
Network Working Group J. Widmer
Request for Comments: 4654 DoCoMo Euro-Labs
Category: Experimental M. Handley
 UCL
 August 2006

 TCP-Friendly Multicast Congestion Control (TFMCC):
 Protocol Specification

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document specifies TCP-Friendly Multicast Congestion Control
 (TFMCC). TFMCC is a congestion control mechanism for multicast
 transmissions in a best-effort Internet environment. It is a
 single-rate congestion control scheme, where the sending rate is
 adapted to the receiver experiencing the worst network conditions.
 TFMCC is reasonably fair when competing for bandwidth with TCP flows
 and has a relatively low variation of throughput over time, making it
 suitable for applications where a relatively smooth sending rate is
 of importance, such as streaming media.

Widmer & Handley Experimental [Page 1]

RFC 4654 TFMCC: Protocol Specification August 2006

Table of Contents

 1. Introduction ..3
 1.1. Related Documents ..4
 1.2. Environmental Requirements and Considerations4
 2. Protocol Overview ...5
 2.1. TCP Throughput Equation6
 2.2. Packet Contents ..7
 2.2.1. Sender Packets8
 2.2.2. Feedback Packets9
 3. Data Sender Protocol ...10
 3.1. Sender Initialization10
 3.2. Determining the Maximum RTT10
 3.3. Adjusting the Sending Rate11
 3.4. Controlling Receiver Feedback12
 3.5. Assisting Receiver-Side RTT Measurements14
 3.6. Slowstart ...15
 3.7. Scheduling of Packet Transmissions15
 4. Data Receiver Protocol ...16
 4.1. Receiver Initialization17
 4.2. Receiver Leave ..17
 4.3. Measurement of the Network Conditions17
 4.3.1. Updating the Loss Event Rate17
 4.3.2. Basic Round-Trip Time Measurement17
 4.3.3. One-Way Delay Adjustments18
 4.3.4. Receive Rate Measurements19
 4.4. Setting the Desired Rate19
 4.5. Feedback and Feedback Suppression20
 5. Calculation of the Loss Event Rate22
 5.1. Detection of Lost or Marked Packets22
 5.2. Translation from Loss History to Loss Events23
 5.3. Inter-Loss Event Interval24
 5.4. Average Loss Interval24
 5.5. History Discounting25
 5.6. Initializing the Loss History after the First Loss Event ..27
 6. Security Considerations ..28
 7. Acknowledgments ..29
 8. References ...29
 8.1. Normative References29
 8.2. Informative References29

Widmer & Handley Experimental [Page 2]

RFC 4654 TFMCC: Protocol Specification August 2006

1. Introduction

 This document specifies TCP-Friendly Multicast Congestion Control
 (TFMCC) [3]. TFMCC is a source-based, single-rate congestion control
 scheme that builds upon the unicast TCP-Friendly Rate Control
 mechanism (TFRC) [4]. TFMCC is stable and responsive under a wide
 range of network conditions and scales to receiver sets on the order
 of several thousand receivers. To support scalability, as much
 congestion control functionality as possible is located at the
 receivers. Each receiver continuously determines a desired receive
 rate that is TCP-friendly for the path from the sender to this
 receiver. Selected receivers then report the rate to the sender in
 feedback packets.

 TFMCC is a building block as defined in RFC 3048 [1]. Instead of
 specifying a complete protocol, this document simply specifies a
 congestion control mechanism that could be used in a transport
 protocol such as RTP [11], in an application incorporating end-to-end
 congestion control at the application level. This document does not
 discuss packet formats, reliability, or implementation-related
 issues.

 TFMCC is designed to be reasonably fair when competing for bandwidth
 with TCP flows. A multicast flow is "reasonably fair" if its sending
 rate is generally within a factor of two of the sending rate of a TCP
 flow from the sender to the slowest receiver of the multicast group
 under the same network conditions.

 In general, TFMCC has a low variation of throughput, which makes it
 suitable for applications where a relatively smooth sending rate is
 of importance, such as streaming media. The penalty of having smooth
 throughput while competing fairly for bandwidth is a reduced
 responsiveness to changes in available bandwidth. Thus TFMCC should
 be used when the application has a requirement for smooth throughput,
 in particular, avoiding halving of the sending rate in response to a
 single packet drop. For applications that simply need to multicast
 as much data as possible in as short a time as possible, PGMCC [10]
 may be more suitable.

 This memo contains part of the definitions necessary to fully specify
 a Reliable Multicast Transport protocol in accordance with RFC 2357.
 As per RFC 2357, the use of any reliable multicast protocol in the
 Internet requires an adequate congestion control scheme. This
 document specifies an experimental congestion control scheme. While
 waiting for initial deployment and experience to show this scheme to
 be effective and scalable, the IETF publishes this scheme in the
 "Experimental" category.

Widmer & Handley Experimental [Page 3]

RFC 4654 TFMCC: Protocol Specification August 2006

 It is the intent of the Reliable Multicast Transport (RMT) Working
 Group to re-submit the specification as an IETF Proposed Standard as
 soon as the scheme is deemed adequate.

1.1. Related Documents

 As described in RFC 3048 [1], TFMCC is a building block that is
 intended to be used, in conjunction with other building blocks, to
 help specify a protocol instantiation. It follows the general
 guidelines provided in RFC 3269 [2]. In particular, TFMCC is a
 suitable congestion control building block for NACK-Oriented Reliable
 Multicast (NORM) [5].

1.2. Environmental Requirements and Considerations

 TFMCC is intended to be a congestion control scheme that can be used
 in a complete protocol instantiation that delivers objects and
 streams (both reliable content delivery and streaming of multimedia
 information).

 TFMCC is most applicable for sessions that deliver a substantial
 amount of data (i.e., in length from hundreds of kilobytes to many
 gigabytes) and whose duration is on the order of tens of seconds or
 more.

 TFMCC is intended for multicast delivery. There are currently two
 models of multicast delivery: the Any-Source Multicast (ASM) model as
 defined in [6] and the Source-Specific Multicast (SSM) model as
 defined in [7]. TFMCC works with both multicast models, but in a
 slightly different way. When ASM is used, feedback from the
 receivers is multicast to the sender, as well as to all other
 receivers. Feedback can be either multicast on the same group
 address used for sending data or on a separate multicast feedback
 group address. For SSM, the receivers must unicast the feedback
 directly to the sender. Hence, feedback from a receiver will not be
 received by other receivers.

 TFMCC inherently works with all types of networks that allow bi-
 directional communication, including LANs, WANs, Intranets, the
 Internet, asymmetric networks, wireless networks, and satellite
 networks. However, in some network environments varying the sending
 rate to the receivers may not be advantageous (e.g., for a satellite
 or wireless network, there may be no mechanism for receivers to
 effectively reduce their reception rate since there may be a fixed
 transmission rate allocated to the session).

Widmer & Handley Experimental [Page 4]

RFC 4654 TFMCC: Protocol Specification August 2006

 The difference in responsiveness of TFMCC and TCP may result in
 significant throughput differences in case of a very low bitrate.
 TFMCC requires an estimate of the loss event rate to calculate a fair
 sending rate. This estimate may be inaccurate in case TFMCC receives
 only very few packets per RTT. TFMCC should not be used together
 with TCP if the capacity of the bottleneck link is less than 30KBit/s
 (e.g., a very slow modem connection). TFMCC may also achieve a rate
 that is very different from the average TCP rate in case buffer space
 at the bottleneck is severely underprovisioned. In particular, TFMCC
 is less susceptible to small buffer sizes since TFMCC spaces out
 packets in time, whereas TCP sends them back to back. Thus TCP is
 much more likely to see a packet loss if buffer space is scarce.

 TFMCC is designed for applications that use a fixed packet size and
 vary their sending rate in packets per second in response to
 congestion. Some applications (e.g., those using audio) require a
 fixed interval of time between packets and vary their packet size
 instead of their packet rate in response to congestion. The
 congestion control mechanism in this document cannot be used by those
 applications.

2. Protocol Overview

 TFMCC extends the basic mechanisms of TFRC into the multicast domain.
 In order to compete fairly with TCP, TFMCC receivers individually
 measure the prevalent network conditions and calculate a rate that is
 TCP-friendly on the path from the sender to themselves. The rate is
 determined using an equation for TCP throughput, which roughly
 describes TCP’s sending rate as a function of the loss event rate,
 round-trip time (RTT), and packet size. We define a loss event as
 one or more lost or marked packets from the packets received during
 one RTT, where a marked packet refers to a congestion indication from
 Explicit Congestion Notification (ECN) [9]. The sending rate of the
 multicast transmission is adapted to the receiver experiencing the
 worst network conditions.

 Basically, TFMCC’s congestion control mechanism works as follows:

 o Each receiver measures the loss event rate and its RTT to the
 sender.

 o Each receiver then uses this information, together with an equation
 for TCP throughput, to derive a TCP-friendly sending rate.

Widmer & Handley Experimental [Page 5]

RFC 4654 TFMCC: Protocol Specification August 2006

 o Through a distributed feedback suppression mechanism, only a subset
 of the receivers are allowed to give feedback to prevent a feedback
 implosion at the sender. The feedback mechanism ensures that
 receivers reporting a low desired transmission rate have a high
 probability of sending feedback.

 o Receivers whose feedback is not suppressed report the calculated
 transmission rate back to the sender in so-called receiver reports.
 The receiver reports serve two purposes: they inform the sender
 about the appropriate transmit rate, and they allow the receivers
 to measure their RTT.

 o The sender selects the receiver that reports the lowest rate as
 current limiting receiver (CLR). Whenever feedback with an even
 lower rate reaches the sender, the corresponding receiver becomes
 CLR and the sending rate is reduced to match that receiver’s
 calculated rate. The sending rate increases when the CLR reports a
 calculated rate higher than the current sending rate.

 The dynamics of TFMCC are sensitive to how the measurements are
 performed and applied and to what feedback suppression mechanism is
 chosen. We recommend specific mechanisms below to perform and apply
 these measurements. Other mechanisms are possible, but it is
 important to understand how the interactions between mechanisms
 affect the dynamics of TFMCC.

2.1. TCP Throughput Equation

 Any realistic equation giving TCP throughput as a function of loss
 event rate and RTT should be suitable for use in TFMCC. However, we
 note that the TCP throughput equation used must reflect TCP’s
 retransmit timeout behavior, as this dominates TCP throughput at
 higher loss rates. We also note that the assumptions implicit in the
 throughput equation about the loss event rate parameter have to be a
 reasonable match to how the loss rate or loss event rate is actually
 measured. While this match is not perfect for the throughput
 equation and loss rate measurement mechanisms given below, in
 practice the assumptions turn out to be close enough.

 The throughput equation we currently recommend for TFMCC is a
 slightly simplified version of the throughput equation for Reno TCP
 from [8]:

 8 s
 X = --- (1)
 R * (sqrt(2*p/3) + (12*sqrt(3*p/8) * p * (1+32*p^2)))

Widmer & Handley Experimental [Page 6]

RFC 4654 TFMCC: Protocol Specification August 2006

 where

 X is the transmit rate in bits/second.

 s is the packet size in bytes.

 R is the round-trip time in seconds.

 p is the loss event rate, between 0.0 and 1.0, of the number of
 loss events as a fraction of the number of packets transmitted.

 In the future, different TCP equations may be substituted for this
 equation. The requirement is that the throughput equation be a
 reasonable approximation of the sending rate of TCP for conformant
 TCP congestion control.

 The parameters s (packet size), p (loss event rate), and R (RTT) need
 to be measured or calculated by a TFMCC implementation. The
 measurement of R is specified in Section 4.3.2, and the measurement
 of p is specified in Section 5. The parameter s (packet size) is
 normally known to an application. This may not be so in two cases:

 o The packet size naturally varies depending on the data. In this
 case, although the packet size varies, that variation is not
 coupled to the transmit rate. It should normally be safe to use an
 estimate of the mean packet size for s.

 o The application needs to change the packet size rather than the
 number of packets per second to perform congestion control. This
 would normally be the case with packet audio applications where a
 fixed interval of time needs to be represented by each packet.
 Such applications need to have a different way of measuring
 parameters.

 Currently, TFMCC cannot be used for the second class of applications.

2.2. Packet Contents

 Before specifying the sender and receiver functionality, we describe
 the congestion control information contained in packets sent by the
 sender and feedback packets from the receivers. Information from the
 sender can either be sent in separate congestion control messages or
 piggybacked onto data packets. If separate congestion control
 messages are sent at time intervals larger than the time interval
 between data packets (e.g., once per feedback round), it is necessary
 to be able to include timestamp information destined for more than
 one receiver to allow a sufficient number of receivers to measure
 their RTT.

Widmer & Handley Experimental [Page 7]

RFC 4654 TFMCC: Protocol Specification August 2006

 As TFMCC will be used along with a transport protocol, we do not
 specify packet formats, since these depend on the details of the
 transport protocol used. The recommended representation of the
 header fields is given below. Alternatively, if the computational
 overhead of a floating point representation is prohibitive, fixed
 point arithmetic can be used at the expense of larger packet headers.
 Sender and receivers of a specific TFMCC instance need to agree on a
 common encoding for the header fields.

2.2.1. Sender Packets

 Each packet sent by the data sender contains the following
 information:

 o A sequence number i. This number is incremented by one for each
 data packet transmitted. The field must be sufficiently large that
 it does not wrap, causing two different packets with the same
 sequence number to be in the receiver’s recent packet history at
 the same time. In most cases, the sequence number will be supplied
 by the transport protocol used along with TFMCC.

 o A suppression rate X_supp in bits/s. Only receivers with a
 calculated rate lower than the suppression rate are eligible to
 give feedback, unless their RTT is higher than the maximum RTT
 described below, in which case they are also eligible to give
 feedback. The suppression rate should be represented as a 12-bit
 floating point value with 5 bits for the unsigned exponent and 7
 bits for the unsigned mantissa (to represent rates from 100 bit/s
 to 400 Gbit/s with an error of less than 1%).

 o A timestamp ts_i indicating when the packet is sent. The
 resolution of the timestamp should typically be milliseconds, and
 the timestamp should be an unsigned integer value no less than 16
 bits wide.

 o A receiver ID r and a copy of the timestamp tr_r’ = tr_r of that
 receiver’s last report, which allows the receiver to measure its
 RTT. If there is a delay ts_d between receiving the report from
 receiver r and sending the data packet, then tr_r’ = tr_r + ts_d is
 included in the packet instead. The receiver ID is described in
 the next section. The resolution of the timestamp echo should be
 milliseconds, and the timestamp should be an unsigned integer value
 no less than 16 bits wide. If separate congestion control messages
 are used instead of piggybacked ones, the packet needs to contain a
 list of receiver IDs with corresponding timestamps to allow a
 sufficient number of receivers to simultaneously measure their RTT.
 For the default values used for the feedback process, this
 corresponds to a list size on the order of 10 to 20 entries.

Widmer & Handley Experimental [Page 8]

RFC 4654 TFMCC: Protocol Specification August 2006

 o A flag is_CLR indicating whether the receiver with ID r is the CLR.

 o A feedback round counter fb_nr. This counter is incremented by the
 sender at the beginning of a new feedback round to notify the
 receivers that all feedback for older rounds should be suppressed.
 The feedback round counter should be at least 4 bits wide.

 o A maximum RTT value R_max, representing the maximum of the RTTs of
 all receivers. The RTT should be measured in milliseconds. An
 8-bit floating point value with 4 bits for the unsigned exponent
 and 4 bits for the unsigned mantissa (to represent RTTs from 1
 millisecond to 64 seconds with an error of ca. 6%) should be used
 for the representation.

2.2.2. Feedback Packets

 Each feedback packet sent by a data receiver contains the following
 information:

 o A unique receiver ID r. In most cases, the receiver ID will be
 supplied by the transport protocol, but it may simply be the IP
 address of the receiver.

 o A flag have_RTT indicating whether the receiver has made at least
 one RTT measurement since it joined the session.

 o A flag have_loss indicating whether the receiver experienced at
 least one loss event since it joined the session.

 o A flag receiver_leave indicating that the receiver will leave the
 session (and should therefore not be CLR).

 o A timestamp tr_r indicating when the feedback packet is sent. The
 representation of the timestamp should be the same as that of the
 timestamp echo in the data packets.

 o An echo ts_i’ of the timestamp of the last data packet received.
 If the last packet received at the receiver has sequence number i,
 then ts_i’ = ts_i is included in the feedback. If there is a delay
 tr_d between receiving that last data packet and sending feedback,
 then ts_i’ = ts_i + tr_d is included in the feedback instead. The
 representation of the timestamp echo should be the same as that of
 the timestamp in the data packets.

 o A feedback round echo fb_nr, reflecting the highest feedback round
 counter value received so far. The representation of the feedback
 round echo should be the same as the one used for the feedback
 round counter in the data packets.

Widmer & Handley Experimental [Page 9]

RFC 4654 TFMCC: Protocol Specification August 2006

 o The desired sending rate X_r. This is the rate calculated by the
 receiver to be TCP-friendly on the path from the sender to this
 receiver. The representation of the desired sending rate should be
 the same as that of the suppression rate in the data packets.

3. Data Sender Protocol

 The data sender multicasts a stream of data packets to the data
 receivers at a controlled rate. Whenever feedback is received, the
 sender checks if it is necessary to switch CLRs and to readjust the
 sending rate.

 The main tasks that have to be provided by a TFMCC sender are:

 o adjusting the sending rate,

 o controlling receiver feedback, and

 o assisting receiver-side RTT measurements.

3.1. Sender Initialization

 At initialization of the sender, the maximum RTT is set to a value
 that should be larger than the highest RTT to any of the receivers.
 It should not be smaller than 500 milliseconds for operation in the
 public Internet. The sending rate X is initialized to 1 packet per
 maximum RTT.

3.2. Determining the Maximum RTT

 For each feedback packet that arrives at the sender, the sender
 computes the instantaneous RTT to the receiver as

 R_r = ts_now - ts_i’

 where ts_now is the time the feedback packet arrived. Receivers will
 have adjusted ts_i’ for the time interval between receiving the last
 data packet and sending the corresponding report so that this
 interval will not be included in R_r. If the actual RTT is smaller
 than the resolution of the timestamps and ts_now equals ts_i’, then
 R_r is set to the smallest positive RTT value larger than 0 (i.e., 1
 millisecond in our case). If the instantaneous RTT is larger than
 the current maximum RTT, the maximum RTT is increased to that value:

 R_max = R_r

Widmer & Handley Experimental [Page 10]

RFC 4654 TFMCC: Protocol Specification August 2006

 Otherwise, if no feedback with a higher instantaneous RTT than the
 maximum RTT is received during a feedback round (see Section 3.4),
 the maximum RTT is reduced to

 R_max = MAX(R_max * 0.9, R_peak)

 where R_peak is the peak receiver RTT measured during the feedback
 round.

 The maximum RTT is mainly used for feedback suppression among
 receivers with heterogeneous RTTs. Feedback suppression is closely
 coupled to the sending of data packets, and for this reason, the
 maximum RTT must not decrease below the maximum time interval between
 consecutive data packets:

 R_max = max(R_max, 8s/X + ts_gran)

 where ts_gran is the granularity of the sender’s system clock (see
 Section 3.7).

3.3. Adjusting the Sending Rate

 When a feedback packet from receiver r arrives at the sender, the
 sender has to check whether it is necessary to adjust the
 transmission rate and to switch to a new CLR.

 How the rate is adjusted depends on the desired rate X_r of the
 receiver report. We distinguish four cases:

 1. If no CLR is present, receiver r becomes the current limiting
 receiver. The sending rate X is directly set to X_r, so long as
 this would result in a rate increase of less than 8s/R_max bits/s
 (i.e., 1 packet per R_max). Otherwise X is gradually increased
 to X_r at an increase rate of no more than 8s/R_max bits/s every
 R_max seconds.

 2. If receiver r is not the CLR but a CLR is present, then receiver
 r becomes the current limiting receiver if X_r is less than the
 current sending rate X and the receiver_leave flag of that
 receiver’s report is not set. Furthermore, the sending rate is
 reduced to X_r.

 3. If receiver r is not the CLR but a CLR is present and the
 receiver_leave flag of the CLR’s last report was set, then
 receiver r becomes the current limiting receiver. However, if
 X_r > X, the sending rate is not increased to X_r for the
 duration of a feedback round to allow other (lower rate)
 receivers to give feedback and be selected as CLR.

Widmer & Handley Experimental [Page 11]

RFC 4654 TFMCC: Protocol Specification August 2006

 4. If receiver r is the CLR, the sending rate is set to the minimum
 of X_r and X + 8s/R_max bits/s.

 If the receiver has not yet measured its RTT but already experienced
 packet loss (indicated by the corresponding flags in the receiver
 report), the receiver report will include a desired rate that is
 based on the maximum RTT rather than the actual RTT to that receiver.
 In this case, the sender adjusts the desired rate using its
 measurement of the instantaneous RTT R_r to that receiver:

 X_r’ = X_r * R_max / R_r

 X_r’ is then used instead of X_r to detect whether to switch to a new
 CLR.

 If the TFMCC sender receives no reports from the CLR for 4 RTTs, the
 sending rate is cut in half unless the CLR was selected less than 10
 RTTs ago. In addition, if the sender receives no reports from the
 CLR for at least 10 RTTs, it assumes that the CLR crashed or left the
 group. A new CLR is selected from the feedback that subsequently
 arrives at the sender, and we increase as in case 3, above.

 If no new CLR can be selected (i.e., in the absence of any feedback
 from any of the receivers) it is necessary to reduce the sending rate
 further. For every 10 consecutive RTTs without feedback, the sending
 rate is cut in half. The rate is at most reduced to one packet every
 8 seconds.

 Note that when receivers stop receiving data packets, they will stop
 sending feedback. This eventually causes the sending rate to be
 reduced in the case of network failure. If the network subsequently
 recovers, a linear increase to the calculated rate of the CLR will
 occur at 8s/R_max bits/s every R_max.

 An application using TFMCC may have a minimum sending rate
 requirement, where the application becomes unusable if the sending
 rate continuously falls below this minimum rate. The application
 should exclude receivers that report such a low rate from the
 multicast group. The specific mechanism to do this is application
 dependent and beyond the scope of this document.

3.4. Controlling Receiver Feedback

 The receivers allowed to send a receiver report are determined in so-
 called feedback rounds. Feedback rounds have a duration T of six
 times the maximum RTT. In case the multicast model is ASM (i.e.,
 receiver feedback is multicast to the whole group) the duration of a
 feedback round may be reduced to four times the maximum RTT.

Widmer & Handley Experimental [Page 12]

RFC 4654 TFMCC: Protocol Specification August 2006

 Only receivers wishing to report a rate that is lower than the
 suppression rate X_supp or those with a higher RTT than R_max may
 send feedback. At the beginning of each feedback round, X_supp is
 set to the highest possible value that can be represented. When
 feedback arrives at the sender over the course of a feedback round,
 X_supp is decreased such that more and more feedback is suppressed
 towards the end of the round. How receiver feedback is spread out
 over the feedback round is discussed in Section 4.5.

 Whenever non-CLR feedback for the current round arrives at the
 sender, X_supp is reduced to

 X_supp = (1-g) * X_r

 if X_supp > X_r. Feedback that causes the corresponding receiver to
 be selected as CLR, but that was from a non-CLR receiver at the time
 of sending, also contributes to the feedback suppression. Note that
 X_r must not be adjusted by the sender to reflect the receiver’s real
 RTT in case X_r was calculated using the maximum RTT, as is done for
 setting the sending rate (Section 3.3); otherwise, a feedback
 implosion is possible. The parameter g determines to what extent
 higher rate feedback can suppress lower rate feedback. This
 mechanism guarantees that the lowest calculated rate reported lies
 within a factor of g of the actual lowest calculated rate of the
 receiver set (see [13]). A value of g of 0.1 is recommended.

 To allow receivers to suppress their feedback, the sender’s
 suppression rate needs to be updated whenever feedback is received.
 This suppression rate has to be communicated to the receivers in a
 timely manner, either by including it in the data packet header or,
 if separate congestion control messages are used, by sending a
 message with the suppression rate whenever the rate changes
 significantly (i.e., when it is reduced to less than (1-g) times the
 previously advertised suppression rate).

 After a time span of T, the feedback round ends if non-CLR feedback
 was received during that time. Otherwise, the feedback round ends as
 soon as the first non-CLR feedback message arrives at the sender but
 at most after 2T. The feedback round counter is incremented by one,
 and the suppression rate X_supp is reset to the highest representable
 value. The feedback round counter restarts with round 0 after a
 wrap-around.

Widmer & Handley Experimental [Page 13]

RFC 4654 TFMCC: Protocol Specification August 2006

3.5. Assisting Receiver-Side RTT Measurements

 Receivers measure their RTT by sending a timestamp with a receiver
 report, which is echoed by the sender. If congestion control
 information is piggybacked onto data packets, usually only one
 receiver ID and timestamp can be included. If multiple feedback
 messages from different receivers arrive at the sender during the
 time interval between two data packets, the sender has to decide
 which receiver to allow to measure the RTT. The same applies if
 separate congestion control messages allow echoing multiple receiver
 timestamps simultaneously, but the number of receivers that gave
 feedback since the last congestion control message exceeds the list
 size.

 The sender’s timestamp echoes are prioritized in the following order:

 1. a new CLR (after a change of CLR’s) or a CLR without any previous
 RTT measurements

 2. receivers without any previous RTT measurements in the order of
 the feedback round echo of the corresponding receiver report
 (i.e., older feedback first)

 3. non-CLR receivers with previous RTT measurements, again in
 ascending order of the feedback round echo of the report

 4. the CLR

 Ties are broken in favor of the receiver with the lowest reported
 rate.

 It is necessary to account for the time that elapses between
 receiving a report and sending the next data packet. This time needs
 to be deducted from the RTT and thus has to be added to the
 receiver’s timestamp value.

 Whenever no feedback packets arrive in the interval between two data
 packets, the CLR’s last timestamp, adjusted by the appropriate
 offset, is echoed. When the number of packets per RTT is so low that
 all packets carry a non-CLR receiver’s timestamp, the CLR’s timestamp
 and ID are included in a data packet at least once per feedback
 round.

Widmer & Handley Experimental [Page 14]

RFC 4654 TFMCC: Protocol Specification August 2006

3.6. Slowstart

 TFMCC uses a slowstart mechanism to quickly approach its fair
 bandwidth share at the start of a session. During slowstart, the
 sending rate increases exponentially. The rate increase is limited
 to the minimum of the rates included in the receiver reports, and
 receivers report twice the rate at which they currently receive data.
 As in normal congestion control mode, the receiver with the smallest
 reported rate becomes CLR. Since a receiver can never receive data
 at a rate higher than its link bandwidth, this effectively limits the
 overshoot to twice this bandwidth. In case the resulting increase
 over R_max is less than 8s/R_max bits/s, the sender may choose to
 increase the rate by up to 8s/R_max bits/s every R_max. The current
 sending rate is gradually adjusted to the target rate reported in the
 receiver reports over the course of an RTT. Slowstart is terminated
 as soon as any one of the receivers experiences its first packet
 loss. Since that receiver’s calculated rate will be lower than the
 current sending rate, the receiver will be selected as CLR.

 During slowstart, the upper bound on the rate increase of 8s/R_max
 bits/s every RTT does not apply. Only after the TFMCC sender
 receives the first report with the have_loss flag set is the rate
 increase limited in this way.

 Slowstart may also be used after the sender has been idle for some
 time, to quickly reach the previous sending rate. When the sender
 stops sending data packets, it records the current sending rate X’ =
 X. Every 10 RTTs, the allowed sending rate will be halved due to
 lack of receiver feedback, as specified in Section 3.3. This halving
 may take place multiple times. When the sender resumes, it may
 perform a slowstart from the current allowed rate up to the recorded
 rate X’. Slowstart ends after the first packet loss by any of the
 receivers or as soon as X’ is reached.

 To this end, receivers have to clear the have_loss flag after 10 RTTs
 without data packets as specified in Section 4.3.1. The have_loss
 flag is only used during slowstart. Therefore, clearing the flag has
 no effect if no packets arrived due to network partitioning or packet
 loss.

3.7. Scheduling of Packet Transmissions

 As TFMCC is rate-based, and as operating systems typically cannot
 schedule events precisely, it is necessary to be opportunistic about
 sending data packets so that the correct average rate is maintained
 despite the coarse-grain or irregular scheduling of the operating
 system. Thus, a typical sending loop will calculate the correct
 inter-packet interval, ts_ipi, as follows:

Widmer & Handley Experimental [Page 15]

RFC 4654 TFMCC: Protocol Specification August 2006

 ts_ipi = 8s/X

 When a sender first starts sending at time t_0, it calculates ts_ipi
 and calculates a nominal send time, t_1 = t_0 + ts_ipi, for packet 1.
 When the application becomes idle, it checks the current time,
 ts_now, and then requests re-scheduling after (ts_ipi - (ts_now -
 t_0)) seconds. When the application is re-scheduled, it checks the
 current time, ts_now, again. If (ts_now > t_1 - delta) then packet 1
 is sent (see below for delta).

 Now, a new ts_ipi may be calculated and used to calculate a nominal
 send time, t_2, for packet 2: t_2 = t_1 + ts_ipi. The process then
 repeats with each successive packet’s send time being calculated from
 the nominal send time of the previous packet. Note that the actual
 send time ts_i, and not the nominal send time, is included as
 timestamp in the packet header.

 In some cases, when the nominal send time, t_i, of the next packet is
 calculated, it may already be the case that ts_now > t_i - delta. In
 such a case, the packet should be sent immediately. Thus, if the
 operating system has coarse timer granularity and the transmit rate
 is high, then TFMCC may send short bursts of several packets
 separated by intervals of the OS timer granularity.

 The parameter delta is to allow a degree of flexibility in the send
 time of a packet. If the operating system has a scheduling timer
 granularity of ts_gran seconds, then delta would typically be set to:

 delta = min(ts_ipi/2, ts_gran/2)

 ts_gran is 10 milliseconds on many Unix systems. If ts_gran is not
 known, a value of 10 milliseconds can be safely assumed.

4. Data Receiver Protocol

 Receivers measure the current network conditions (namely, RTT and
 loss event rate) and use this information to calculate a rate that is
 fair to competing traffic. The rate is then communicated to the
 sender in receiver reports. Due to the potentially large number of
 receivers, it is undesirable that all receivers send reports,
 especially not at the same time.

 In the description of the receiver functionality, we will first
 address how the receivers measure the network parameters and then
 discuss the feedback process.

Widmer & Handley Experimental [Page 16]

RFC 4654 TFMCC: Protocol Specification August 2006

4.1. Receiver Initialization

 The receiver is initialized when it receives the first data packet.
 The RTT is set to the maximum RTT value contained in the data packet.
 This initial value is used as the receiver’s RTT until the first real
 RTT measurement is made. The loss event rate is initialized to 0.
 Also, the flags receiver_leave, have_RTT, and have_loss are cleared.

4.2. Receiver Leave

 A receiver that sends feedback but wishes to leave the TFMCC session
 within the next feedback round may indicate the pending leave by
 setting the receiver_leave flag in its report. If the leaving
 receiver is the CLR, the receiver_leave flag should be set for all
 the reports within the feedback round before the leave takes effect.

4.3. Measurement of the Network Conditions

 Receivers have to update their estimate of the network parameters
 with each new data packet they receive.

4.3.1. Updating the Loss Event Rate

 When a data packet is received, the receiver adds the packet to the
 packet history. It then recalculates the new value of the loss event
 rate p. The loss event rate measurement mechanism is described
 separately in Section 5.

 When a loss event is detected, the flag have_loss is set. In case no
 data packets are received for 10 consecutive RTTs, the flag is
 cleared to allow the sender to slowstart. It is set again when new
 data packets arrive and a loss event is detected.

4.3.2. Basic Round-Trip Time Measurement

 When a receiver gets a data packet that carries the receiver’s own ID
 in the r field, the receiver updates its RTT estimate.

 1. The current RTT is calculated as:

 R_sample = tr_now - tr_r’

 where tr_now is the time the data packet arrives at the receiver
 and tr_r’ is the receiver report timestamp echoed in the data
 packet. If the actual RTT is smaller than the resolution of the
 timestamps and tr_now equals tr_r’, then R_sample is set to the
 smallest positive RTT value larger than 0 (i.e., 1 millisecond in
 our case).

Widmer & Handley Experimental [Page 17]

RFC 4654 TFMCC: Protocol Specification August 2006

 2. The smoothed RTT estimate R is updated:

 If no feedback has been received before
 R = R_sample

 Else
 R = q*R + (1-q)*R_sample

 A filter parameter q of 0.5 is recommended for non-CLR receivers.
 The CLR performs RTT measurements much more frequently and hence
 should use a higher filter value. We recommend using q=0.9.
 Note that TFMCC is not sensitive to the precise value for the
 filter constant.

 Optionally, sender-based RTT measurements may be used instead of
 receiver-based ones. The sender already determines the RTT to a
 receiver from the receiver’s echo of the sender’s own timestamp for
 the calculation of the maximum RTT. For sender-based RTT
 measurements, this RTT measurement needs to be communicated to the
 receiver. Instead of including an echo of the receiver’s timestamp,
 the sender includes the receiver’s RTT in the next data packet, using
 the prioritization rules described in Section 3.5.

 To simplify sender operation, smoothing of RTT samples as described
 above should still be done at the receiver.

4.3.3. One-Way Delay Adjustments

 When an RTT measurement is performed, the receiver also determines
 the one-way delay D_r from itself to the sender:

 D_r = tr_r’ - ts_i

 where ts_i and tr_r’ are the timestamp and receiver report timestamp
 echo contained in the data packet. With each new data packet j, the
 receiver can now calculate an updated RTT estimate as:

 R’ = max(D_r + tr_now - ts_j, 1 millisecond)

 In between RTT measurements, the updated R’ is used instead of the
 smoothed RTT R. Like the RTT samples, R’ must be strictly positive.
 When a new measurement is made, all interim one-way delay
 measurements are discarded (i.e., the smoothed RTT is updated
 according to Section 4.3.2 without taking the interim one-way delay
 adjustments into account).

Widmer & Handley Experimental [Page 18]

RFC 4654 TFMCC: Protocol Specification August 2006

 For the one-way delay measurements, the clocks of sender and
 receivers need not be synchronized. Clock skew will cancel itself
 out when both one-way measurements are added to form an RTT estimate,
 as long as clock drift between real RTT measurements is negligible.

 The same one-way delay adjustments should be applied to the RTT
 supplied by the sender when using sender-based RTT measurements.

4.3.4. Receive Rate Measurements

 When a receiver has not experienced any loss events, it cannot
 calculate a TCP-friendly rate to include in the receiver reports.
 Instead, the receiver measures the current receive rate and sets the
 desired rate X_r to twice the receive rate.

 The receive rate in bits/s is measured as the number of bits received
 over the last k RTTs, taking into account the IP and transport packet
 headers, but excluding the link-layer packet headers. A value for k
 between 2 and 4 is recommended.

4.4. Setting the Desired Rate

 When a receiver measures a non-zero loss event rate, it calculates
 the desired rate using Equation (1). In case no RTT measurement is
 available yet, the maximum RTT is used instead of the receiver’s RTT.
 The desired rate X_r is updated whenever the loss event rate or the
 RTT changes.

 A receiver may decide not to report desired rates that are below 1
 packet per 8 seconds, since a sender is very slow to recover from
 such low sending rates. In this case, the receiver reports a desired
 rate of 1 packet per 8 seconds. However, it must leave the multicast
 group if for more than 120 seconds, the calculated rate falls below
 the reported rate and the current sending rate is higher than the
 receiver’s calculated rate.

 As mentioned above, calculation of the desired rate is not possible
 before the receiver experiences the first loss event. In that case,
 twice the rate at which data is received is included in the receiver
 reports as X_r to allow the sender to slowstart as described in
 Section 3.6. This is also done when the sender resumes sending data
 packets after the have_loss flag was cleared due to the sender being
 idle.

Widmer & Handley Experimental [Page 19]

RFC 4654 TFMCC: Protocol Specification August 2006

4.5. Feedback and Feedback Suppression

 Let fb_nr be the highest feedback round counter value received by a
 receiver. When a new data packet arrives with a higher feedback
 round counter than fb_nr, a new feedback round begins and fb_nr is
 updated. Outstanding feedback for the old round is canceled. In
 case a feedback number with a value that is more than half the
 feedback number space lower than fb_nr is received, the receiver
 assumes that the feedback round counter wrapped and also cancels the
 feedback timer and updates fb_nr.

 The CLR sends its feedback independently from all the other receivers
 once per RTT. Its feedback does not suppress other feedback and
 cannot be suppressed by other receiver’s feedback.

 Non-CLR receivers set a feedback timer at the beginning of a feedback
 round. Using an exponentially weighted random timer mechanism, the
 feedback timer is set to expire after

 t = max(T * (1 + log(x)/log(N)), 0)

 where

 x is a random variable uniformly distributed in (0,1],

 T is the duration of a feedback round (i.e., 6 * R_max),

 N is an estimated upper bound on the number of receivers.

 N is a constant specific to the TFMCC protocol. Since TFMCC scales
 to up to thousands of receivers, setting N to 10,000 for all
 receivers (and limiting the TFMCC session to at most 10,000
 receivers) is recommended.

 A feedback packet is sent when the feedback timer expires, unless the
 timer is canceled beforehand. When the multicast model is ASM,
 feedback is multicast to the whole group; otherwise, the feedback is
 unicast to the sender. The feedback packet includes the calculated
 rate valid at the time the feedback packet is sent (not the rate at
 the point of time when the feedback timer is set). The copy of the
 timestamp ts_i of the last data packet received, which is included in
 the feedback packet, needs to be adjusted by the time interval
 between receiving the data packet and sending the report to allow the
 sender to correctly infer the instantaneous RTT (i.e., that time
 interval has to be added to the timestamp value).

Widmer & Handley Experimental [Page 20]

RFC 4654 TFMCC: Protocol Specification August 2006

 The timer is canceled if a data packet is received that has a lower
 suppression rate than the receiver’s calculated rate and a higher or
 equal maximum RTT than the receiver’s RTT. Likewise, a data packet
 indicating the beginning of a new feedback round cancels all feedback
 for older rounds. In case of ASM, the timer is also canceled if a
 feedback packet is received from another non-CLR receiver reporting a
 lower rate.

 The feedback suppression process is complicated by the fact that the
 calculated rates of the receivers will change during a feedback
 round. If the calculated rates decrease rapidly for all receivers,
 feedback suppression can no longer prevent a feedback implosion,
 since earlier feedback will always report a higher rate than current
 feedback. To make the feedback suppression mechanism robust in the
 face of changing rates, it is necessary to introduce X_fbr, the
 calculated rate of a receiver at the beginning of a feedback round.
 A receiver needs to suppress its feedback not only when the
 suppression rate is less than the receiver’s current calculated rate
 but also in the case that the suppression rate falls below X_fbr.

 When the maximum RTT changes significantly during one feedback round,
 it is necessary to reschedule the feedback timer in proportion to the
 change.

 t = t * R_max / R_max’

 where R_max is the new maximum RTT and R_max’ is the previous maximum
 RTT. The same considerations hold when the last data packets were
 received more than a time interval of R_max ago. In this case, it is
 necessary to add the difference of the inter-packet gap and the
 maximum RTT to the feedback time to prevent a feedback implosion
 (e.g., in case the sender crashed).

 t = t + max(tr_now - tr_i - R_max, 0)

 where tr_i is the time when the last data packet arrived at the
 receiver.

 More details on the characteristics of the feedback suppression
 mechanism can be found in [13] and [3].

Widmer & Handley Experimental [Page 21]

RFC 4654 TFMCC: Protocol Specification August 2006

5. Calculation of the Loss Event Rate

 Obtaining an accurate and stable measurement of the loss event rate
 is of primary importance for TFMCC. Loss rate measurement is
 performed at the receiver, based on the detection of lost or marked
 packets from the sequence numbers of arriving packets.

5.1. Detection of Lost or Marked Packets

 TFMCC assumes that all packets contain a sequence number that is
 incremented by one for each packet that is sent. For the purposes of
 this specification, we require that if a lost packet is
 retransmitted, the retransmission is given a new sequence number that
 is the latest in the transmission sequence, and not the same sequence
 number as the packet that was lost. If a transport protocol has the
 requirement that it must retransmit with the original sequence
 number, then the transport protocol designer must figure out how to
 distinguish delayed from retransmitted packets and how to detect lost
 retransmissions.

 The receivers each maintain a data structure that keeps track of
 which packets have arrived and which are missing. For the purposes
 of specification, we assume that the data structure consists of a
 list of packets that have arrived along with the timestamp when each
 packet was received. In practice, this data structure will normally
 be stored in a more compact representation, but this is
 implementation-specific.

 The loss of a packet is detected by the arrival of at least three
 packets with a higher sequence number than the lost packet. The
 requirement for three subsequent packets is the same as with TCP, and
 it is to make TFMCC more robust in the presence of reordering. In
 contrast to TCP, if a packet arrives late (after 3 subsequent packets
 arrived) at a receiver, the late packet can fill the hole in the
 reception record, and the receiver can recalculate the loss event
 rate. Future versions of TFMCC might make the requirement for three
 subsequent packets adaptive based on experienced packet reordering,
 but we do not specify such a mechanism here.

 For an ECN-capable connection, a marked packet is detected as a
 congestion event as soon as it arrives, without having to wait for
 the arrival of subsequent packets.

Widmer & Handley Experimental [Page 22]

RFC 4654 TFMCC: Protocol Specification August 2006

5.2. Translation from Loss History to Loss Events

 TFMCC requires that the loss event rate be robust to several
 consecutive packets lost where those packets are part of the same
 loss event. This is similar to TCP, which (typically) only performs
 one halving of the congestion window during any single RTT. Thus the
 receivers need to map the packet loss history into a loss event
 record, where a loss event is one or more packets lost in an RTT.

 To determine whether a lost or marked packet should start a new loss
 event or be counted as part of an existing loss event, we need to
 compare the sequence numbers and timestamps of the packets that
 arrived at the receiver. For a marked packet S_new, its reception
 time T_new can be noted directly. For a lost packet, we can
 interpolate to infer the nominal "arrival time". Assume:

 S_loss is the sequence number of a lost packet.

 S_before is the sequence number of the last packet to arrive with
 sequence number before S_loss.

 S_after is the sequence number of the first packet to arrive with
 sequence number after S_loss.

 T_before is the reception time of S_before.

 T_after is the reception time of S_after.

 Note that T_before can be either before or after T_after due to
 reordering.

 For a lost packet S_loss, we can interpolate its nominal "arrival
 time" at the receiver from the arrival times of S_before and S_after.
 Thus

 T_loss = T_before + ((T_after - T_before)
 * (S_loss - S_before)/(S_after - S_before));

 Note that if the sequence space wrapped between S_before and S_after,
 the sequence numbers must be modified to take this into account
 before the calculation is performed. If the largest possible
 sequence number is S_max, and S_before > S_after, then modifying each
 sequence number S by S’ = (S + (S_max + 1)/2) mod (S_max + 1) would
 normally be sufficient.

Widmer & Handley Experimental [Page 23]

RFC 4654 TFMCC: Protocol Specification August 2006

 If the lost packet S_old was determined to have started the previous
 loss event, and if we have just determined that S_new has been lost,
 then we interpolate the nominal arrival times of S_old and S_new,
 called T_old and T_new, respectively.

 If T_old + R >= T_new, then S_new is part of the existing loss event.
 Otherwise, S_new is the first packet of a new loss event.

5.3. Inter-Loss Event Interval

 If a loss interval, A, is determined to have started with packet
 sequence number S_A and the next loss interval, B, started with
 packet sequence number S_B, then the number of packets in loss
 interval A is given by (S_B - S_A).

5.4. Average Loss Interval

 To calculate the loss event rate p, we first calculate the average
 loss interval. This is done using a filter that weights the n most
 recent loss event intervals in such a way that the measured loss
 event rate changes smoothly.

 Weights w_0 to w_(n-1) are calculated as:

 If (i < n/2)
 w_i = 1;
 Else
 w_i = 1 - (i - (n/2 - 1))/(n/2 + 1);

 Thus if n=8, the values of w_0 to w_7 are:

 1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2

 The value n for the number of loss intervals used in calculating the
 loss event rate determines TFMCC’s speed in responding to changes in
 the level of congestion. As currently specified, TFMCC should not be
 used for values of n significantly greater than 8, for traffic that
 might compete in the global Internet with TCP. At the very least,
 safe operation with values of n greater than 8 would require a slight
 change to TFMCC’s mechanisms to include a more severe response to two
 or more round-trip times with heavy packet loss.

 When calculating the average loss interval, we need to decide whether
 to include the interval since the most recent packet loss event. We
 only do this if it is sufficiently large to increase the average loss
 interval.

Widmer & Handley Experimental [Page 24]

RFC 4654 TFMCC: Protocol Specification August 2006

 Thus, if the most recent loss intervals are I_0 to I_n, with I_0
 being the interval since the most recent loss event, then we
 calculate the average loss interval I_mean as:

 I_tot0 = 0;
 I_tot1 = 0;
 W_tot = 0;
 for (i = 0 to n-1) {
 I_tot0 = I_tot0 + (I_i * w_i);
 W_tot = W_tot + w_i;
 }
 for (i = 1 to n) {
 I_tot1 = I_tot1 + (I_i * w_(i-1));
 }
 I_tot = max(I_tot0, I_tot1);
 I_mean = I_tot/W_tot;

 The loss event rate, p is simply:

 p = 1 / I_mean;

5.5. History Discounting

 As described in Section 5.4, the most recent loss interval is only
 assigned 4/(3*n) of the total weight in calculating the average loss
 interval, regardless of the size of the most recent loss interval.
 This section describes an optional history discounting mechanism that
 allows the TFMCC receivers to adjust the weights, concentrating more
 of the relative weight on the most recent loss interval, when the
 most recent loss interval is more than twice as large as the computed
 average loss interval.

 To carry out history discounting, we associate a discount factor DF_i
 with each loss interval L_i, where each discount factor is a floating
 point number. The discount array maintains the cumulative history of
 discounting for each loss interval. At the beginning, the values of
 DF_i in the discount array are initialized to 1:

 for (i = 0 to n) {
 DF_i = 1;
 }

 History discounting also uses a general discount factor DF, also a
 floating point number, that is also initialized to 1. First, we show
 how the discount factors are used in calculating the average loss
 interval, and then we describe later in this section how the discount
 factors are modified over time.

Widmer & Handley Experimental [Page 25]

RFC 4654 TFMCC: Protocol Specification August 2006

 As described in Section 5.4, the average loss interval is calculated
 using the n previous loss intervals I_1, ..., I_n, and the interval
 I_0 that represents the number of packets received since the last
 loss event. The computation of the average loss interval using the
 discount factors is a simple modification of the procedure in Section
 5.4, as follows:

 I_tot0 = I_0 * w_0
 I_tot1 = 0;
 W_tot0 = w_0
 W_tot1 = 0;
 for (i = 1 to n-1) {
 I_tot0 = I_tot0 + (I_i * w_i * DF_i * DF);
 W_tot0 = W_tot0 + w_i * DF_i * DF;
 }
 for (i = 1 to n) {
 I_tot1 = I_tot1 + (I_i * w_(i-1) * DF_i);
 W_tot1 = W_tot1 + w_(i-1) * DF_i;
 }
 p = min(W_tot0/I_tot0, W_tot1/I_tot1);

 The general discounting factor DF is updated on every packet arrival
 as follows. First, a receiver computes the weighted average I_mean
 of the loss intervals I_1, ..., I_n:

 I_tot = 0;
 W_tot = 0;
 for (i = 1 to n) {
 W_tot = w_(i-1) * DF_i;
 I_tot = I_tot + (I_i * w_(i-1) * DF_i);
 }
 I_mean = I_tot / W_tot;

 This weighted average I_mean is compared to I_0, the number of
 packets received since the last loss event. If I_0 is greater than
 twice I_mean, then the new loss interval is considerably larger than
 the old ones, and the general discount factor DF is updated to
 decrease the relative weight on the older intervals, as follows:

 if (I_0 > 2 * I_mean) {
 DF = 2 * I_mean/I_0;
 if (DF < THRESHOLD)
 DF = THRESHOLD;
 } else
 DF = 1;

Widmer & Handley Experimental [Page 26]

RFC 4654 TFMCC: Protocol Specification August 2006

 A nonzero value for THRESHOLD ensures that older loss intervals from
 an earlier time of high congestion are not discounted entirely. We
 recommend a THRESHOLD of 0.5. Note that with each new packet
 arrival, I_0 will increase further, and the discount factor DF will
 be updated.

 When a new loss event occurs, the current interval shifts from I_0 to
 I_1, loss interval I_i shifts to interval I_(i+1), and the loss
 interval I_n is forgotten. The previous discount factor DF has to be
 incorporated into the discount array. Because DF_i carries the
 discount factor associated with loss interval I_i, the DF_i array has
 to be shifted as well. This is done as follows:

 for (i = 1 to n) {
 DF_i = DF * DF_i;
 }
 for (i = n-1 to 0 step -1) {
 DF_(i+1) = DF_i;
 }
 I_0 = 1;
 DF_0 = 1;
 DF = 1;

 This completes the description of the optional history discounting
 mechanism. We emphasize that this is an optional mechanism whose
 sole purpose is to allow TFMCC to respond more quickly to the sudden
 absence of congestion, as represented by a long current loss
 interval.

5.6. Initializing the Loss History after the First Loss Event

 The number of packets received before the first loss event usually
 does not reflect the current loss event rate. When the first loss
 event occurs, a TFMCC receiver assumes that the correct data rate is
 the rate at which data was received during the last RTT when the loss
 occurred. Instead of initializing the first loss interval to the
 number of packets sent until the first loss event, the TFMCC receiver
 calculates the loss interval that would be required to produce the
 receive rate X_recv, and it uses this synthetic loss interval l_0 to
 seed the loss history mechanism.

 The initial loss interval is calculated by inverting a simplified
 version of the TCP Equation (1).

Widmer & Handley Experimental [Page 27]

RFC 4654 TFMCC: Protocol Specification August 2006

 8s
 X_recv = sqrt(3/2) * -----------------
 R * sqrt(1/l_0)

 X_recv * R
 ==> l_0 = (----------------)^2
 sqrt(3/2) * 8s

 The resulting initial loss interval is too small at higher loss rates
 compared to using the more accurate Equation (1), which leads to a
 more conservative initial loss event rate.

 If a receiver still uses the initial RTT R_max instead of its real
 RTT, the initial loss interval is too large in case the initial RTT
 is higher than the actual RTT. As a consequence, the receiver will
 calculate too high a desired rate when the first RTT measurement R is
 made and the initial loss interval is still in the loss history. The
 receiver has to adjust l_0 as follows:

 l_0 = l_0 * (R/R_max)^2

 No action needs to be taken when the first RTT measurement is made
 after the initial loss interval left the loss history.

6. Security Considerations

 TFMCC is not a transport protocol in its own right, but a congestion
 control mechanism that is intended to be used in conjunction with a
 transport protocol. Therefore, security primarily needs to be
 considered in the context of a specific transport protocol and its
 authentication mechanisms.

 Congestion control mechanisms can potentially be exploited to create
 denial of service. This may occur through spoofed feedback. Thus,
 any transport protocol that uses TFMCC should take care to ensure
 that feedback is only accepted from valid receivers of the data.
 However, the precise mechanism to achieve this will depend on the
 transport protocol itself.

 Congestion control mechanisms may potentially be manipulated by a
 greedy receiver that wishes to receive more than its fair share of
 network bandwidth. However, in TFMCC a receiver can only influence
 the sending rate if it is the CLR and thus has the lowest calculated
 rate of all receivers. If the calculated rate is then manipulated
 such that it exceeds the calculated rate of the second to lowest
 receiver, it will cease to be CLR. A greedy receiver can only
 significantly increase the transmission rate if it is the only
 participant in the session. If such scenarios are of concern,

Widmer & Handley Experimental [Page 28]

RFC 4654 TFMCC: Protocol Specification August 2006

 possible defenses against such a receiver would normally include some
 form of nonce that the receiver must feed back to the sender to prove
 receipt. However, the details of such a nonce would depend on the
 transport protocol and, in particular, on whether the transport
 protocol is reliable or unreliable.

 It is possible that a receiver sends feedback claiming that it has a
 very low calculated rate. This will reduce the rate of the multicast
 session and might render it useless but obviously cannot hurt the
 network itself.

 We expect that protocols incorporating ECN with TFMCC will also want
 to incorporate feedback from the receiver to the sender using the ECN
 nonce [12]. The ECN nonce is a modification to ECN that protects the
 sender from the accidental or malicious concealment of marked
 packets. Again, the details of such a nonce would depend on the
 transport protocol and are not addressed in this document.

7. Acknowledgments

 We would like to acknowledge feedback and discussions on equation-
 based congestion control with a wide range of people, including
 members of the Reliable Multicast Research Group, the Reliable
 Multicast Transport Working Group, and the End-to-End Research Group.
 We would particularly like to thank Brian Adamson, Mark Pullen, Fei
 Zhao, and Magnus Westerlund for feedback on earlier versions of this
 document.

8. References

8.1. Normative References

 [1] Whetten, B., Vicisano, L., Kermode, R., Handley, M., Floyd, S.,
 and M. Luby, "Reliable Multicast Transport Building Blocks for
 One-to-Many Bulk-Data Transfer", RFC 3048, January 2001.

 [2] Kermode, R. and L. Vicisano, "Author Guidelines for Reliable
 Multicast Transport (RMT) Building Blocks and Protocol
 Instantiation documents", RFC 3269, April 2002.

8.2. Informative References

 [3] J. Widmer and M. Handley, "Extending Equation-Based Congestion
 Control to Multicast Applications", Proc ACM Sigcomm 2001, San
 Diego, August 2001.

Widmer & Handley Experimental [Page 29]

RFC 4654 TFMCC: Protocol Specification August 2006

 [4] S. Floyd, M. Handley, J. Padhye, and J. Widmer, "Equation-Based
 Congestion Control for Unicast Applications", Proc ACM SIGCOMM
 2000, Stockholm, August 2000.

 [5] Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "Negative-Acknowledgment (NACK)-Oriented Reliable Multicast
 (NORM) Building Blocks", RFC 3941, November 2004.

 [6] Deering, S., "Host extensions for IP multicasting", STD 5, RFC
 1112, August 1989.

 [7] H. W. Holbrook, "A Channel Model for Multicast," Ph.D.
 Dissertation, Stanford University, Department of Computer
 Science, Stanford, California, August 2001.

 [8] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP
 Throughput: A Simple Model and its Empirical Validation", Proc
 ACM SIGCOMM 1998.

 [9] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [10] L. Rizzo, "pgmcc: a TCP-friendly single-rate multicast
 congestion control scheme", Proc ACM Sigcomm 2000, Stockholm,
 August 2000.

 [11] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", STD 64,
 RFC 3550, July 2003.

 [12] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces", RFC 3540,
 June 2003.

 [13] J. Widmer and T. Fuhrmann, "Extremum Feedback for Very Large
 Multicast Groups", Proc NGC 2001, London, November 2001.

Widmer & Handley Experimental [Page 30]

RFC 4654 TFMCC: Protocol Specification August 2006

Authors’ Addresses

 Joerg Widmer
 DoCoMo Euro-Labs
 Landsberger Str. 312, Munich, Germany
 EMail: widmer@acm.org

 Mark Handley
 UCL (University College London)
 Gower Street, London WC1E 6BT, UK
 EMail: m.handley@cs.ucl.ac.uk

Widmer & Handley Experimental [Page 31]

RFC 4654 TFMCC: Protocol Specification August 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Widmer & Handley Experimental [Page 32]

