune
(S,G,rpt);
Cancel OT

Cancel OT

Additionally, we hav ethe following transitions within the NotPruned(S,G,rpt) state, which
are all used for prune override behavior.

In NotPruned(S,G,rpt) State

Override
Timer expires

See Prune
(S,G,rpt) to
RPF’ (S,G,rpt)

See Join
(S,G,rpt) to
RPF’ (S,G,rpt)

See Prune
(S,G) to RPF’
(S,G,rpt)

RPF’ (S,G,rpt)
→ RPF’ (*,G)

Send Join
(S,G,rpt); Leave
OT unset

OT = min(OT,
t_override)

Cancel OT OT = min(OT,
t_override)

OT = min(OT,
t_override)

Note that themin function in the above state machine considers a non-running timer to
have an infinite value (e.g.,min(not-running, t_override) = t_override).

Fenner, et al. StandardsTrack [Page 59]

RFC 4601 PIM-SM Specification February 2006

This state machine uses the following macros:

bool RPTJoinDesired(G) {
return (JoinDesired(*,G) OR JoinDesired(*,*,RP(G)))

}

RPTJoinDesired(G) is true when the router has forwarding state that would cause it to
forward traffic for G using either (*,G) or (*,*,RP) shared tree state.

bool PruneDesired(S,G,rpt) {
return (RPTJoinDesired(G) AND

(inherited_olist(S,G,rpt) == NULL
OR (SPTbit(S,G)==TRUE

AND (RPF’(*,G) ≠ RPF’(S,G)))))
}

PruneDesired(S,G,rpt) can only be true if RPTJoinDesired(G) is true. If
RPTJoinDesired(G) is true, then PruneDesired(S,G,rpt) is true either if there are no
outgoing interfaces that S would be forwarded on, or if the router has active (S,G)
forwarding state but RPF’(*,G)≠ RPF’(S,G).

The state machine contains the following transition events:

See Join(S,G,rpt) to RPF’(S,G,rpt)
This event is only relevant in the "Not Pruned" state.

The router sees a Join(S,G,rpt) from someone else to RPF’(S,G,rpt), which is the
correct upstream neighbor. If we’re in "NotPruned" state and the (S,G,rpt) Override
Timer is running, then this is because we have been triggered to send our own
Join(S,G,rpt) to RPF’(S,G,rpt). Someone else beat us to it, so there’s no need to send
our own Join.

The action is to cancel the Override Timer.

See Prune(S,G,rpt) to RPF’(S,G,rpt)
This event is only relevant in the "NotPruned" state.

The router sees a Prune(S,G,rpt) from someone else to RPF’(S,G,rpt), which is the
correct upstream neighbor. If we’re in the "NotPruned" state, then we want to
continue to receive traffic from S destined for G, and that traffic is being supplied by
RPF’(S,G,rpt). Thus,we need to override the Prune.

The action is to set the (S,G,rpt) Override Timer to the randomized prune-override
interval, t_override. However, if the Override Timer is already running, we only set
the timer if doing so would set it to a lower value. Atthe end of this interval, if noone
else has sent a Join, then we will do so.

See Prune(S,G) to RPF’(S,G,rpt)
This event is only relevant in the "NotPruned" state.

This transition and action are the same as the above transition and action, except that
the Prune does not have the RPT bit set. This transition is necessary to be compatible
with routers implemented from RFC2362 that don’t maintain separate (S,G) and
(S,G,rpt) state.

The (S,G,rpt) prune Override Timer expires
This event is only relevant in the "NotPruned" state.

When the Override Timer expires, we must send a Join(S,G,rpt) to RPF’(S,G,rpt) to
override the Prune message that caused the timer to be running.We only send this if

Fenner, et al. StandardsTrack [Page 60]

RFC 4601 PIM-SM Specification February 2006

RPF’(S,G,rpt) equals RPF’(*,G); if this were not the case, then the Join might be sent
to a router that does not have (*,G) or (*,*,RP(G)) Join state, and so the behavior
would not be well defined. If RPF’(S,G,rpt) is not the same as RPF’(*,G), then it may
stop forwarding S. However, if this happens, then the router will send an
AssertCancel(S,G), which would then cause RPF’(S,G,rpt) to become equal to
RPF’(*,G) (see below).

RPF’(S,G,rpt) changes to become equal to RPF’(*,G)
This event is only relevant in the "NotPruned" state.

RPF’(S,G,rpt) can only be different from RPF’(*,G) if an (S,G) Assert has happened,
which means that traffic from S is arriving on the SPT, and so Prune(S,G,rpt) will have
been sent to RPF’(*,G). When RPF’(S,G,rpt) changes to become equal to RPF’(*,G),
we need to trigger a Join(S,G,rpt) to RPF’(*,G) to cause that router to start forwarding
S again.

The action is to set the (S,G,rpt) Override Timer to the randomized prune-override
interval t_override. However, if the timer is already running, we only set the timer if
doing so would set it to a lower value. Atthe end of this interval, if noone else has
sent a Join, then we will do so.

PruneDesired(S,G,rpt)→TRUE
See macro above. This event is relevant in the "NotPruned" and "RPTNotJoined(G)"
states.

The router wishes to receive traffic for G, but does not wish to receive traffic from S
destined for G. This causes the router to transition into the Pruned state.

If the router was previously in NotPruned state, then the action is to send a
Prune(S,G,rpt) to RPF’(S,G,rpt), and to cancel the Override Timer. If the router was
previously in RPTNotJoined(G) state, then there is no need to trigger an action in this
state machine because sending a Prune(S,G,rpt) is handled by the rules for sending the
Join(*,G) or Join(*,*,RP).

PruneDesired(S,G,rpt)→FALSE
See macro above. This transition is only relevant in the "Pruned" state.

If the router is in the Pruned(S,G,rpt) state, and PruneDesired(S,G,rpt) changes to
FALSE, this could be because the router no longer has RPTJoinDesired(G) true, or it
now wishes to receive traffic from S again. If it is the former, then this transition
should not happen, but instead the "RPTJoinDesired(G)→FALSE" transition should
happen. Thus,this transition should be interpreted as
"PruneDesired(S,G,rpt)→FALSE AND RPTJoinDesired(G)==TRUE".

The action is to send a Join(S,G,rpt) to RPF’(S,G,rpt).
RPTJoinDesired(G)→FALSE

This event is relevant in the "Pruned" and "NotPruned" states.

The router no longer wishes to receive any traffic destined for G on the RP Tree. This
causes a transition to the RPTNotJoined(G) state, and the Override Timer is canceled
if it was running. Any further actions are handled by the appropriate upstream state
machine for (*,G) or (*,*,RP).

inherited_olist(S,G,rpt) becomes non-NULL
This transition is only relevant in the RPTNotJoined(G) state.

The router has joined the RP tree (handled by the (*,G) or (*,*,RP) upstream state
machine as appropriate) and wants to receive traffic from S. This does not trigger any
ev ents in this state machine, but causes a transition to the NotPruned(S,G,rpt) state.

Fenner, et al. StandardsTrack [Page 61]

RFC 4601 PIM-SM Specification February 2006

4.5.10. Background: (*,*,RP) and (S,G,rpt) Interaction

In Sections 4.5.8 and 4.5.9, the mechanisms for sending periodic and triggered (S,G,rpt)
messages are described. The astute reader will note that periodic Prune(S,G,rpt) messages
are only sent in PIM Join/Prune messages containing a Join(*,G), whereas it is possible for
a triggered Prune(S,G,rpt) message to be sent when the router has no (*,G) join state. This
may seem like a contradiction, but in fact it is intentional and is a side effect of not
optimizing (*,*,RP) behavior.

We first note that reception of a Join(*,*,RP) by itself does not cancel (S,G,rpt) prune state
on that interface, whereas receiving a Join(*,G) by itself does cancel (S,G,rpt) prune state
on that interface. Similarly, reception of a Prune(*,G) on an interface with (*,*,RP) join
state does not by itself prevent forwarding of G using the (*,*,RP) state; this is because a
Prune(*,G) only serves to cancel (*,G) join state. Conceptually (*,*,RP) state functions
"above" the normal (*,G) and (S,G) mechanisms, and so neither Join(*,*,RP) nor
Prune(*,*,RP) messages affect any other state.

The upshot of this is that to prevent forwarding (S,G) on (*,*,RP) state, a Prune(S,G,rpt)
must be used.

We also note that for historical reasons there is no Assert(*,*,RP) message, so any
forwarding contention is resolved using Assert(*,G) messages.

We now need to consider the interaction between (*,*,RP) state and (*,G) state. If there is a
need for an assert between two upstream routers on a LAN, we need to ensure that the
correct thing happens for all combinations of (*,*,RP) and (*,G) forwarding state. As there
is no Assert(*,*,RP) message, no router can tell whether the assert winner has (*,*,RP) state
or (*,G) state. Thus, a downstream router has to treat the two the same and send its periodic
Prune(S,G,rpt) messages to RPF’(*,G).

To avoid needing to specify all the complex override rules between (*,*,RP), (*,G), and
(S,G,rpt), we simply require that to prune (S,G) off the (*,*,RP) tree, a Join(*,G) must also
be sent.

If a router is receiving on (*,*,RP) state and has not yet had (*,G) state instantiated, it may
still need to send a triggered Join(S,G,rpt) to override a Prune(S,G,rpt) that it sees directed
to RPF’(*,G) on its upstream interface. Hence,triggered (S,G,rpt) messages may be sent
when JoinDesired(*,G) is false but JoinDesired(*,*,RP) is true.

Finally, we note that there is an unoptimized case when the upstream router on a LAN
already has (*,G) join and (S,G,rpt) prune state caused by an existing downstream router. If
at this time a new Join(*,*,RP) is sent to the upstream router from a different downstream
router, this will not override the (S,G,rpt) prune state at the upstream router. The override
will not occur until the next time the original downstream router resends its Prune(S,G,rpt).
This case was not considered worth optimizing, as (*,*,RP) state is generally very long
lived, and so any minor delays in getting traffic to a new PMBR seem unimportant.

Fenner, et al. StandardsTrack [Page 62]

RFC 4601 PIM-SM Specification February 2006

4.6. PIM Assert Messages
Where multiple PIM routers peer over a shared LAN, it is possible for more than one
upstream router to have valid forwarding state for a packet, which can lead to packet
duplication (see Section 3.6). PIM does not attempt to prevent this from occurring. Instead,
it detects when this has happened and elects a single forwarder amongst the upstream
routers to prevent further duplication. This election is performed using PIM Assert
messages. Assertmessages are also received by downstream routers on the LAN, and these
cause subsequent Join/Prune messages to be sent to the upstream router that won the Assert.

In general, a PIM Assert message should only be accepted for processing if it comes from a
known PIM neighbor. A PIM router hears about PIM neighbors through PIM Hello
messages. Ifa router receives an Assert message from a particular IP source address and it
has not seen a PIM Hello message from that source address, then the Assert message
SHOULD be discarded without further processing. In addition, if the Hello message from a
neighbor was authenticated using the IPsec Authentication Header (AH) (see Section 6.3),
then all Assert messages from that neighbor MUST also be authenticated using IPsec AH.

We note that some older PIM implementations incorrectly fail to send Hello messages on
point-to-point interfaces, so we also RECOMMEND that a configuration option be provided
to allow interoperation with such older routers, but that this configuration option SHOULD
NOT be enabled by default.

4.6.1. (S,G)Assert Message State Machine

The (S,G) Assert state machine for interface I is shown in Figure 10. There are three states:

NoInfo (NI)
This router has no (S,G) assert state on interface I.

I am Assert Winner (W)
This router has won an (S,G) assert on interface I. It is now responsible for
forwarding traffic from S destined for G out of interface I. Irrespective of whether it is
the DR for I, while a router is the assert winner, it is also responsible for forwarding
traffic onto I on behalf of local hosts on I that have made membership requests that
specifically refer to S (and G).

I am Assert Loser (L)
This router has lost an (S,G) assert on interface I. It must not forward packets from S
destined for G onto interface I. If it is the DR on I, it is no longer responsible for
forwarding traffic onto I to satisfy local hosts with membership requests that
specifically refer to S and G.

In addition, there is also an Assert Timer (AT) that is used to time out asserts on the assert
losers and to resend asserts on the assert winner.

Fenner, et al. StandardsTrack [Page 63]

RFC 4601 PIM-SM Specification February 2006

No
Info

I am
Assert
Loser

I am
Assert
Winner

(S,G) data packet arrives on I
AND CouldAssert(S,G,I)==TRUE
[A1]

Receive acceptable assert
with RPTbit clear from
current winner
[A2]

Receive preferred
assert
[A2]

Receive preferred
assert
[A2]

CouldAssert(S,G,I)−>FALSE
[A4]

Receive inferior assert with
RPTbit clear
AND CouldAssert(S,G,I)==TRUE
[A1]

Receive inferior assert
[A3]

Any of the following events:

AssertTrackingDesired (S,G,I) −>FALSE [A5]

Receive Join(S,G) on I [A5]

My metric becomes better
than AssertWinnerMetric [A5]

Assert Timer Expires [A5]

Assert Timer Expires
[A3]

Actions:

A1: [Send Assert(S,G)]
 [Set Assert Timer to Assert_Time −
 Assert_Overide_Interval]
 [Store self as AssertWinner(S,G,I)]
 [Store own spt metric as
 AssertWinnerMetric(S,G,I)]

A2: [Set Assert Timer to Assert_Time]
 [Store winner as
 AssertWinner(S,G,I)]
 [Store winner’s metric as
 AssertWinnerMetric(S,G,I)]

A3: [Send Assert(S,G)]
 [Set Assert Timer to Assert_Time −
 Assert_Override_Interval]

A4: [Send AssertCancel(S,G)]
 [Delete assert info]

A5: [Delete assert info]

A6: [Store assert winner and metric]
 [Set Assert Timer to Assert_Time]
 [If I is RPF_interface(S)
 AND (UpstreamJPState(S,G) == true)
 then set SPTbit(S,G)]

I stops being RPF_if(S) [A5]

Receive assert with
RPTbit set AND
CouldAssert(S,G,I)==TRUE
[A1]

Receive acceptable assert
with RPTbit clear AND
AssertTrackingDesired(S,G,I)
 ==TRUE
[A6]

Current Winner’s GenID changes
or Neighbor Liveness Timer expires [A5]

Receive inferior assert or assert
cancel from current winner [A5]

Figure 10: Per-interface (S,G) Assert State machine

Fenner, et al. StandardsTrack [Page 64]

RFC 4601 PIM-SM Specification February 2006

Per-interface (S,G) Assert State machine in tabular form:

In NoInf o (NI) State

Receive Inferior
Assert with
RPTbit clear and
CouldAssert
(S,G,I)

Receive Assert
with RPTbit set
and CouldAssert
(S,G,I)

Data arri ves from
S to G on I and
CouldAssert
(S,G,I)

Receive
Acceptable Assert
with RPTbit clear
and AssTrDes
(S,G,I)

→ W state → W state → W state → L state
[Actions A1] [Actions A1] [Actions A1] [Actions A6]

In I Am Assert Winner (W) State

Assert Timer
Expires

Receive Inferior
Assert

Receive Preferred
Assert

CouldAssert
(S,G,I) → FALSE

→ W state → W state → L state → NI state
[Actions A3] [Actions A3] [Actions A2] [Actions A4]

In I Am Assert Loser (L) State

Receive
Preferred
Assert

Receive
Acceptable
Assert with
RPTbit clear
from Current
Winner

Receive
Inferior Assert
or Assert
Cancel from
Current
Winner

Assert Timer
Expires

Current
Winner’s
GenID
Changes or
NLT Expires

→ L state → L state → NI state → NI state → NI state
[Actions A2] [Actions A2] [Actions A5] [Actions A5] [Actions A5]

In I Am Assert Loser (L) State

AssTrDes (S,G,I)
→ FALSE

my_metric →
better than
winner’ s metric

RPF_interface (S)
stops being I

Receive Join(S,G)
on interface I

→ NI state → NI state → NI state → NI State
[Actions A5] [Actions A5] [Actions A5] [Actions A5]

Note that for reasons of compactness, "AssTrDes(S,G,I)" is used in the state machine table
to refer to AssertTrackingDesired(S,G,I).

Terminology:
A "preferred assert" is one with a better metric than the current winner.

An "acceptable assert" is one that has a better metric than
my_assert_metric(S,G,I). An assert is never considered acceptable if its
metric is infinite.

An "inferior assert" is one with a worse metric than
my_assert_metric(S,G,I). An assert is never considered inferior if
my_assert_metric(S,G,I) is infinite.

Fenner, et al. StandardsTrack [Page 65]

RFC 4601 PIM-SM Specification February 2006

The state machine uses the following macros:

CouldAssert(S,G,I) =
SPTbit(S,G)==TRUE
AND (RPF_interface(S) ≠ I)
AND (I in ((joins(*,*,RP(G)) + joins(*,G) −

prunes(S,G,rpt))
+ (pim_include(*,G) − pim_exclude(S,G))
− lost_assert(*,G)
+ joins(S,G) + pim_include(S,G)))

CouldAssert(S,G,I) is true for downstream interfaces that would be in the
inherited_olist(S,G) if (S,G) assert information was not taken into account.

AssertTrackingDesired(S,G,I) =
(I in ((joins(*,*,RP(G)) + joins(*,G) −

prunes(S,G,rpt))
+ (pim_include(*,G) − pim_exclude(S,G))
− lost_assert(*,G)
+ joins(S,G)))

OR (local_receiver_include(S,G,I) == TRUE
AND (I_am_DR(I) OR (AssertWinner(S,G,I) == me)))

OR ((RPF_interface(S) == I) AND (JoinDesired(S,G) ==
TRUE))

OR ((RPF_interface(RP(G)) == I) AND (JoinDesired(*,G) ==
TRUE)

AND (SPTbit(S,G) == FALSE))

AssertTrackingDesired(S,G,I) is true on any interface in which an (S,G) assert might affect
our behavior.

The first three lines of AssertTrackingDesired account for (*,G) join and local membership
information received on I that might cause the router to be interested in asserts on I.

The 4th line accounts for (S,G) join information received on I that might cause the router to
be interested in asserts on I.

The 5th and 6th lines account for (S,G) local membership information on I. Note that we
can’t use the pim_include(S,G) macro since it uses lost_assert(S,G,I) and would result in the
router forgetting that it lost an assert if the only reason it was interested was local
membership. TheAssertWinner(S,G,I) check forces an assert winner to keep on being
responsible for forwarding as long as local receivers are present. Removing this check
would make the assert winner give up forwarding as soon as the information that originally
caused it to forward went away, and the task of forwarding for local receivers would revert
back to the DR.

The last three lines account for the fact that a router must keep track of assert information
on upstream interfaces in order to send joins and prunes to the proper neighbor.

Transitions from NoInfo State

When in NoInfo state, the following events may trigger transitions:

Receive Inferior Assert with RPTbit cleared AND CouldAssert(S,G,I)==TRUE
An assert is received for (S,G) with the RPT bit cleared that is inferior to our own
assert metric. The RPT bit cleared indicates that the sender of the assert had
(S,G) forwarding state on this interface. Ifthe assert is inferior to our metric,
then we must also have (S,G) forwarding state (i.e., CouldAssert(S,G,I)==TRUE)

Fenner, et al. StandardsTrack [Page 66]

RFC 4601 PIM-SM Specification February 2006

as (S,G) asserts beat (*,G) asserts, and so we should be the assert winner. We
transition to the "I am Assert Winner" state and perform Actions A1 (below).

Receive Assert with RPTbit set AND CouldAssert(S,G,I)==TRUE
An assert is received for (S,G) on I with the RPT bit set (it’s a (*,G) assert).
CouldAssert(S,G,I) is TRUE only if we have (S,G) forwarding state on this
interface, so we should be the assert winner. We transition to the "I am Assert
Winner" state and perform Actions A1 (below).

An (S,G) data packet arrives on interface I, AND CouldAssert(S,G,I)==TRUE
An (S,G) data packet arrived on an downstream interface that is in our (S,G)
outgoing interface list.We optimistically assume that we will be the assert
winner for this (S,G), and so we transition to the "I am Assert Winner" state and
perform Actions A1 (below), which will initiate the assert negotiation for (S,G).

Receive Acceptable Assert with RPT bit clear AND
AssertTrackingDesired(S,G,I)==TRUE
We’re interested in (S,G) Asserts, either because I is a downstream interface for
which we have (S,G) or (*,G) forwarding state, or because I is the upstream
interface for S and we have (S,G) forwarding state. The received assert has a
better metric than our own, so we do not win the Assert.We transition to "I am
Assert Loser" and perform Actions A6 (below).

Transitions from "I am Assert Winner" State

When in "I am Assert Winner" state, the following events trigger transitions:

Assert Timer Expires
The (S,G) Assert Timer expires. Aswe’re in the Winner state, we must still have
(S,G) forwarding state that is actively being kept alive. We resend the (S,G)
Assert and restart the Assert Timer (Actions A3 below). Notethat the assert
winner’s Assert Timer is engineered to expire shortly before timers on assert
losers; this prevents unnecessary thrashing of the forwarder and periodic flooding
of duplicate packets.

Receive Inferior Assert
We receive an (S,G) assert or (*,G) assert mentioning S that has a worse metric
than our own. Whoever sent the assert is in error, and so we resend an (S,G)
Assert and restart the Assert Timer (Actions A3 below).

Receive Preferred Assert
We receive an (S,G) assert that has a better metric than our own. We transition to
"I am Assert Loser" state and perform Actions A2 (below). Notethat this may
affect the value of JoinDesired(S,G) and PruneDesired(S,G,rpt), which could
cause transitions in the upstream (S,G) or (S,G,rpt) state machines.

CouldAssert(S,G,I)→ FALSE
Our (S,G) forwarding state or RPF interface changed so as to make
CouldAssert(S,G,I) become false. We can no longer perform the actions of the
assert winner, and so we transition to NoInfo state and perform Actions A4
(below). Thisincludes sending a "canceling assert" with an infinite metric.

Transitions from "I am Assert Loser" State

When in "I am Assert Loser" state, the following transitions can occur:

Receive Preferred Assert
We receive an assert that is better than that of the current assert winner. We stay

Fenner, et al. StandardsTrack [Page 67]

RFC 4601 PIM-SM Specification February 2006

in Loser state and perform Actions A2 below.

Receive Acceptable Assert with RPTbit clear from Current Winner
We receive an assert from the current assert winner that is better than our own
metric for this (S,G) (although the metric may be worse than the winner’s
previous metric).We stay in Loser state and perform Actions A2 below.

Receive Inferior Assert or Assert Cancel from Current Winner
We receive an assert from the current assert winner that is worse than our own
metric for this group (typically, because the winner’s metric became worse or
because it is an assert cancel).We transition to NoInfo state, deleting the (S,G)
assert information and allowing the normal PIM Join/Prune mechanisms to
operate. Usually, we will eventually re-assert and win when data packets from S
have started flowing again.

Assert Timer Expires
The (S,G) Assert Timer expires. We transition to NoInfo state, deleting the (S,G)
assert information (Actions A5 below).

Current Winner’ s GenID Changes or NLT Expires
The Neighbor Liveness Timer associated with the current winner expires or we
receive a Hello message from the current winner reporting a different GenID
from the one it previously reported. This indicates that the current winner’s
interface or router has gone down (and may have come back up), and so we must
assume it no longer knows it was the winner. We transition to the NoInfo state,
deleting this (S,G) assert information (Actions A5 below).

AssertTrackingDesired(S,G,I)→FALSE
AssertTrackingDesired(S,G,I) becomes FALSE. Ourforwarding state has
changed so that (S,G) Asserts on interface I are no longer of interest to us.We
transition to the NoInfo state, deleting the (S,G) assert information.

My metric becomes better than the assert winner’s metric
my_assert_metric(S,G,I) has changed so that now my assert metric for (S,G) is
better than the metric we have stored for current assert winner. This might
happen when the underlying routing metric changes, or when CouldAssert(S,G,I)
becomes true; for example, when SPTbit(S,G) becomes true.We transition to
NoInfo state, delete this (S,G) assert state (Actions A5 below), and allow the
normal PIM Join/Prune mechanisms to operate. Usually, we will eventually re-
assert and win when data packets from S have started flowing again.

RPF_interface(S) stops being interface I
Interface I used to be the RPF interface for S, and now it is not. We transition to
NoInfo state, deleting this (S,G) assert state (Actions A5 below).

Receive Join(S,G) on Interface I
We receive a Join(S,G) that has the Upstream Neighbor Address field set to my
primary IP address on interface I. The action is to transition to NoInfo state,
delete this (S,G) assert state (Actions A5 below), and allow the normal PIM
Join/Prune mechanisms to operate. If whoever sent the Join was in error, then the
normal assert mechanism will eventually re-apply, and we will lose the assert
again. However, whoever sent the assert may know that the previous assert
winner has died, and so we may end up being the new forwarder.

Fenner, et al. StandardsTrack [Page 68]

RFC 4601 PIM-SM Specification February 2006

(S,G) Assert State machine Actions

A1: SendAssert(S,G).
Set Assert Timer to (Assert_Time - Assert_Override_Interval).
Store self as AssertWinner(S,G,I).
Store spt_assert_metric(S,I) as AssertWinnerMetric(S,G,I).

A2: Storenew assert winner as AssertWinner(S,G,I) and assert winner metric as
AssertWinnerMetric(S,G,I).
Set Assert Timer to Assert_Time.

A3: SendAssert(S,G).
Set Assert Timer to (Assert_Time - Assert_Override_Interval).

A4: SendAssertCancel(S,G).
Delete assert info (AssertWinner(S,G,I) and AssertWinnerMetric(S,G,I) will then
return their default values).

A5: Deleteassert info (AssertWinner(S,G,I) and AssertWinnerMetric(S,G,I) will then
return their default values).

A6: Storenew assert winner as AssertWinner(S,G,I) and assert winner metric as
AssertWinnerMetric(S,G,I).
Set Assert Timer to Assert_Time.
If (I is RPF_interface(S)) AND (UpstreamJPState(S,G) == true) set SPTbit(S,G)
to TRUE.

Note that some of these actions may cause the value of JoinDesired(S,G),
PruneDesired(S,G,rpt), or RPF’(S,G) to change, which could cause further transitions in
other state machines.

4.6.2. (*,G)Assert Message State Machine

The (*,G) Assert state machine for interface I is shown in Figure 11. There are three states:

NoInfo (NI)
This router has no (*,G) assert state on interface I.

I am Assert Winner (W)
This router has won an (*,G) assert on interface I. It is now responsible for
forwarding traffic destined for G onto interface I with the exception of traffic for
which it has (S,G) "I am Assert Loser" state. Irrespective of whether it is the DR for I,
it is also responsible for handling the membership requests for G from local hosts on I.

I am Assert Loser (L)
This router has lost an (*,G) assert on interface I. It must not forward packets for G
onto interface I with the exception of traffic from sources for which is has (S,G) "I am
Assert Winner" state. If it is the DR, it is no longer responsible for handling the
membership requests for group G from local hosts on I.

In addition, there is also an Assert Timer (AT) that is used to time out asserts on the assert
losers and to resend asserts on the assert winner.

When an Assert message is received with a source address other than zero, a PIM
implementation must first match it against the possible events in the (S,G) assert state
machine and process any transitions and actions, before considering whether the
Assert message matches against the (*,G) assert state machine.

It is important to note that NO TRANSITION CAN OCCUR in the (*,G) state
machine as a result of receiving an Assert message unless the (S,G) assert state
machine for the relevant S and G is in the "NoInfo" state after the (S,G) state machine

Fenner, et al. StandardsTrack [Page 69]

RFC 4601 PIM-SM Specification February 2006

has processed the message. Also, NO TRANSITION CAN OCCUR in the (*,G) state
machine as a result of receiving an assert message if that message triggers any change
of state in the (S,G) state machine. Obviously, when the source address in the received
message is set to zero, an (S,G) state machine for the S and G does not exist and can be
assumed to be in the "NoInfo" state.

For example, if both the (S,G) and (*,G) assert state machines are in the NoInfo state when
an Assert message arrives, and the message causes the (S,G) state machine to transition to
either "W" or "L" state, then the assert will not be processed by the (*,G) assert state
machine.

Another example: if the (S,G) assert state machine is in "L" state when an assert message is
received, and the assert metric in the message is worse than
my_assert_metric(S,G,I), then the (S,G) assert state machine will transition to
NoInfo state. In such a case, if the (*,G) assert state machine were in NoInfo state, it might
appear that it would transition to "W" state, but this is not the case because this message
already triggered a transition in the (S,G) assert state machine.

No
Info

I am
Assert
Loser

I am
Assert
Winner

(S,G) data packet arrives on I
AND CouldAssert(*,G,I)==TRUE
[A1]

Receive Join(*,G)
or Join(*,*,RP(G)) on I [A5]

CouldAssert(*,G,I)−>FALSE
[A4]

Receive inferior assert
[A3]

Any of the following events:

I stops being RPF_if(RP(G)) [A5]

AssertTrackingDesired(*,G,I) −>FALSE [A5]

My metric becomes better
than AssertWinnerMetric [A5]

Assert Timer Expires [A5]

Assert Timer Expires
[A3]

Receive preferred
assert
with RPTbit set
[A2]

Receive acceptable
assert from
current winner
with RPTbit set
[A2]

Receive acceptable assert
with RPTbit set AND
AssertTrackingDesired(*,G,I)
 ==TRUE
[A2]

Receive inferior assert with
RPTbit set AND
CouldAssert(*,G,I)==TRUE
[A1]

Receive preferred assert
with RPTbit set
[A2]

Actions:

A1: [Send Assert(*,G)]
 [Set Assert Timer to Assert_Time −
 Assert_Override_Interval]
 [Store self as AssertWinner(*,G,I)]
 [Store own rpt metric as
 AssertWinnerMetric(*,G,I)]

A2: [Set Assert Timer to Assert_Time]
 [Store winner as
 AssertWinner(*,G,I)]
 [Store winner’s metric as
 AssertWinnerMetric(*,G,I)]

A3: [Send Assert(*,G)]
 [Set Assert Timer to Assert_Time −
 Assert_Override_Interval]

A4: [Send AssertCancel(*,G)]
 [Delete Assert Info]

A5: [Delete Assert Info]

Current Winner’s GenID Changes
or Neighbor Liveness Timer expires [A5]

Receive inferior assert or assert
cancel from current winner [A5]

Figure 11: Per-interface (*,G) Assert State machine

Fenner, et al. StandardsTrack [Page 70]

RFC 4601 PIM-SM Specification February 2006

Per-interface (*,G) Assert State machine in tabular form:

In NoInf o (NI) State

Receive Inferior
Assert with RPTbit set
and
CouldAssert(*,G,I)

Data arri ves for G on I
and CouldAssert
(*,G,I)

Receive Acceptable
Assert with RPTbit set
and AssTrDes (*,G,I)

→ W state → W state → L state
[Actions A1] [Actions A1] [Actions A2]

In I Am Assert Winner (W) State

Assert Timer
Expires

Receive Inferior
Assert

Receive Preferred
Assert

CouldAssert
(*,G,I) → FALSE

→ W state → W state → L state → NI state
[Actions A3] [Actions A3] [Actions A2] [Actions A4]

In I Am Assert Loser (L) State

Receive
Preferred
Assert with
RPTbit set

Receive
Acceptable
Assert from
Current
Winner with
RPTbit set

Receive
Inferior Assert
or Assert
Cancel from
Current
Winner

Assert Timer
Expires

Current
Winner’s
GenID
Changes or
NLT Expires

→ L state → L state → NI state → NI state → NI state
[Actions A2] [Actions A2] [Actions A5] [Actions A5] [Actions A5]

In I Am Assert Loser (L) State

AssTrDes (*,G,I)
→ FALSE

my_metric →
better than
Winner’s metric

RPF_interface
(RP(G)) stops
being I

Receive Join(*,G)
or Join
(*,*,RP(G)) on
Interface I

→ NI state → NI state → NI state → NI State
[Actions A5] [Actions A5] [Actions A5] [Actions A5]

The state machine uses the following macros:

CouldAssert(*,G,I) =
(I in (joins(*,*,RP(G)) + joins(*,G)

+ pim_include(*,G)))
AND (RPF_interface(RP(G)) ≠ I)

CouldAssert(*,G,I) is true on downstream interfaces for which we have (*,*,RP(G)) or
(*,G) join state, or local members that requested any traffic destined for G.

AssertTrackingDesired(*,G,I) =
CouldAssert(*,G,I)
OR (local_receiver_include(*,G,I)==TRUE

AND (I_am_DR(I) OR AssertWinner(*,G,I) == me))
OR (RPF_interface(RP(G)) == I AND RPTJoinDesired(G))

Fenner, et al. StandardsTrack [Page 71]

RFC 4601 PIM-SM Specification February 2006

AssertTrackingDesired(*,G,I) is true on any interface on which an (*,G) assert might affect
our behavior.

Note that for reasons of compactness, "AssTrDes(*,G,I)" is used in the state machine table
to refer to AssertTrackingDesired(*,G,I).

Terminology:
A "preferred assert" is one with a better metric than the current winner.

An "acceptable assert" is one that has a better metric than
my_assert_metric(*,G,I). An assert is never considered acceptable if its
metric is infinite.

An "inferior assert" is one with a worse metric than
my_assert_metric(*,G,I). An assert is never considered inferior if
my_assert_metric(*,G,I) is infinite.

Transitions from NoInfo State

When in NoInfo state, the following events trigger transitions, but only if the (S,G) assert
state machine is in NoInfo state before and after consideration of the received message:

Receive Inferior Assert with RPTbit set AND CouldAssert(*,G,I)==TRUE
An Inferior (*,G) assert is received for G on Interface I. If CouldAssert(*,G,I) is
TRUE, then I is our downstream interface, and we have (*,G) forwarding state on
this interface, so we should be the assert winner. We transition to the "I am
Assert Winner" state and perform Actions A1 (below).

A data packet destined for G arrives on interface I, AND
CouldAssert(*,G,I)==TRUE
A data packet destined for G arrived on a downstream interface that is in our
(*,G) outgoing interface list.We therefore believe we should be the forwarder
for this (*,G), and so we transition to the "I am Assert Winner" state and perform
Actions A1 (below).

Receive Acceptable Assert with RPT bit set AND
AssertTrackingDesired(*,G,I)==TRUE
We’re interested in (*,G) Asserts, either because I is a downstream interface for
which we have (*,G) forwarding state, or because I is the upstream interface for
RP(G) and we have (*,G) forwarding state.We get a (*,G) Assert that has a
better metric than our own, so we do not win the Assert.We transition to "I am
Assert Loser" and perform Actions A2 (below).

Transitions from "I am Assert Winner" State

When in "I am Assert Winner" state, the following events trigger transitions, but only if the
(S,G) assert state machine is in NoInfo state before and after consideration of the received
message:

Receive Inferior Assert
We receive a (*,G) assert that has a worse metric than our own. Whoever sent the
assert has lost, and so we resend a (*,G) Assert and restart the Assert Timer
(Actions A3 below).

Receive Preferred Assert
We receive a (*,G) assert that has a better metric than our own. We transition to
"I am Assert Loser" state and perform Actions A2 (below).

Fenner, et al. StandardsTrack [Page 72]

RFC 4601 PIM-SM Specification February 2006

When in "I am Assert Winner" state, the following events trigger transitions:

Assert Timer Expires
The (*,G) Assert Timer expires. Aswe’re in the Winner state, then we must still
have (*,G) forwarding state that is actively being kept alive. To prevent
unnecessary thrashing of the forwarder and periodic flooding of duplicate
packets, we resend the (*,G) Assert and restart the Assert Timer (Actions A3
below).

CouldAssert(*,G,I) → FALSE
Our (*,G) forwarding state or RPF interface changed so as to make
CouldAssert(*,G,I) become false. We can no longer perform the actions of the
assert winner, and so we transition to NoInfo state and perform Actions A4
(below).

Transitions from "I am Assert Loser" State

When in "I am Assert Loser" state, the following events trigger transitions, but only if the
(S,G) assert state machine is in NoInfo state before and after consideration of the received
message:

Receive Preferred Assert with RPTbit set
We receive a (*,G) assert that is better than that of the current assert winner. We
stay in Loser state and perform Actions A2 below.

Receive Acceptable Assert from Current Winner with RPTbit set
We receive a (*,G) assert from the current assert winner that is better than our
own metric for this group (although the metric may be worse than the winner’s
previous metric).We stay in Loser state and perform Actions A2 below.

Receive Inferior Assert or Assert Cancel from Current Winner
We receive an assert from the current assert winner that is worse than our own
metric for this group (typically because the winner’s metric became worse or is
now an assert cancel).We transition to NoInfo state, delete this (*,G) assert state
(Actions A5), and allow the normal PIM Join/Prune mechanisms to operate.
Usually, we will eventually re-assert and win when data packets for G have
started flowing again.

When in "I am Assert Loser" state, the following events trigger transitions:

Assert Timer Expires
The (*,G) Assert Timer expires. We transition to NoInfo state and delete this
(*,G) assert info (Actions A5).

Current Winner’ s GenID Changes or NLT Expires
The Neighbor Liveness Timer associated with the current winner expires or we
receive a Hello message from the current winner reporting a different GenID
from the one it previously reported. This indicates that the current winner’s
interface or router has gone down (and may have come back up), and so we must
assume it no longer knows it was the winner. We transition to the NoInfo state,
deleting the (*,G) assert information (Actions A5).

AssertTrackingDesired(*,G,I)→FALSE
AssertTrackingDesired(*,G,I) becomes FALSE. Ourforwarding state has
changed so that (*,G) Asserts on interface I are no longer of interest to us.We
transition to NoInfo state and delete this (*,G) assert info (Actions A5).

Fenner, et al. StandardsTrack [Page 73]

RFC 4601 PIM-SM Specification February 2006

My metric becomes better than the assert winner’s metric
My routing metric, rpt_assert_metric(G,I), has changed so that now my assert
metric for (*,G) is better than the metric we have stored for current assert winner.
We transition to NoInfo state, delete this (*,G) assert state (Actions A5), and
allow the normal PIM Join/Prune mechanisms to operate. Usually, we will
ev entually re-assert and win when data packets for G have started flowing again.

RPF_interface(RP(G)) stops being interface I
Interface I used to be the RPF interface for RP(G), and now it is not. We
transition to NoInfo state and delete this (*,G) assert state (Actions A5).

Receive Join(*,G) or Join(*,*,RP(G)) on interface I
We receive a Join(*,G) or a Join(*,*,RP(G)) that has the Upstream Neighbor
Address field set to my primary IP address on interface I. The action is to
transition to NoInfo state, delete this (*,G) assert state (Actions A5), and allow
the normal PIM Join/Prune mechanisms to operate. If whoever sent the Join was
in error, then the normal assert mechanism will eventually re-apply, and we will
lose the assert again. However, whoever sent the assert may know that the
previous assert winner has died, so we may end up being the new forwarder.

(*,G) Assert State machine Actions

A1: SendAssert(*,G).
Set Assert Timer to (Assert_Time - Assert_Override_Interval).
Store self as AssertWinner(*,G,I).
Store rpt_assert_metric(G,I) as AssertWinnerMetric(*,G,I).

A2: Storenew assert winner as AssertWinner(*,G,I) and assert winner metric as
AssertWinnerMetric(*,G,I).
Set Assert Timer to Assert_Time.

A3: SendAssert(*,G)
Set Assert Timer to (Assert_Time - Assert_Override_Interval).

A4: SendAssertCancel(*,G).
Delete assert info (AssertWinner(*,G,I) and AssertWinnerMetric(*,G,I) will then
return their default values).

A5: Deleteassert info (AssertWinner(*,G,I) and AssertWinnerMetric(*,G,I) will then
return their default values).

Note that some of these actions may cause the value of JoinDesired(*,G) or RPF’(*,G)) to
change, which could cause further transitions in other state machines.

4.6.3. AssertMetrics

Assert metrics are defined as:

struct assert_metric {
rpt_bit_flag;
metric_preference;
route_metric;
ip_address;

};

When comparing assert_metrics, the rpt_bit_flag, metric_preference, and route_metric field
are compared in order, where the first lower value wins. If all fields are equal, the primary
IP address of the router that sourced the Assert message is used as a tie-breaker, with the

Fenner, et al. StandardsTrack [Page 74]

RFC 4601 PIM-SM Specification February 2006

highest IP address winning.

An assert metric for (S,G) to include in (or compare against) an Assert message sent on
interface I should be computed using the following pseudocode:

assert_metric
my_assert_metric(S,G,I) {

if(CouldAssert(S,G,I) == TRUE) {
return spt_assert_metric(S,I)

} else if(CouldAssert(*,G,I) == TRUE) {
return rpt_assert_metric(G,I)

} else {
return infinite_assert_metric()

}
}

spt_assert_metric(S,I) gives the assert metric we use if we’re sending an assert
based on active (S,G) forwarding state:

assert_metric
spt_assert_metric(S,I) {

return {0,MRIB.pref(S),MRIB.metric(S),my_ip_address(I)}
}

rpt_assert_metric(G,I) gives the assert metric we use if we’re sending an assert
based only on (*,G) forwarding state:

assert_metric
rpt_assert_metric(G,I) {

return {1,MRIB.pref(RP(G)),MRIB.metric(RP(G)),my_ip_address(I)}
}

MRIB.pref(X) andMRIB.metric(X) are the routing preference and routing metrics
associated with the route to a particular (unicast) destination X, as determined by the MRIB.
my_ip_address(I) is simply the router’s primary IP address that is associated with the
local interface I.

infinite_assert_metric() gives the assert metric we need to send an assert but
don’t match either (S,G) or (*,G) forwarding state:

assert_metric
infinite_assert_metric() {

return {1,infinity,infinity,0}
}

4.6.4. AssertCancelMessages

An AssertCancel message is simply an RPT Assert message but with infinite metric. It is
sent by the assert winner when it deletes the forwarding state that had caused the assert to
occur. Other routers will see this metric, and it will cause any other router that has
forwarding state to send its own assert, and to take over forwarding.

An AssertCancel(S,G) is an infinite metric assert with the RPT bit set that names S as the
source.

An AssertCancel(*,G) is an infinite metric assert with the RPT bit set and the source set to
zero.

Fenner, et al. StandardsTrack [Page 75]

RFC 4601 PIM-SM Specification February 2006

AssertCancel messages are simply an optimization. The original Assert timeout mechanism
will allow a subnet to eventually become consistent; the AssertCancel mechanism simply
causes faster convergence. Nospecial processing is required for an AssertCancel message,
since it is simply an Assert message from the current winner.

4.6.5. AssertState Macros

The macroslost_assert(S,G,rpt,I), lost_assert(S,G,I), and
lost_assert(*,G,I) are used in the olist computations of Section 4.1, and are defined
as:

bool lost_assert(S,G,rpt,I) {
if (RPF_interface(RP(G)) == I OR

(RPF_interface(S) == I AND SPTbit(S,G) == TRUE)) {
return FALSE

} else {
return (AssertWinner(S,G,I) ≠ NULL AND

AssertWinner(S,G,I) ≠ me)
}

}

bool lost_assert(S,G,I) {
if (RPF_interface(S) == I) {

return FALSE
} else {

return (AssertWinner(S,G,I) ≠ NULL AND
AssertWinner(S,G,I) ≠ me AND
(AssertWinnerMetric(S,G,I) is better

than spt_assert_metric(S,I))
}

}

Note: the term "AssertWinnerMetric(S,G,I) is better than spt_assert_metric(S,I)" is required
to correctly handle the transition phase when a router has (S,G) join state, but has not yet set
the SPT bit. In this case, it needs to ignore the assert state if it will win the assert once the
SPTbit is set.

bool lost_assert(*,G,I) {
if (RPF_interface(RP(G)) == I) {

return FALSE
} else {

return (AssertWinner(*,G,I) ≠ NULL AND
AssertWinner(*,G,I) ≠ me)

}
}

AssertWinner(S,G,I) is the IP source address of the Assert(S,G) packet that won an
Assert.

AssertWinner(*,G,I) is the IP source address of the Assert(*,G) packet that won an
Assert.

AssertWinnerMetric(S,G,I) is the Assert metric of the Assert(S,G) packet that
won an Assert.

Fenner, et al. StandardsTrack [Page 76]

RFC 4601 PIM-SM Specification February 2006

AssertWinnerMetric(*,G,I) is the Assert metric of the Assert(*,G) packet that
won an Assert.

AssertWinner(S,G,I) defaults to NULL andAssertWinnerMetric(S,G,I)
defaults to Infinity when in the NoInfo state.

Summary of Assert Rules and Rationale

This section summarizes the key rules for sending and reacting to asserts and the rationale
for these rules. This section is not intended to be and should not be treated as a definitive
specification of protocol behavior. The state machines and pseudocode should be consulted
for that purpose. Rather, this section is intended to document important aspects of the
Assert protocol behavior and to provide information that may prove helpful to the reader in
understanding and implementing this part of the protocol.

1. Behavior: Downstream neighbors send Join(*,G) and Join(S,G) periodic messages to
the appropriate RPF’ neighbor, i.e., the RPF neighbor as modified by the assert
process. They are not always sent to the RPF neighbor as indicated by the MRIB.
Normal suppression and override rules apply.

Rationale: By sending the periodic and triggered Join messages to the RPF’ neighbor
instead of to the RPF neighbor, the downstream router avoids re-triggering the Assert
process with every Join. A side effect of sending Joins to the Assert winner is that
traffic will not switch back to the "normal" RPF neighbor until the Assert times out.
This will not happen until data stops flowing, if item 8, below, is implemented.

2. Behavior: The assert winner for (*,G) acts as the local DR for (*,G) on behalf of
IGMP/MLD members.

Rationale: This is required to allow a single router to merge PIM and IGMP/MLD
joins and leaves. Without this, overrides don’t work.

3. Behavior: The assert winner for (S,G) acts as the local DR for (S,G) on behalf of
IGMPv3 members.

Rationale: Same rationale as for item 2.

4. Behavior: (S,G) and (*,G) prune overrides are sent to the RPF’ neighbor and not to the
regular RPF neighbor.

Rationale: Same rationale as for item 1.

5. Behavior: An (S,G,rpt) prune override is not sent (at all) if RPF’(S,G,rpt)≠ RPF’(*,G).

Rationale: This avoids keeping state alive on the (S,G) tree when only (*,G)
downstream members are left. Also, it avoids sending (S,G,rpt) joins to a router that is
not on the (*,G) tree. This behavior might be confusing although this specification
does indicate that such a join should be dropped.

6. Behavior: An assert loser that receives a Join(S,G) with an Upstream Neighbor
Address that is its primary IP address on that interface cancels the (S,G) Assert Timer.

Rationale: This is necessary in order to have rapid convergence in the event that the
downstream router that initially sent a join to the prior Assert winner has undergone a
topology change.

7. Behavior: An assert loser that receives a Join(*,G) or a Join(*,*,RP(G)) with an
Upstream Neighbor Address that is its primary IP address on that interface cancels the
(*,G) Assert Timer and all (S,G) assert timers that do not have corresponding
Prune(S,G,rpt) messages in the compound Join/Prune message.

Fenner, et al. StandardsTrack [Page 77]

RFC 4601 PIM-SM Specification February 2006

Rationale: Same rationale as for item 6.

8. Behavior: An assert winner for (*,G) or (S,G) sends a canceling assert when it is about
to stop forwarding on a (*,G) or an (S,G) entry. This behavior does not apply to
(S,G,rpt).

Rationale: This allows switching back to the shared tree after the last SPT router on the
LAN leaves. Doingthis prevents downstream routers on the shared tree from keeping
SPT state alive.

9. Behavior: Resend the assert messages before timing out an assert. (This behavior is
optional.)

Rationale: This prevents the periodic duplicates that would otherwise occur each time
that an assert times out and is then re-established.

10. Behavior: When RPF’(S,G,rpt) changes to be the same as RPF’(*,G) we need to
trigger a Join(S,G,rpt) to RPF’(*,G).

Rationale: This allows switching back to the RPT after the last SPT member leaves.

4.7. PIM Bootstrap and RP Discovery
For correct operation, every PIM router within a PIM domain must be able to map a
particular multicast group address to the same RP. If this is not the case, then black holes
may appear, where some receivers in the domain cannot receive some groups.A domain in
this context is a contiguous set of routers that all implement PIM and are configured to
operate within a common boundary.

A notable exception to this is where a PIM domain is broken up into multiple administrative
scope regions; these are regions where a border has been configured so that a range of
multicast groups will not be forwarded across that border. For more information on
Administratively Scoped IP Multicast, see RFC 2365. The modified criteria for admin-
scoped regions are that the region is convex with respect to forwarding based on the MRIB,
and that all PIM routers within the scope region map scoped groups to the same RP within
that region.

This specification does not mandate the use of a single mechanism to provide routers with
the information to perform the group-to-RP mapping. Currently four mechanisms are
possible, and all four have associated problems:
Static Configuration

A PIM router MUST support the static configuration of group-to-RP mappings. Such
a mechanism is not robust to failures, but does at least provide a basic interoperability
mechanism.

Embedded-RP
Embedded-RP defines an address allocation policy in which the address of the
Rendezvous Point (RP) is encoded in an IPv6 multicast group address [17].

Cisco’s Auto-RP
Auto-RP uses a PIM Dense-Mode multicast group to announce group-to-RP
mappings from a central location. This mechanism is not useful if PIM Dense-Mode
is not being run in parallel with PIM Sparse-Mode, and was only intended for use
with PIM Sparse-Mode Version 1. No standard specification currently exists.

BootStrap Router (BSR)
RFC 2362 specifies a bootstrap mechanism based on the automatic election of a
bootstrap router (BSR). Any router in the domain that is configured to be a possible
RP reports its candidacy to the BSR, and then a domain-wide flooding mechanism
distributes the BSR’s chosen set of RPs throughout the domain. As specified in RFC

Fenner, et al. StandardsTrack [Page 78]

RFC 4601 PIM-SM Specification February 2006

2362, BSR is flawed in its handling of admin-scoped regions that are smaller than a
PIM domain, but the mechanism does work for global-scoped groups.

As far as PIM-SM is concerned, the only important requirement is that all routers in the
domain (or admin scope zone for scoped regions) receive the same set of group-range-to-RP
mappings. Thismay be achieved through the use of any of these mechanisms, or through
alternative mechanisms not currently specified.

It must be operationally ensured that any RP address configured, learned, or advertised is
reachable from all routers in the PIM domain.

4.7.1. Group-to-RP Mapping

Using one of the mechanisms described above, a PIM router receives one or more possible
group-range-to-RP mappings. Each mapping specifies a range of multicast groups
(expressed as a group and mask) and the RP to which such groups should be mapped. Each
mapping may also have an associated priority. It is possible to receive multiple mappings,
all of which might match the same multicast group; this is the common case with BSR. The
algorithm for performing the group-to-RP mapping is as follows:

1. Performlongest match on group-range to obtain a list of RPs.

2. Fromthis list of matching RPs, find the one with highest priority. Eliminate any RPs
from the list that have lower priorities.

3. If only one RP remains in the list, use that RP.

4. If multiple RPs are in the list, use the PIM hash function to choose one.

Thus, if two or more group-range-to-RP mappings cover a particular group, the one with the
longest mask is the mapping to use. If the mappings have the same mask length, then the
one with the highest priority is chosen. If there is more than one matching entry with the
same longest mask and the priorities are identical, then a hash function (see Section 4.7.2) is
applied to choose the RP.

This algorithm is invoked by a DR when it needs to determine an RP for a given group, e.g.,
upon reception of a packet or IGMP/MLD membership indication for a group for which the
DR does not know the RP. It is inv oked by any router that has (*,*,RP) state when a packet
is received for which there is no corresponding (S,G) or (*,G) entry. Furthermore, the
mapping function is invoked by all routers upon receiving a (*,G) or (*,*,RP) Join/Prune
message.

Note that if the set of possible group-range-to-RP mappings changes, each router will need
to check whether any existing groups are affected. Thismay, for example, cause a DR or
acting DR to re-join a group, or cause it to restart register encapsulation to the new RP.

Implementation note: the bootstrap mechanism described in RFC 2362 omitted
step 1 above. However, of the implementations we are aware of, approximately
half performed step 1 anyway. Note that implementations of BSR that omit step
1 will not correctly interoperate with implementations of this specification when
used with the BSR mechanism described in [11].

4.7.2. HashFunction

The hash function is used by all routers within a domain, to map a group to one of the RPs
from the matching set of group-range-to-RP mappings (this set all have the same longest
mask length and same highest priority). The algorithm takes as input the group address, and
the addresses of the candidate RPs from the mappings, and gives as output one RP address
to be used.

Fenner, et al. StandardsTrack [Page 79]

RFC 4601 PIM-SM Specification February 2006

The protocol requires that all routers hash to the same RP within a domain (except for
transients). Thefollowing hash function must be used in each router:

1. For RP addresses in the matching group-range-to-RP mappings, compute a value:

Value(G,M,C(i))=
(1103515245 * ((1103515245 * (G&M)+12345) XOR C(i)) + 12345) mod 2ˆ31

where C(i) is the RP address and M is a hash-mask. If BSR is being used, the hash-
mask is given in the Bootstrap messages. If BSR is not being used, the alternative
mechanism that supplies the group-range-to-RP mappings may supply the value, or
else it defaults to a mask with the most significant 30 bits being one for IPv4 and the
most significant 126 bits being one for IPv6. The hash-mask allows a small number of
consecutive groups (e.g., 4) to always hash to the same RP. For instance,
hierarchically-encoded data can be sent on consecutive group addresses to get the same
delay and fate-sharing characteristics.

For address families other than IPv4, a 32-bit digest to be used as C(i) and G must first
be derived from the actual RP or group address. Such a digest method must be used
consistently throughout the PIM domain.For IPv6 addresses, we recommend using
the equivalent IPv4 address for an IPv4-compatible address, and the exclusive-or of
each 32-bit segment of the address for all other IPv6 addresses.For example, the
digest of the IPv6 address 3ffe:b00:c18:1::10 would be computed as 0x3ffe0b00 ˆ
0x0c180001 ˆ 0x00000000 ˆ 0x00000010, where ˆ represents the exclusive-or
operation.

2. Thecandidate RP with the highest resulting hash value is then the RP chosen by this
Hash Function. If more than one RP has the same highest hash value, the RP with the
highest IP address is chosen.

4.8. Source-Specific Multicast
The Source-Specific Multicast (SSM) service model [6] can be implemented with a strict
subset of the PIM-SM protocol mechanisms. Both regular IP Multicast and SSM semantics
can coexist on a single router, and both can be implemented using the PIM-SM protocol. A
range of multicast addresses, currently 232.0.0.0/8 in IPv4 and FF3x::/32 for IPv6, is
reserved for SSM, and the choice of semantics is determined by the multicast group address
in both data packets and PIM messages.

4.8.1. Protocol Modifications for SSM Destination Addresses

The following rules override the normal PIM-SM behavior for a multicast address G in the
SSM range:

• A router MUST NOT send a (*,G) Join/Prune message for any reason.

• A router MUST NOT send an (S,G,rpt) Join/Prune message for any reason.

• A router MUST NOT send a Register message for any packet that is destined to an SSM
address.

• A router MUST NOT forward packets based on (*,G) or (S,G,rpt) state. The (*,G)- and
(S,G,rpt)-related state summarization macros are NULL for any SSM address, for the
purposes of packet forwarding.

• A router acting as an RP MUST NOT forward any Register-encapsulated packet that has
an SSM destination address.

Fenner, et al. StandardsTrack [Page 80]

RFC 4601 PIM-SM Specification February 2006

The last two rules are present to deal with "legacy" routers unaware of SSM that may be
sending (*,G) and (S,G,rpt) Join/Prunes, or Register messages for SSM destination
addresses.

Additionally:

• A router MAY be configured to advertise itself as a Candidate RP for an SSM address. If
so, it SHOULD respond with a Register-Stop message to any Register message
containing a packet destined for an SSM address.

• A router MAY optimize out the creation and maintenance of (S,G,rpt) and (*,G) state for
SSM destination addresses -- this state is not needed for SSM packets.

4.8.2. PIM-SSM-OnlyRouters

An implementer may choose to implement only the subset of PIM Sparse-Mode that
provides SSM forwarding semantics.

A PIM-SSM-only router MUST implement the following portions of this specification:

• Upstream (S,G) state machine (Section 4.5.7)

• Downstream (S,G) state machine (Section 4.5.3)

• (S,G) Assert state machine (Section 4.6.1)

• Hello messages, neighbor discovery, and DR election (Section 4.3)

• Packet forwarding rules (Section 4.2)

A PIM-SSM-only router does not need to implement the following protocol elements:

• Register state machine (Section 4.4)

• (*,G), (S,G,rpt), and (*,*,RP) Downstream state machines (Sections 4.5.2, 4.5.4, and
4.5.1)

• (*,G), (S,G,rpt), and (*,*,RP) Upstream state machines (Sections 4.5.6, 4.5.8, and 4.5.5)

• (*,G) Assert state machine (Section 4.6.2)

• Bootstrap RP Election (Section 4.7)

• Keepalive Timer

• SPTbit (Section 4.2.2)

TheKeepalive Timer should be treated as always running, andSPTbit should be
treated as always being set for an SSM address.

Fenner, et al. StandardsTrack [Page 81]

RFC 4601 PIM-SM Specification February 2006

Additionally, the Packet forwarding rules of Section 4.2 can be simplified in a PIM-SSM-
only router:

if(iif == RPF_interface(S) AND UpstreamJPState(S,G) == Joined) {
oiflist = inherited_olist(S,G)

} else if(iif is in inherited_olist(S,G)) {
send Assert(S,G) on iif

}

oiflist = oiflist − iif
forward packet on all interfaces in oiflist

This is nothing more than the reduction of the normal PIM-SM forwarding rule, with all
(S,G,rpt) and (*,G) clauses replaced with NULL.

4.9. PIM Packet Formats
This section describes the details of the packet formats for PIM control messages.

All PIM control messages have IP protocol number 103.

PIM messages are either unicast (e.g., Registers and Register-Stop) or multicast with TTL 1
to the ’ALL-PIM-ROUTERS’ group (e.g., Join/Prune, Asserts, etc.). The source address
used for unicast messages is a domain-wide reachable address; the source address used for
multicast messages is the link-local address of the interface on which the message is being
sent.

The IPv4 ’ALL-PIM-ROUTERS’ group is ’224.0.0.13’. The IPv6 ’ALL-PIM-ROUTERS’
group is ’ff02::d’.

The PIM header common to all PIM messages is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PIM Ver| Type | Reserved | Checksum |
+-+

PIM Ver
PIM Version number is 2.

Type
Types for specific PIM messages. PIM Types are:

Message Type Destination
0 = Hello Multicastto ALL-PIM-ROUTERS
1 = Register Unicastto RP
2 = Register-Stop Unicast to source of Register

packet
3 = Join/Prune Multicastto ALL-PIM-ROUTERS
4 = Bootstrap Multicastto ALL-PIM-ROUTERS
5 = Assert Multicastto ALL-PIM-ROUTERS
6 = Graft (used in PIM-DM only) Unicast to RPF’(S)
7 = Graft-Ack (used in PIM-DM only) Unicast to source of Graft packet
8 = Candidate-RP-Advertisement Unicastto Domain’s BSR

Fenner, et al. StandardsTrack [Page 82]

RFC 4601 PIM-SM Specification February 2006

Reserved
Set to zero on transmission. Ignored upon receipt.

Checksum
The checksum is a standard IP checksum, i.e., the 16-bit one’s complement of the
one’s complement sum of the entire PIM message, excluding the "Multicast data
packet" section of the Register message.For computing the checksum, the checksum
field is zeroed. If the packet’s length is not an integral number of 16-bit words, the
packet is padded with a trailing byte of zero before performing the checksum.

For IPv6, the checksum also includes the IPv6 "pseudo-header", as specified in RFC
2460, Section 8.1 [5]. This "pseudo-header" is prepended to the PIM header for the
purposes of calculating the checksum. The "Upper-Layer Packet Length" in the
pseudo-header is set to the length of the PIM message, except in Register messages
where it is set to the length of the PIM register header (8). The Next Header value
used in the pseudo-header is 103.

If a message is received with an unrecognized PIM Ver or Type field, or if a message’s
destination does not correspond to the table above, the message MUST be discarded, and an
error message SHOULD be logged to the administrator in a rate-limited manner.

4.9.1. EncodedSource and Group Address Formats

Encoded-Unicast Address

An Encoded-Unicast address takes the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Addr Family | Encoding Type | Unicast Address
+-+...

Addr Family
The PIM address family of the ’Unicast Address’ field of this address.

Values 0-127 are as assigned by the IANA for Internet Address Families in [7].
Values 128-250 are reserved to be assigned by the IANA for PIM-specific Address
Families. Values 251 though 255 are designated for private use. As there is no
assignment authority for this space, collisions should be expected.

Encoding Type
The type of encoding used within a specific Address Family. The value ’0’ is
reserved for this field and represents the native encoding of the Address Family.

Unicast Address
The unicast address as represented by the given Address Family and Encoding Type.

Fenner, et al. StandardsTrack [Page 83]

RFC 4601 PIM-SM Specification February 2006

Encoded-Group Address

Encoded-Group addresses take the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Addr Family | Encoding Type |B| Reserved |Z| Mask Len |
+-+
| Group multicast Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

Addr Family
Described above.

Encoding Type
Described above.

[B]idirectional PIM
Indicates the group range should use Bidirectional PIM [13].For PIM-SM defined in
this specification, this bit MUST be zero.

Reserved
Transmitted as zero. Ignored upon receipt.

Admin Scope [Z]one
indicates the group range is an admin scope zone. This is used in the Bootstrap
Router Mechanism [11] only. For all other purposes, this bit is set to zero and
ignored on receipt.

Mask Len
The Mask length field is 8 bits. The value is the number of contiguous one bits that
are left justified and used as a mask; when combined with the group address, it
describes a range of groups. It is less than or equal to the address length in bits for
the given Address Family and Encoding Type. If the message is sent for a single
group, then the Mask length must equal the address length in bits for the given
Address Family and Encoding Type (e.g., 32 for IPv4 native encoding, 128 for IPv6
native encoding).

Group multicast Address
Contains the group address.

Encoded-Source Address

Encoded-Source address takes the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Addr Family | Encoding Type | Rsrvd |S|W|R| Mask Len |
+-+
| Source Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...

Addr Family
Described above.

Fenner, et al. StandardsTrack [Page 84]

RFC 4601 PIM-SM Specification February 2006

Encoding Type
Described above.

Reserved
Transmitted as zero, ignored on receipt.

S The Sparse bit is a 1-bit value, set to 1 for PIM-SM. It is used for PIM version 1
compatibility.

W The WC (or WildCard) bit is a 1-bit value for use with PIM Join/Prune messages (see
Section 4.9.5.1).

R The RPT (or Rendezvous Point Tree) bit is a 1-bit value for use with PIM Join/Prune
messages (see Section 4.9.5.1). If the WC bit is 1, the RPT bit MUST be 1.

Mask Len
The mask length field is 8 bits. The value is the number of contiguous one bits left
justified used as a mask which, combined with the Source Address, describes a source
subnet. Themask length MUST be equal to the mask length in bits for the given
Address Family and Encoding Type (32 for IPv4 native and 128 for IPv6 native). A
router SHOULD ignore any messages received with any other mask length.

Source Address
The source address.

4.9.2. HelloMessage Format

It is sent periodically by routers on all interfaces.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PIM Ver| Type | Reserved | Checksum |
+-+
| OptionType | OptionLength |
+-+
| OptionValue |
| ... |
+-+
| . |
| . |
| . |
+-+
| OptionType | OptionLength |
+-+
| OptionValue |
| ... |
+-+

PIM Version, Type, Reserved, Checksum
Described in Section 4.9.

OptionType
The type of the option given in the following OptionValue field.

OptionLength
The length of the OptionValue field in bytes.

Fenner, et al. StandardsTrack [Page 85]

RFC 4601 PIM-SM Specification February 2006

OptionValue
A variable length field, carrying the value of the option.

The Option fields may contain the following values:

• OptionType 1: Holdtime

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 1 | Length = 2 |
+-+
| Holdtime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Holdtime is the amount of time a receiver must keep the neighbor reachable, in
seconds. Ifthe Holdtime is set to ’0xffff ’ , the receiver of this message never times
out the neighbor. This may be used with dial-on-demand links, to avoid keeping
the link up with periodic Hello messages.

Hello messages with a Holdtime value set to ’0’ are also sent by a router on an
interface about to go down or changing IP address (see Section 4.3.1). These are
effectively goodbye messages, and the receiving routers should immediately time out
the neighbor information for the sender.

• OptionType 2: LAN Prune Delay

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 2 | Length = 4 |
+-+
|T| Propagation_Delay | Override_Interval |
+-+

The LAN Prune Delay option is used to tune the prune propagation delay on multi-
access LANs. The T bit specifies the ability of the sending router to disable joins
suppression. Propagation_Delay and Override_Interval are time intervals in units
of milliseconds.A router originating a LAN Prune Delay option on interface I sets
the Propagation_Delay field to the configured value of Propagation_Delay(I) and
the value of the Override_Interval field to the value of Override_Interval(I). Ona
receiving router, the values of the fields are used to tune the value of the
Effective_Override_Interval(I) and its derived timer values. Section4.3.3 describes
how these values affect the behavior of a router.

• OptionType 3 to 16: reserved to be defined in future versions of this document.

• OptionType 18: deprecated and should not be used.

Fenner, et al. StandardsTrack [Page 86]

RFC 4601 PIM-SM Specification February 2006

• OptionType 19: DR Priority

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 19 | Length = 4 |
+-+
| DR Priority |
+-+

DR Priority is a 32-bit unsigned number and should be considered in the DR
election as described in Section 4.3.2.

• OptionType 20: Generation ID

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 20 | Length = 4 |
+-+
| Generation ID |
+-+

Generation ID is a random 32-bit value for the interface on which the Hello
message is sent. The Generation ID is regenerated whenever PIM forwarding is
started or restarted on the interface.

• OptionType 24: Address List

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 24 | Length = <Variable> |
+-+
| Secondary Address 1 (Encoded-Unicast format) |
+-+

...
+-+
| Secondary Address N (Encoded-Unicast format) |
+-+

The contents of the Address List Hello option are described in Section 4.3.4. All
addresses within a single Address List must belong to the same address family.

OptionTypes 17 through 65000 are assigned by the IANA. OptionTypes 65001
through 65535 are reserved for Private Use, as defined in [9].
Unknown options MUST be ignored and MUST NOT prevent a neighbor relationship
from being formed. The "Holdtime" option MUST be implemented; the "DR
Priority" and "Generation ID" options SHOULD be implemented. The "Address
List" option MUST be implemented for IPv6.

Fenner, et al. StandardsTrack [Page 87]

RFC 4601 PIM-SM Specification February 2006

4.9.3. RegisterMessage Format

A Register message is sent by the DR or a PMBR to the RP when a multicast packet needs
to be transmitted on the RP-tree. The IP source address is set to the address of the DR, the
destination address to the RP’s address. TheIP TTL of the PIM packet is the system’s
normal unicast TTL.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PIM Ver| Type | Reserved | Checksum |
+-+
|B|N| Reserved2 |
+-+
| |
. Multicast data packet .
| |
+-+

PIM Version, Type, Reserved, Checksum
Described in Section 4.9. Note that in order to reduce encapsulation overhead, the
checksum for Registers is done only on the first 8 bytes of the packet, including the
PIM header and the next 4 bytes, excluding the data packet portion.For
interoperability reasons, a message carrying a checksum calculated over the entire
PIM Register message should also be accepted. When calculating the checksum, the
IPv6 pseudoheader "Upper-Layer Packet Length" is set to 8.

B The Border bit. If the router is a DR for a source that it is directly connected to, it
sets the B bit to 0. If the router is a PMBR for a source in a directly connected cloud,
it sets the B bit to 1.

N The Null-Register bit. Set to 1 by a DR that is probing the RP before expiring its
local Register-Suppression Timer. Set to 0 otherwise.

Reserved2
Transmitted as zero, ignored on receipt.

Multicast data packet
The original packet sent by the source. This packet must be of the same address
family as the encapsulating PIM packet, e.g., an IPv6 data packet must be
encapsulated in an IPv6 PIM packet. Notethat the TTL of the original packet is
decremented before encapsulation, just like any other packet that is forwarded. In
addition, the RP decrements the TTL after decapsulating, before forwarding the
packet down the shared tree.

Fenner, et al. StandardsTrack [Page 88]

RFC 4601 PIM-SM Specification February 2006

For (S,G) Null-Registers, the Multicast data packet portion contains a dummy IP
header with S as the source address, G as the destination address. When generating
an IPv4 Null-Register message, the fields in the dummy IPv4 header SHOULD be
filled in according to the following table. Other IPv4 header fields may contain any
value that is valid for that field.

Field Value
IP Version 4
Header Length 5
Checksum Headerchecksum
Fragmentation offset 0
More Fragments 0
Total Length 20
IP Protocol 103 (PIM)

On receipt of an (S,G) Null-Register, if the Header Checksum field is non-zero, the
recipient SHOULD check the checksum and discard null registers that have a bad
checksum. Therecipient SHOULD NOT check the value of any individual fields; a
correct IP header checksum is sufficient. If the Header Checksum field is zero, the
recipient MUST NOT check the checksum.

With IPv6, an implementation generates a dummy IP header followed by a dummy
PIM header with values according to the following table in addition to the source and
group. OtherIPv6 header fields may contain any value that is valid for that field.

Header Field Value
IP Version 6
Next Header 103 (PIM)
Length 4
PIM Version 0
PIM Type 0
PIM Reserved 0
PIM Checksum PIM checksum including IPv6

"pseudo-header"; see Section
4.9

On receipt of an IPv6 (S,G) Null-Register, if the dummy PIM header is present, the
recipient SHOULD check the checksum and discard Null-Registers that have a bad
checksum.

Fenner, et al. StandardsTrack [Page 89]

RFC 4601 PIM-SM Specification February 2006

4.9.4. Register-Stop Message Format

A Register-Stop is unicast from the RP to the sender of the Register message. The IP
source address is the address to which the register was addressed. The IP destination
address is the source address of the register message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PIM Ver| Type | Reserved | Checksum |
+-+
| Group Address (Encoded-Group format) |
+-+
| Source Address (Encoded-Unicast format) |
+-+

PIM Version, Type, Reserved, Checksum
Described in Section 4.9.

Group Address
The group address from the multicast data packet in the Register. Format described in
Section 4.9.1. Note that for Register-Stops the Mask Len field contains the full
address length * 8 (e.g., 32 for IPv4 native encoding), if the message is sent for a
single group.

Source Address
The host address of the source from the multicast data packet in the register. The
format for this address is given in the Encoded-Unicast address in Section 4.9.1. A
special wild card value consisting of an address field of all zeros can be used to
indicate any source.

4.9.5. Join/Prune Message Format

A Join/Prune message is sent by routers towards upstream sources and RPs. Joins are sent
to build shared trees (RP trees) or source trees (SPT). Prunes are sent to prune source trees
when members leave groups as well as sources that do not use the shared tree.

Fenner, et al. StandardsTrack [Page 90]

RFC 4601 PIM-SM Specification February 2006

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PIM Ver| Type | Reserved | Checksum |
+-+
| Upstream Neighbor Address (Encoded-Unicast format) |
+-+
| Reserved | Num groups | Holdtime |
+-+
| Multicast Group Address 1 (Encoded-Group format) |
+-+
| Number of Joined Sources | Number of Pruned Sources |
+-+
| Joined Source Address 1 (Encoded-Source format) |
+-+
| . |
| . |
+-+
| Joined Source Address n (Encoded-Source format) |
+-+
| Pruned Source Address 1 (Encoded-Source format) |
+-+
| . |
| . |
+-+
| Pruned Source Address n (Encoded-Source format) |
+-+
| . |
| . |
+-+
| Multicast Group Address m (Encoded-Group format) |
+-+
| Number of Joined Sources | Number of Pruned Sources |
+-+
| Joined Source Address 1 (Encoded-Source format) |
+-+
| . |
| . |
+-+
| Joined Source Address n (Encoded-Source format) |
+-+
| Pruned Source Address 1 (Encoded-Source format) |
+-+
| . |
| . |
+-+
| Pruned Source Address n (Encoded-Source format) |
+-+

PIM Version, Type, Reserved, Checksum
Described in Section 4.9.

Fenner, et al. StandardsTrack [Page 91]

RFC 4601 PIM-SM Specification February 2006

Unicast Upstream Neighbor Address
The address of the upstream neighbor that is the target of the message. The format
for this address is given in the Encoded-Unicast address in Section 4.9.1.For IPv6
the source address used for multicast messages is the link-local address of the
interface on which the message is being sent.For IPv4, the source address is the
primary address associated with that interface.

Reserved
Transmitted as zero, ignored on receipt.

Holdtime
The amount of time a receiver must keep the Join/Prune state alive, in seconds. Ifthe
Holdtime is set to ’0xffff ’ , the receiver of this message should hold the state until
canceled by the appropriate canceling Join/Prune message, or timed out according to
local policy. This may be used with dial-on-demand links, to avoid keeping the link
up with periodic Join/Prune messages.

Note that the HoldTime must be larger than the J/P_Override_Interval(I).

Number of Groups
The number of multicast group sets contained in the message.

Multicast group address
For format description, see Section 4.9.1.

Number of Joined Sources
Number of joined source addresses listed for a given group.

Joined Source Address 1 .. n
This list contains the sources for a given group that the sending router will forward
multicast datagrams from if received on the interface on which the Join/Prune
message is sent.

See Encoded-Source-Address format in Section 4.9.1.

Number of Pruned Sources
Number of pruned source addresses listed for a group.

Pruned Source Address 1 .. n
This list contains the sources for a given group that the sending router does not want
to forward multicast datagrams from when received on the interface on which the
Join/Prune message is sent.

Within one PIM Join/Prune message, all the Multicast Group Addresses, Joined Source
addresses, and Pruned Source addresses MUST be of the same address family. It is NOT
PERMITTED to mix IPv4 and IPv6 addresses within the same message. In addition, the
address family of the fields in the message SHOULD be the same as the IP source and
destination addresses of the packet. Thispermits maximum implementation flexibility for
dual-stack IPv4/IPv6 routers. If a router receives a message with mixed family addresses, it
SHOULD only process the addresses that are of the same family as the unicast upstream
neighbor address.

Fenner, et al. StandardsTrack [Page 92]

RFC 4601 PIM-SM Specification February 2006

4.9.5.1. Group Set Source List Rules

As described above, Join/Prune messages are composed of one or more group sets. Each set
contains two source lists, the Joined Sources and the Pruned Sources. This section
describes the different types of group sets and source list entries that can exist in a
Join/Prune message.

There are two valid group set types:

Wildcard Group Set
The wildcard group set is represented by the entire multicast range: the beginning of
the multicast address range in the group address field and the prefix length of the
multicast address range in the mask length field of the Multicast Group Address (i.e.,
’224.0.0.0/4’ for IPv4 or ’ff00::/8’ for IPv6). Each Join/Prune message SHOULD
contain at most one wildcard group set. Each wildcard group set may contain one or
more (*,*,RP) source list entries in either the Joined or Pruned lists.

A (*,*,RP) source list entry may only exist in a wildcard group set. When added to a
Joined source list, this type of source entry expresses the router’s interest in receiving
traffic for all groups mapping to the specified RP. When added to a Pruned source list
a (*,*,RP) entry expresses the router’s interest to stop receiving such traffic. Notethat
as indicated by the Join/Prune state machines, such a Join or Prune will NOT override
Join/Prune state created using a Group-Specific Set (see below).

(*,*,RP) source list entries have the Source-Address set to the address of the RP, the
Source-Address Mask-Len set to the full length of the IP address, and both the WC
and RPT bits of the Source-Address set to 1.

Group-Specific Set
A Group-Specific Set is represented by a valid IP multicast address in the group
address field and the full length of the IP address in the mask length field of the
Multicast Group Address. Each Join/Prune message SHOULD NOT contain more
than one group-specific set for the same IP multicast address. Each group-specific set
may contain (*,G), (S,G,rpt), and (S,G) source list entries in the Joined or Pruned
lists.

(*,G)
The (*,G) source list entry is used in Join/Prune messages sent towards the RP for
the specified group. It expresses interest (or lack thereof) in receiving traffic sent to
the group through the Rendezvous-Point shared tree. There may only be one such
entry in both the Joined and Pruned lists of a group-specific set.

(*,G) source list entries have the Source-Address set to the address of the RP for
group G, the Source-Address Mask-Len set to the full length of the IP address, and
both the WC and RPT bits of the Encoded-Source-Address set.

(S,G,rpt)
The (S,G,rpt) source list entry is used in Join/Prune messages sent towards the RP
for the specified group. It expresses interest (or lack thereof) in receiving traffic
through the shared tree sent by the specified source to this group.For each source
address, the entry may exist in only one of the Joined and Pruned source lists of a
group-specific set, but not both.

(S,G,rpt) source list entries have the Source-Address set to the address of the
source S, the Source-Address Mask-Len set to the full length of the IP address, and
the WC bit cleared and the RPT bit set in the Encoded-Source-Address.

Fenner, et al. StandardsTrack [Page 93]

RFC 4601 PIM-SM Specification February 2006

(S,G)
The (S,G) source list entry is used in Join/Prune messages sent towards the
specified source. It expresses interest (or lack thereof) in receiving traffic through
the shortest path tree sent by the source to the specified group.For each source
address, the entry may exist in only one of the Joined and Pruned source lists of a
group-specific set, but not both.

(S,G) source list entries have the Source-Address set to the address of the source S,
the Source-Address Mask-Len set to the full length of the IP address, and both the
WC and RPT bits of the Encoded-Source-Address cleared.

The rules described above are sufficient to prevent invalid combinations of source list
entries in group-specific sets. There are, however, a number of combinations that have a
valid interpretation but that are not generated by the protocol as described in this
specification:

• Combining a (*,G) Join and a (S,G,rpt) Join entry in the same message is redundant as
the (*,G) entry covers the information provided by the (S,G,rpt) entry.

• The same applies for a (*,G) Prunes and (S,G,rpt) Prunes.

• The combination of a (*,G) Prune and a (S,G,rpt) Join is also not generated. (S,G,rpt)
Joins are only sent when the router is receiving all traffic for a group on the shared tree
and it wishes to indicate a change for the particular source. As a (*,G) prune indicates
that the router no longer wishes to receive shared tree traffic, the (S,G,rpt) Join would be
meaningless.

• As Join/Prune messages are targeted to a single PIM neighbor, including both a (S,G)
Join and a (S,G,rpt) Prune in the same message is usually redundant. The (S,G) Join
informs the neighbor that the sender wishes to receive the particular source on the
shortest path tree. It is therefore unnecessary for the router to say that it no longer wishes
to receive it on the shared tree. However, there is a valid interpretation for this
combination of entries.A downstream router may have to instruct its upstream only to
start forwarding a specific source once it has started receiving the source on the shortest-
path tree.

• The combination of a (S,G) Prune and a (S,G,rpt) Join could possibly be used by a router
to switch from receiving a particular source on the shortest-path tree back to receiving it
on the shared tree (provided that the RPF neighbor for the shortest-path and shared trees
is common). However, Sparse-Mode PIM does not provide a mechanism for explicitly
switching back to the shared tree.

Fenner, et al. StandardsTrack [Page 94]

RFC 4601 PIM-SM Specification February 2006

The rules are summarized in the tables below.

Join
(*,G)

Prune
(*,G)

Join
(S,G,rpt)

Prune
(S,G,rpt)

Join
(S,G)

Prune
(S,G)

- no ? yes yes yesJoin
(*,G)

no - ? ? yes yesPrune
(*,G)

? ? - no yes ?Join
(S,G,rpt)

yes ? no - yes ?Prune
(S,G,rpt)

yes yes yes yes - noJoin
(S,G)

yes yes ? ? no -Prune
(S,G)

Join (*,*,RP) Prune (*,*,RP) all others
- no yesJoin (*,*,RP)
no - yesPrune (*,*,RP)
yes yes see aboveall others

yes Allowed and expected.

no Combination is not allowed by the protocol and MUST NOT be generated by a router.
A router MAY accept these messages, but the result is undefined. An error message
MAY be logged to the administrator in a rate-limited manner.

? Combination not expected by the protocol, but well-defined.A router MAY accept it
but SHOULD NOT generate it.

The order of source list entries in a group set source list is not important, except where
limited by the packet format itself.

4.9.5.2. Group Set Fragmentation

When building a Join/Prune for a particular neighbor, a router should try to include in the
message as much of the information it needs to convey to the neighbor as possible. This
implies adding one group set for each multicast group that has information pending
transmission and within each set including all relevant source list entries.

On a router with a large amount of multicast state, the number of entries that must be
included may result in packets that are larger than the maximum IP packet size. In most
such cases, the information may be split into multiple messages.

There is an exception with group sets that contain a (*,G) Joined source list entry. The
group set expresses the router’s interest in receiving all traffic for the specified group on the
shared tree, and it MUST include an (S,G,rpt) Pruned source list entry for every source that
the router does not wish to receive. This list of (S,G,rpt) Pruned source-list entries MUST
not be split in multiple messages.

If only N (S,G,rpt) Prune entries fit into a maximum-sized Join/Prune message, but the
router has more than N (S,G,rpt) Prunes to add, then the router MUST choose to include the
first N (numerically smallest in network byte order) IP addresses.

Fenner, et al. StandardsTrack [Page 95]

RFC 4601 PIM-SM Specification February 2006

4.9.6. AssertMessage Format

The Assert message is used to resolve forwarder conflicts between routers on a link. It is
sent when a router receives a multicast data packet on an interface on which the router
would normally have forwarded that packet. Assertmessages may also be sent in response
to an Assert message from another router.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PIM Ver| Type | Reserved | Checksum |
+-+
| Group Address (Encoded-Group format) |
+-+
| Source Address (Encoded-Unicast format) |
+-+
|R| Metric Preference |
+-+
| Metric |
+-+

PIM Version, Type, Reserved, Checksum
Described in Section 4.9.

Group Address
The group address for which the router wishes to resolve the forwarding conflict.
This is an Encoded-Group address, as specified in Section 4.9.1.

Source Address
Source address for which the router wishes to resolve the forwarding conflict. The
source address MAY be set to zero for (*,G) asserts (see below). Theformat for this
address is given in Encoded-Unicast-Address in Section 4.9.1.

R RPT-bit is a 1-bit value. TheRPT-bit is set to 1 for Assert(*,G) messages and 0 for
Assert(S,G) messages.

Metric Preference
Preference value assigned to the unicast routing protocol that provided the route to the
multicast source or Rendezvous-Point.

Metric
The unicast routing table metric associated with the route used to reach the multicast
source or Rendezvous-Point. Themetric is in units applicable to the unicast routing
protocol used.

Assert messages can be sent to resolve a forwarding conflict for all traffic to a given group
or for a specific source and group.

Assert(S,G)
Source-specific asserts are sent by routers forwarding a specific source on the
shortest-path tree (SPTbit is TRUE). (S,G) Asserts have the Group-Address field set
to the group G and the Source-Address field set to the source S. The RPT-bit is set to
0, the Metric-Preference is set to MRIB.pref(S) and the Metric is set to
MRIB.metric(S).

Fenner, et al. StandardsTrack [Page 96]

RFC 4601 PIM-SM Specification February 2006

Assert(*,G)
Group-specific asserts are sent by routers forwarding data for the group and source(s)
under contention on the shared tree. (*,G) asserts have the Group-Address field set to
the group G.For data-triggered Asserts, the Source-Address field MAY be set to the
IP source address of the data packet that triggered the Assert and is set to zero
otherwise. TheRPT-bit is set to 1, the Metric-Preference is set to MRIB.pref(RP(G)),
and the Metric is set to MRIB.metric(RP(G)).

4.10. PIM Timers
PIM-SM maintains the following timers, as discussed in Section 4.1. All timers are
countdown timers; they are set to a value and count down to zero, at which point they
typically trigger an action. Of course they can just as easily be implemented as count-up
timers, where the absolute expiry time is stored and compared against a real-time clock, but
the language in this specification assumes that they count downwards to zero.

Global Timers

Per interface (I):

Hello Timer: HT(I)

Per neighbor (N):

Neighbor Liveness Timer: NLT(N,I)

Per active RP (RP):

(*,*,RP) Join Expiry Timer: ET(*,*,RP,I)

(*,*,RP) Prune-Pending Timer: PPT(*,*,RP,I)

Per Group (G):

(*,G) Join Expiry Timer: ET(*,G,I)

(*,G) Prune-Pending Timer: PPT(*,G,I)

(*,G) Assert Timer: AT(*,G,I)

Per Source (S):

(S,G) Join Expiry Timer: ET(S,G,I)

(S,G) Prune-Pending Timer: PPT(S,G,I)

(S,G) Assert Timer: AT(S,G,I)

(S,G,rpt) Prune Expiry Timer: ET(S,G,rpt,I)

(S,G,rpt) Prune-Pending Timer: PPT(S,G,rpt,I)

Per active RP (RP):

(*,*,RP) Upstream Join Timer: JT(*,*,RP)

Per Group (G):

(*,G) Upstream Join Timer: JT(*,G)

Per Source (S):

(S,G) Upstream Join Timer: JT(S,G)

(S,G) Keepalive Timer: KAT(S,G)

(S,G,rpt) Upstream Override Timer: OT(S,G,rpt)

Fenner, et al. StandardsTrack [Page 97]

RFC 4601 PIM-SM Specification February 2006

At the DRs or relevant Assert Winners only:

Per Source,Group pair (S,G):

Register-Stop Timer: RST(S,G)

4.11. Timer Values
When timers are started or restarted, they are set to default values. Thissection summarizes
those default values.

Note that protocol events or configuration may change the default value of a timer on a
specific interface. Whentimers are initialized in this document, the value specific to the
interface in context must be used.

Some of the timers listed below (Prune-Pending, Upstream Join, Upstream Override) can be
set to values that depend on the settings of the Propagation_Delay and Override_Interval of
the corresponding interface. Thedefault values for these are given below.

Variable Name: Propagation_Delay(I)

Value Name Value Explanation

Propagation_delay_default 0.5secs Expected propagation
delay over the local
link.

The default value of the Propagation_delay_default is chosen to be relatively large to
provide compatibility with older PIM implementations.

Variable Name: Override_Interval(I)

Value Name Value Explanation

t_override_default 2.5secs Default delay interval
over which to
randomize when
scheduling a delayed
Join message.

Timer Name: Hello Timer (HT(I))

Value Name Value Explanation

Hello_Period 30secs Periodicinterval for Hello messages.
Triggered_Hello_Delay 5secs Randomized interval for initial

Hello message on bootup or
triggered Hello message to a
rebooting neighbor.

At system power-up, the timer is initialized to rand(0, Triggered_Hello_Delay) to prevent
synchronization. Whena new or rebooting neighbor is detected, a responding Hello is sent
within rand(0, Triggered_Hello_Delay).

Fenner, et al. StandardsTrack [Page 98]

RFC 4601 PIM-SM Specification February 2006

Timer Name: Neighbor Liveness Timer (NLT(N,I))

Value Name Value Explanation

Default_Hello_Holdtime 3.5* Hello_Period Default holdtime to
keep neighbor state
alive

Hello_Holdtime frommessage Holdtime from Hello
Message Holdtime
option.

The Holdtime in a Hello Message should be set to (3.5 * Hello_Period), giving a default
value of 105 seconds.

Timer Names: Expiry Timer (ET(*,*,RP,I), ET(*,G,I), ET(S,G,I), ET(S,G,rpt,I))

Value Name Value Explanation

J/P_HoldTime from message Holdtimefrom Join/Prune Message

See details of JT(*,G) for the Holdtime that is included in Join/Prune Messages.

Timer Names: Prune-Pending Timer (PPT(*,*,RP,I), PPT(*,G,I), PPT(S,G,I), PPT(S,G,rpt,I))

Value Name Value Explanation

J/P_Override_Interval(I) Default: Effective_
Propagation_Delay(I) +
EffectiveOverride_
Interval(I)

Short period after a join
or prune to allow other
routers on the LAN to
override the join or
prune

Note that both the Effective_Propagation_Delay(I) and the Effective_Override_Interval(I)
are interface-specific values that may change when Hello messages are received (see
Section 4.3.3).

Timer Names: Assert Timer (AT(*,G,I), AT(S,G,I))

Value Name Value Explanation

Assert_Override_Interval Default: 3 secs Short interval before an
assert times out where
the assert winner
resends an Assert
message

Assert_Time Default: 180 secs Period after last assert
before assert state is
timed out

Note that for historical reasons, the Assert message lacks a Holdtime field. Thus, changing
the Assert Time from the default value is not recommended.

Fenner, et al. StandardsTrack [Page 99]

RFC 4601 PIM-SM Specification February 2006

Timer Names: Upstream Join Timer (JT(*,*,RP), JT(*,G), JT(S,G))

Value Name Value Explanation

t_periodic Default: 60 secs Period between Join/Prune Messages
t_suppressed rand(1.1 * t_periodic,

1.4 * t_periodic) when
Suppression_Enabled(I)
is true, 0 otherwise

Suppression period when someone
else sends a J/P message so we don’t
need to do so.

t_override rand(0, Effective_
Override_Interval(I))

Randomized delay to prevent
response implosion when sending a
join message to override someone
else’s Prune message.

t_periodic may be set to take into account such things as the configured bandwidth and
expected average number of multicast route entries for the attached network or link (e.g.,
the period would be longer for lower-speed links, or for routers in the center of the network
that expect to have a larger number of entries). If the Join/Prune-Period is modified during
operation, these changes should be made relatively infrequently, and the router should
continue to refresh at its previous Join/Prune-Period for at least Join/Prune-Holdtime, in
order to allow the upstream router to adapt.

The holdtime specified in a Join/Prune message should be set to (3.5 * t_periodic).

t_override depends on the Effective_Override_Interval of the upstream interface, which may
change when Hello messages are received.

t_suppressed depends on the Suppression State of the upstream interface (Section 4.3.3) and
becomes zero when suppression is disabled.

Timer Name: Upstream Override Timer (OT(S,G,rpt))

Value Name Value Explanation

t_override seeUpstream Join Timer seeUpstream Join Timer

The upstream Override Timer is only ever set to t_override; this value is defined in the
section on Upstream Join Timers.

Timer Name: Keepalive Timer (KAT(S,G))

Value Name Value Explanation

Keepalive_Period Default: 210 secs Period after last (S,G)
data packet during
which (S,G) Join state
will be maintained even
in the absence of (S,G)
Join messages.

RP_Keepalive_Period (3 * Register_
Suppression_Time) +
Register_Probe_Time

As Keepalive_Period,
but at the RP when a
Register-Stop is sent.

The normal keepalive period for the KAT(S,G) defaults to 210 seconds. However, at the RP,
the keepalive period must be at least the Register_Suppression_Time, or the RP may time
out the (S,G) state before the next Null-Register arrives. Thus,the KAT(S,G) is set to

Fenner, et al. StandardsTrack [Page 100]

RFC 4601 PIM-SM Specification February 2006

max(Keepalive_Period, RP_Keepalive_Period) when a Register-Stop is sent.

Timer Name: Register-Stop Timer (RST(S,G))

Value Name Value Explanation

Register_Suppression_Time Default: 60 secs Period during which a
DR stops sending
Register-encapsulated
data to the RP after
receiving a Register-
Stop message.

Register_Probe_Time Default: 5 secs Time before RST
expires when a DR may
send a Null-Register to
the RP to cause it to
resend a Register-Stop
message.

If the Register_Suppression_Time or the Register_Probe_Time are configured to values
other than the defaults, it MUST be ensured that the value of the Register_Probe_Time is
less than half the value of the Register_Suppression_Time to prevent a possible negative
value in the setting of the Register-Stop Timer.

5. IAN A Considerations

5.1. PIM Address Family
The PIM Address Family field was chosen to be 8 bits as a tradeoff between packet format
and use of the IANA assigned numbers. Because when the PIM packet format was
designed only 15 values were assigned for Address Families, and large numbers of new
Address Family values were not envisioned, 8 bits seemed large enough. However, the
IANA assigns Address Families in a 16-bit field. Therefore, the PIM Address Family is
allocated as follows:

Values 0 through 127 are designated to have the same meaning as IANA-assigned
Address Family Numbers [7].

Values 128 through 250 are designated to be assigned for PIM by the IANA based
upon IESG Approval, as defined in [9].

Values 251 through 255 are designated for Private Use, as defined in [9].

5.2. PIM Hello Options
Values 17 through 65000 are to be assigned by the IANA. Sincethe space is large, they
may be assigned as First Come First Served as defined in [9]. Such assignments are valid
for one year and may be renewed. Permanentassignments require a specification (see
"Specification Required" in [9].)

6. Security Considerations
This section describes various possible security concerns related to the PIM-SM protocol,
including a description of how to use IPsec to secure the protocol. The reader is referred to
[15] and [16] for further discussion of PIM-SM and multicast security. The IPsec
authentication header [8] MAY be used to provide data integrity protection and groupwise

Fenner, et al. StandardsTrack [Page 101]

RFC 4601 PIM-SM Specification February 2006

data origin authentication of PIM protocol messages. Authentication of PIM messages can
protect against unwanted behaviors caused by unauthorized or altered PIM messages.

6.1. Attacks Based on Forged Messages
The extent of possible damage depends on the type of counterfeit messages accepted.We
next consider the impact of possible forgeries, including forged link-local (Join/Prune,
Hello, and Assert) and forged unicast (Register and Register-Stop) messages.

6.1.1. Forged Link-Local Messages

Join/Prune, Hello, and Assert messages are all sent to the link-local ALL_PIM_ROUTERS
multicast addresses and thus are not forwarded by a compliant router. A forged message of
this type can only reach a LAN if it was sent by a local host or if it was allowed onto the
LAN by a compromised or non-compliant router.

1. A forged Join/Prune message can cause multicast traffic to be delivered to links where
there are no legitimate requesters, potentially wasting bandwidth on that link.A forged
leave message on a multi-access LAN is generally not a significant attack in PIM,
because any legitimately joined router on the LAN would override the leave with a join
before the upstream router stops forwarding data to the LAN.

2. By forging a Hello message, an unauthorized router can cause itself to be elected as the
designated router on a LAN. The designated router on a LAN is (in the absence of
asserts) responsible for forwarding traffic to that LAN on behalf of any local members.
The designated router is also responsible for register-encapsulating to the RP any
packets that are originated by hosts on the LAN. Thus, the ability of local hosts to
send and receive multicast traffic may be compromised by a forged Hello message.

3. By forging an Assert message on a multi-access LAN, an attacker could cause the
legitimate designated forwarder to stop forwarding traffic to the LAN. Such a forgery
would prevent any hosts downstream of that LAN from receiving traffic.

6.1.2. Forged Unicast Messages

Register messages and Register-Stop messages are forwarded by intermediate routers to
their destination using normal IP forwarding. Without data origin authentication, an
attacker who is located anywhere in the network may be able to forge a Register or Register-
Stop message.We consider the effect of a forgery of each of these messages next.

1. By forging a Register message, an attacker can cause the RP to inject forged traffic onto
the shared multicast tree.

2. By forging a Register-stop message, an attacker can prevent a legitimate DR from
Registering packets to the RP. This can prevent local hosts on that LAN from sending
multicast packets.

The above two PIM messages are not changed by intermediate routers and need only be
examined by the intended receiver. Thus, these messages can be authenticated end-to-end,
using AH. Attacks on Register and Register-Stop messages do not apply to a PIM-SSM-
only implementation, as these messages are not required for PIM-SSM.

6.2. Non-Cryptographic Authentication Mechanisms
A PIM router SHOULD provide an option to limit the set of neighbors from which it will
accept Join/Prune, Assert, and Hello messages. Either static configuration of IP addresses
or an IPsec security association may be used. Furthermore, a PIM router SHOULD NOT
accept protocol messages from a router from which it has not yet received a valid Hello
message.

Fenner, et al. StandardsTrack [Page 102]

RFC 4601 PIM-SM Specification February 2006

A Designated Router MUST NOT register-encapsulate a packet and send it to the RP unless
the source address of the packet is a legal address for the subnet on which the packet was
received. Similarly, a Designated Router SHOULD NOT accept a Register-Stop packet
whose IP source address is not a valid RP address for the local domain.

An implementation SHOULD provide a mechanism to allow an RP to restrict the range of
source addresses from which it accepts Register-encapsulated packets.

All options that restrict the range of addresses from which packets are accepted MUST
default to allowing all packets.

6.3. Authentication Using IPsec
The IPsec [8] transport mode using the Authentication Header (AH) is the recommended
method to prevent the above attacks against PIM. The specific AH authentication algorithm
and parameters, including the choice of authentication algorithm and the choice of key, are
configured by the network administrator. When IPsec authentication is used, a PIM router
should reject (drop without processing) any unauthorized PIM protocol messages.

To use IPsec, the administrator of a PIM network configures each PIM router with one or
more security associations (SAs) and associated Security Parameter Indexes (SPIs) that are
used by senders to authenticate PIM protocol messages and are used by receivers to
authenticate received PIM protocol messages. This document does not describe protocols
for establishing SAs. It assumes that manual configuration of SAs is performed, but it does
not preclude the use of a negotiation protocol such as the Internet Key Exchange [14] to
establish SAs.

IPsec [8] provides protection against replayed unicast and multicast messages. The anti-
replay option for IPsec SHOULD be enabled on all SAs.

The following sections describe the SAs required to protect PIM protocol messages.

6.3.1. Protecting Link-Local Multicast Messages

The network administrator defines an SA and SPI that are to be used to authenticate all link-
local PIM protocol messages (Hello, Join/Prune, and Assert) on each link in a PIM domain.

IPsec [8] allows (but does not require) different Security Policy Databases (SPD) for each
router interface. Ifavailable, it may be desirable to configure the Security Policy Database
at a PIM router such that all incoming and outgoing Join/Prune, Assert, and Hello packets
use a different SA for each incoming or outgoing interface.

6.3.2. Protecting Unicast Messages

IPsec can also be used to provide data origin authentication and data integrity protection for
the Register and Register-Stop unicast messages.

6.3.2.1. RegisterMessages

The Security Policy Database at every PIM router is configured to select an SA to use when
sending PIM Register packets to each rendezvous point.

In the most general mode of operation, the Security Policy Database at each DR is
configured to select a unique SA and SPI for traffic sent to each RP. This allows each DR to
have a different authentication algorithm and key to talk to the RP. Howev er, this creates a
daunting key management and distribution problem for the network administrator.
Therefore, it may be preferable in PIM domains where all Designated Routers are under a
single administrative control that the same authentication algorithm parameters (including

Fenner, et al. StandardsTrack [Page 103]

RFC 4601 PIM-SM Specification February 2006

the key) be used for all Registered packets in a domain, regardless of who are the RP and
the DR.

In this "single shared key" mode of operation, the network administrator must choose an
SPI for each DR that will be used to send it PIM protocol packets. TheSecurity Policy
Database at every DR is configured to select an SA (including the authentication algorithm,
authentication parameters, and this SPI) when sending Register messages to this RP.

By using a single authentication algorithm and associated parameters, the key distribution
problem is simplified. Note, however, that this method has the property that, in order to
change the authentication method or authentication key used, all routers in the domain must
be updated.

6.3.2.2. Register-Stop Messages

Similarly, the Security Policy Database at each Rendezvous Point should be configured to
choose an SA to use when sending Register-Stop messages. Because Register-Stop
messages are unicast to the destination DR, a different SA and a potentially unique SPI are
required for each DR.

In order to simplify the management problem, it may be acceptable to use the same
authentication algorithm and authentication parameters, regardless of the sending RP and
regardless of the destination DR. Although a unique SA is needed for each DR, the same
authentication algorithm and authentication algorithm parameters (secret key) can be shared
by all DRs and by all RPs.

6.4. Denial-of-Service Attacks
There are a number of possible denial-of-service attacks against PIM that can be caused by
generating false PIM protocol messages or even by generating data false traffic.
Authenticating PIM protocol traffic prevents some, but not all, of these attacks. Three of the
possible attacks include:

• Sending packets to many different group addresses quickly can be a denial-of-service
attack in and of itself. This will cause many register-encapsulated packets, loading the
DR, the RP, and the routers between the DR and the RP.

• Forging Join messages can cause a multicast tree to get set up.A large number of forged
joins can consume router resources and result in denial of service.

• Forging a (*,*,RP) join presents a possibility for a denial-of-service attack by causing all
traffic in the domain to flow to the PMBR issuing the join. (*,*,RP) behavior is included
here primarily for backwards compatibility with prior revisions of the spec. However, the
implementation of (*,*,RP) and PMBR is optional. When using (*,*,RP), the security
concerns should be carefully considered.

7. Acknowledgements
PIM-SM was designed over many years by a large group of people, including ideas,
comments, and corrections from Deborah Estrin, Dino Farinacci, Ahmed Helmy, David
Thaler, Steve Deering, Van Jacobson, C. Liu, Puneet Sharma, Liming Wei, Tom Pusateri,
Tony Ballardie, Scott Brim, Jon Crowcroft, Paul Francis, Joel Halpern, Horst Hodel, Polly
Huang, Stephen Ostrowski, Lixia Zhang, Girish Chandranmenon, Brian Haberman, Hal
Sandick, Mike Mroz, Garry Kump, Pavlin Radoslavo v, Mike Davison, James Huang,
Christopher Thomas Brown, and James Lingard.

Thanks are due to the American Licorice Company, for its obscure but possibly essential
role in the creation of this document.

Fenner, et al. StandardsTrack [Page 104]

RFC 4601 PIM-SM Specification February 2006

8. Normative References
[1] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,

RFC 2119, March 1997.

[2] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A. Thyagarajan, “Internet Group
Management Protocol, Version 3”, RFC 3376, October 2002.

[3] Deering, S., “Host extensions for IP multicasting”, STD 5, RFC 1112, August 1989.

[4] Deering, S., Fenner, W., and B. Haberman, “Multicast Listener Discovery (MLD) for
IPv6”, RFC 2710, October 1999.

[5] Deering, S. and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”,
RFC 2460, December 1998.

[6] Holbrook, H. and B. Cain, “Source-Specific Multicast for IP”, RFC 4507, August 2006.

[7] IANA, “Address Family Numbers”, <http://www.iana.org/assignments/address-family-
numbers>

[8] Kent, S. and K. Seo, “Security Architecture for the Internet Protocol”, RFC 4301,
December 2005.

[9] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section
in RFCs”, BCP 26, RFC 2434, October 1998.

9. Informati ve References
[10] Bates, T., Rekhter, Y., Chandra, R., and D. Katz, “Multiprotocol Extensions for

BGP-4”, RFC 2858, June 2000.

[11] Bhaskar, N., Gall, A., Lingard, J., and S. Venaas, “Bootstrap Router (BSR) Mechanism
for PIM Sparse Mode”, Work in Progress, May 2006.

[12] Black, D., “Differentiated Services and Tunnels”, RFC 2983, October 2000.

[13] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, “Bi-directional Protocol
Independent Multicast”, Work in Progress, October 2005.

[14] Kaufman, C., “Internet Key Exchange (IKEv2) Protocol”, RFC 4306, December 2005.

[15] Savola, P., Lehtonen, R., and D. Meyer, “Protocol Independent Multicast - Sparse
Mode (PIM-SM) Multicast Routing Security Issues and Enhancements”, RFC 4609,
August 2006.

[16] Savola, P. and J. Lingard, “Last-hop Threats to Protocol Independent Multicast (PIM)”,
Work in Progress, January 2005.

[17] Savola, P. and B. Haberman, “Embedding the Rendezvous Point (RP) Address in an
IPv6 Multicast Address”, RFC 3956, November 2004.

[18] Thaler, D., “Interoperability Rules for Multicast Routing Protocols”, RFC 2715,
October 1999.

Fenner, et al. StandardsTrack [Page 105]

RFC 4601 PIM-SM Specification February 2006

10. Appendix A: PIM Multicast Border Router Behavior
In some cases, PIM-SM domains will interconnect with non-PIM multicast domains. In
these cases, the border routers of the PIM domain speak PIM-SM on some interfaces and
speak other multicast routing protocols on other interfaces. Suchrouters are termed PIM
Multicast Border Routers (PMBRs). In general, RFC 2715 [18] provides rules for
interoperability between different multicast routing protocols. In this appendix, we specify
how PMBRs differ from regular PIM-SM routers.

From the point of view of PIM-SM, a PMBR has two tasks:

• To ensure that traffic from sources outside the PIM-SM domain reaches receivers inside
the domain.

• To ensure that traffic from sources inside the PIM-SM domain reaches receivers outside
the domain.

We note that multiple PIM-SM domains are sometimes connected together using protocols
such as Multicast Source Discovery Protocol (MSDP), which provides information about
active external sources, but does not follow RFC 2715. In such cases, the domains are not
connected via PMBRs because Join(S,G) messages traverse the border between domains. A
PMBR is required when no PIM messages can traverse the border.

10.1. Sources External to the PIM-SM Domain
A PMBR needs to ensure that traffic from multicast sources external to the PIM-SM domain
reaches receivers inside the domain. The PMBR will follow the rules in RFC 2715, such
that traffic from external sources reaches the PMBR itself.

According to RFC 2715, the PIM-SM component of the PMBR will receive an (S,G)
Creation event when data from an (S,G) data packet from an external source first reaches the
PMBR. If RPF_interface(S) is an interface in the PIM-SM domain, the packet cannot be
originated into the PIM domain at this router, and the PIM-SM component of the PMBR
will not process the packet. Otherwise,the PMBR will then act exactly as if it were the DR
for this source (see Section 4.4.1), with the following modifications:

• The Border-bit is set in all PIM Register messages sent for these sources.

• DirectlyConnected(S) is treated as being TRUE for these sources.

• The PIM-SM forwarding rule "iif == RPF_interface(S)" is relaxed to be TRUE if iif is
any interface that is not part of the PIM-SM component of the PMBR (see Section 4.2).

10.2. Sources Internal to the PIM-SM Domain
A PMBR needs to ensure that traffic from sources inside the PIM-SM domain reaches
receivers outside the domain. Using terminology from RFC 2715, there are two possible
scenarios for this:

• Another component of the PMBR is a wildcard receiver. In this case, the PIM-SM
component of the PMBR must ensure that traffic from all internal sources reaches the
PMBR until it is informed otherwise.

Note that certain profiles of PIM-SM (e.g., PIM-SSM, PIM-SM with Embedded RP)
cannot interoperate with a neighboring wildcard receiver domain.

• No other component of the PMBR is a wildcard receiver. In this case the PMBR will
receive explicit information as to which groups or (source,group) pairs the external
domains wish to receive.

Fenner, et al. StandardsTrack [Page 106]

RFC 4601 PIM-SM Specification February 2006

In the former case, the PMBR will need to send a Join(*,*,RP) to all the active RPs in the
PIM-SM domain. It may also send a Join(*,*,RP) to all the candidate RPs in the PIM-SM
domain. Thiswill cause all traffic in the domain to reach the PMBR. The PMBR may then
act as if it were a DR with directly connected receivers and trigger the transition to a
shortest path tree (see Section 4.2.1).

In the latter case, the PMBR will not need to send Join(*,*,RP) messages. However, the
PMBR will still need to act as a DR with directly connected receivers on behalf of the
external receivers in terms of being able to switch to the shortest-path tree for internally-
reached sources.

According to RFC 2715, the PIM-SM component of the PMBR may receive a number of
alerts generated by events in the external routing components.To implement the above
behavior, one reasonable way to map these alerts into PIM-SM state is as follows:

• When a PIM-SM component receives an (S,G) Prune alert, it sets
local_receiver_include(S,G,I) to FALSE for the discard interface.

• When a PIM-SM component receives a (*,G) Prune alert, it sets
local_receiver_include(*,G,I) to FALSE for the discard interface.

• When a PIM-SM component receives an (S,G) Join alert, it sets
local_receiver_include(S,G,I) to TRUE for the discard interface.

• When a PIM-SM component receives a (*,G) Join alert, it sets
local_receiver_include(*,G,I) to TRUE for the discard interface.

• When a PIM-SM component receives a (*,*) Join alert, it sets
DownstreamJPState(*,*,RP,I) to Join state on the discard interface for all RPs in the PIM-
SM domain.

• When a PIM-SM component receives a (*,*) Prune alert, it sets
DownstreamJPState(*,*,RP,I) to NoInfo state on the discard interface for all RPs in the
PIM-SM domain.

We refer above to the discard interface because the macros and state machines are interface
specific, but we need to have PIM state that is not associated with any actual PIM-SM
interface. Implementersare free to implement this in any reasonable manner.

Note that these state changes will then cause additional PIM-SM state machine transitions
in the normal way.

These rules are, however, not sufficient to allow pruning off the (*,*,RP) tree. Some
additional rules provide guidance as to one way this may be done:

• If the PMBR has joined on the (*,*,RP) tree, then it should set DownstreamJPState(*,G,I)
to JOIN on the discard interface for all active groups.

• If the router receives a (S,G) prune alert, it will need to set DownstreamJPState(S,G,rpt,I)
to PRUNE on the discard interface.

• If the router receives a (*,G) prune alert, it will need to set DownstreamJPState(S,G,rpt,I)
to PRUNE on the discard interface for all active sources sending to G.

The rationale for this is that there is no way in PIM-SM to prune traffic off the (*,*,RP) tree,
except by Joining the (*,G) tree and then pruning each source individually.

Fenner, et al. StandardsTrack [Page 107]

RFC 4601 PIM-SM Specification February 2006

11. Index
Address_List . 22
Assert(*,G) .19,97
Assert(S,G) .19,96
AssertCancel(*,G) .74,75
AssertCancel(S,G) .61,69,75
AssertTimer(*,G,I) .11,17,69,99
AssertTimer(S,G,I) .12,17,63,99
AssertTrackingDesired(*,G,I)71,72,73
AssertTrackingDesired(S,G,I).65,66,67,68
AssertWinner(*,G,I) .11,15,17,71,74,76
AssertWinner(S,G,I). .12,15,17,66,69,76,76
AssertWinnerMetric(*,G,I) .11,74,77
AssertWinnerMetric(S,G,I).12,69,76
assert_metric. 74
Assert_Override_Interval .69,74,99
Assert_Time .69,74,99
AT(*,G,I) .11,17,69,97,99
AT(S,G,I) .12,17,63,97,99
CheckSwitchToSpt(S,G). .19,20
CouldAssert(*,G,I) .71,71,72,73,75
CouldAssert(S,G,I) .65,66,67,67,68,75
CouldRegister(S,G). .29,30
Default_Hello_Holdtime. 23
DirectlyConnected(S). .19,19,20,30,106
DownstreamJPState(*,*,RP,I).16,107
DownstreamJPState(*,G,I). 16
DownstreamJPState(S,G,I).16,29
DownstreamJPState(S,G,rpt,I). 16
DR(I) . 23
dr_is_better(a,b,I). .23,24
DR_Priority .22,23,24
Effective_Override_Interval(I)26,86,99
Effective_Propagation_Delay(I).25,99
ET(*,*,RP,I) .10,34,97,99
ET(*,G,I) .11,37,97,99
ET(S,G,I) .12,40,97,99
ET(S,G,rpt,I) .14,43,45,97,99
GenID .11,12,13,22,48,51,53,55,65,71
Hash_Function . 9,80
Hello_Holdtime .23,99
Hello_Period .22,98
HT(I) .22,98
IGMP .5,6,11,15,77,79
immediate_olist(*,*,RP). .15,48
immediate_olist(*,G). .15,52
immediate_olist(S,G). .15,29,55
infinite_assert_metric(). 75
inherited_olist(S,G) .15,19,29,32,55,66,82
inherited_olist(S,G,rpt) .15,19,20,58,60,61
I_Am_Assert_Loser(*,G,I) . 17
I_Am_Assert_Loser(S,G,I). 17
I_am_DR(I) .15,24,30,66,71
I_am_RP(G) .32,32

Fenner, et al. StandardsTrack [Page 108]

RFC 4601 PIM-SM Specification February 2006

J/P_Holdtime .35,38,41,45,49,52,56,92,99,100
J/P_Override_Interval(I). .36,39,41,45,92,99
JoinDesired(*,*,RP) .48,60
JoinDesired(*,G). .11,52,60,66,74
JoinDesired(S,G). .13,20,55,66,67,69
joins(*,*,RP(G)) . 15
joins(*,*,RP) .15,16,66,71
joins(*,G) .15,16,66,71
joins(S,G) .15,16,66
JT(*,*,RP) .10,47,97,100
JT(*,G). .11,50,97,100
JT(S,G). .12,54,97,100
KAT(S,G) .12,18,19,20,30,32,55,81,97,100
KeepaliveTimer(S,G). .12,18,19,19,20,30,32,55,81,97,100
Keepalive_Period. .19,100
lan_delay_enabled(I). .25,26
LAN_Prune_Delay . 22
local_receiver_exclude(S,G,I) 15
local_receiver_include(*,G,I)15,71,107
local_receiver_include(S,G,I)15,66
local_receiver_include(S,G,I). 107
lost_assert(*,G) .15,16,66
lost_assert(*,G,I). .15,16,76
lost_assert(S,G) .15,16
lost_assert(S,G,I). .15,16,76
lost_assert(S,G,rpt) . 16
lost_assert(S,G,rpt,I). .16,76
MBGP . 4,5
MFIB . 5,9
MLD .5,6,11,15,77,79
MRIB .4,5,8,11,13,17,47,50,50,57,75,78,96
MRIB.next_hop(host) .17,17,47,48
my_assert_metric(*,G,I). 72
my_assert_metric(S,G,I). .65,68,70,75
NBR(Interface,IP_address).17,26,47,49,50
NLT(N,I) .10,23,97,99
OT(S,G,rpt) .14,58,97,100
Override_Interval(I) .10,22,24,26,86,98,99
packet_arrives_on_rp_tunnel(pkt). 32
pim_exclude(S,G). .15,15,20,66
pim_include(*,G). .11,15,15,20,66,71
pim_include(S,G). .13,15,15,20,66
PPT(*,*,RP,I) .10,34,97,99
PPT(*,G,I). .11,37,97,99
PPT(S,G,I). .12,40,97,99
PPT(S,G,rpt,I). .14,43,45,97,99
Propagation_Delay(I). .22,25,98,99
Propagation_delay_default.25,98
PruneDesired(S,G,rpt) .60,61,67,69
prunes(S,G,rpt) .15,16,66
Register-Stop(*,G) . 31
Register-Stop(S,G) . 32
Register-StopTimer(S,G). .28,29,98,101
Register_Probe_Time. .29,33,101

Fenner, et al. StandardsTrack [Page 109]

RFC 4601 PIM-SM Specification February 2006

Register_Suppression_Time.29,33,101
RP(G) .4,15,17,29,32,37,52,58,66,71,75,77,97
RPF. 4
RPF’(*,G) .17,20,50,51,53,58,60,74,77
RPF’(S,G). .17,20,54,58,60,69,77
RPF’(S,G,rpt). .17,58,60,77
RPF_interface. 71
RPF_interface(host). .17,19,20,30,52,52,56,66,71,76,82,106
RPTJoinDesired(G). .60,61,71
rpt_assert_metric(G,I) .74,74,75
RST(S,G) .28,29,98,101
SPTbit(S,G) .13,19,20,32,39,56,58,60,66,66,68,69,76,81
spt_assert_metric(S,I) .69,75,76
SSM . 8,80
Suppression_Enabled(I). .26,100
SwitchToSptDesired(S,G) .20,20,32
TIB .5,9,18
Triggered_Hello_Delay. .22,22,98
t_joinsuppress. .48,49,51,52,56
t_override .48,51,55,59,100,100
t_override_default. .26,98
t_periodic .48,51,55,100
t_suppressed. .26,49,52,55,56,100
Update_SPTbit(S,G,iif). .19,20
UpstreamJPState(S,G). .19,82

Authors’ Addresses

Bill Fenner
AT&T Labs - Research
1 Riv er Oaks Place
San Jose, CA 95134

EMail: fenner@research.att.com

Mark Handley
Department of Computer Science
University College London
Gower Street
London WC1E 6BT
United Kingdom

EMail: M.Handley@cs.ucl.ac.uk

Hugh Holbrook
Arastra, Inc.
P.O. Box 10905
Palo Alto, CA 94303

EMail: holbrook@arastra.com

Fenner, et al. StandardsTrack [Page 110]

RFC 4601 PIM-SM Specification February 2006

Isidor Kouvelas
Cisco Systems
170 W. Tasman Drive
San Jose, CA 95134

EMail: kouvelas@cisco.com

Fenner, et al. StandardsTrack [Page 111]

RFC 4601 PIM-SM Specification February 2006

Full Copyright Statement

Copyright (C) The Internet Society (2006).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and
THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS
SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property
Rights or other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made any independent
effort to identify any such rights. Information on the procedures with respect to rights in
RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this specification can be
obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights that may cover technology that may be
required to implement this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is provided by the IETF Administrative Support
Activity (IASA).

Fenner, et al. StandardsTrack [Page 112]

	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Definitions
	2.2. Pseudocode Notation

	3. PIM-SM Protocol Overview
	3.1. Phase One: RP Tree
	3.2. Phase Two: Register-Stop
	3.3. Phase Three: Shortest-Path Tree
	3.4. Source-Specific Joins
	3.5. Source-Specific Prunes
	3.6. Multi-Access Transit LANs
	3.7. RP Discovery

	4. Protocol Specification
	4.1. PIM Protocol State
	4.1.1. General Purpose State
	4.1.2. (*,*,RP) State
	4.1.3. (*,G) State
	4.1.4. (S,G) State
	4.1.5. (S,G,rpt) State
	4.1.6. State Summarization Macros

	4.2. Data Packet Forwarding Rules
	4.2.1. Last-Hop Switchover to the SPT
	4.2.2. Setting and Clearing the (S,G) SPTbit
	4.3.1. Designated Routers (DR) and Hello Messages
	4.3.1. Sending Hello Messages
	4.3.2. DR Election
	4.3.3. Reducing Prune Propagation Delay on LANs
	4.3.4. Maintaining Secondary Address Lists

	4.4. PIM Register Messages
	4.4.1. Sending Register Messages from the DR
	4.4.2. Receiving Register Messages at the RP

	4.5. PIM Join/Prune Messages
	4.5.1. Receiving (*,*,RP) Join/Prune Messages
	4.5.2. Receiving (*,G) Join/Prune Messages
	4.5.3. Receiving (S,G) Join/Prune Messages
	4.5.4. Receiving (S,G,rpt) Join/Prune Messages
	4.5.5. Sending (*,*,RP) Join/Prune Messages
	4.5.6. Sending (*,G) Join/Prune Messages
	4.5.7. Sending (S,G) Join/Prune Messages
	4.5.8. (S,G,rpt) Periodic Messages
	4.5.9. State Machine for (S,G,rpt) Triggered Messages
	4.5.10. Background: (*,*,RP) and (S,G,rpt) Interaction

	4.6. PIM Assert Messages
	4.6.1. (S,G) Assert Message State Machine
	4.6.2. (*,G) Assert Message State Machine
	4.6.3. Assert Metrics
	4.6.4. AssertCancel Messages
	4.6.5. Assert State Macros

	4.7. PIM Bootstrap and RP Discovery
	4.7.1. Group-to-RP Mapping
	4.7.2. Hash Function

	4.8. Source-Specific Multicast
	4.8.1. Protocol Modifications for SSM Destination Addresses
	4.8.2. PIM-SSM-Only Routers

	4.9. PIM Packet Formats
	4.9.1. Encoded Source and Group Address Formats
	4.9.2. Hello Message Format
	4.9.3. Register Message Format
	4.9.4. Register-Stop Message Format
	4.9.5. Join/Prune Message Format
	4.9.5.1. Group Set Source List Rules
	4.9.5.2. Group Set Fragmentation

	4.9.6. Assert Message Format

	4.10. PIM Timers
	4.11. Timer Values

	5. IANA Considerations
	5.1. PIM Address Family
	5.2. PIM Hello Options

	6. Security Considerations
	6.1. Attacks Based on Forged Messages
	6.1.1. Forged Link-Local Messages
	6.1.2. Forged Unicast Messages

	6.2. Non-Cryptographic Authentication Mechanisms
	6.3. Authentication Using IPsec
	6.3.1. Protecting Link-Local Multicast Messages
	6.3.2. Protecting Unicast Messages
	6.3.2.1. Register Messages
	6.3.2.2. Register-Stop Messages

	6.4. Denial-of-Service Attacks

	7. Acknowledgements
	8. Normative References
	9. Informative References
	10. Appendix A: PIM Multicast Border Router Behavior
	10.1. Sources External to the PIM-SM Domain
	10.2. Sources Internal to the PIM-SM Domain

	11. Index

