
Network Working Group B. Campbell, Ed.
Request for Comments: 4975 Estacado Systems
Category: Standards Track R. Mahy, Ed.
 Plantronics
 C. Jennings, Ed.
 Cisco Systems, Inc.
 September 2007

 The Message Session Relay Protocol (MSRP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes the Message Session Relay Protocol, a
 protocol for transmitting a series of related instant messages in the
 context of a session. Message sessions are treated like any other
 media stream when set up via a rendezvous or session creation
 protocol such as the Session Initiation Protocol.

Campbell, et al. Standards Track [Page 1]

RFC 4975 MSRP September 2007

Table of Contents

 1. Introduction ..4
 2. Conventions ...5
 3. Applicability of MSRP ...5
 4. Protocol Overview ...6
 5. Key Concepts ..9
 5.1. MSRP Framing and Message Chunking9
 5.2. MSRP Addressing ...10
 5.3. MSRP Transaction and Report Model11
 5.4. MSRP Connection Model12
 6. MSRP URIs ..14
 6.1. MSRP URI Comparison15
 6.2. Resolving MSRP Host Device16
 7. Method-Specific Behavior17
 7.1. Constructing Requests17
 7.1.1. Sending SEND Requests18
 7.1.2. Sending REPORT Requests21
 7.1.3. Generating Success Reports22
 7.1.4. Generating Failure Reports23
 7.2. Constructing Responses24
 7.3. Receiving Requests ..25
 7.3.1. Receiving SEND Requests25
 7.3.2. Receiving REPORT Requests27
 8. Using MSRP with SIP and SDP27
 8.1. SDP Connection and Media-Lines28
 8.2. URI Negotiations ..29
 8.3. Path Attributes with Multiple URIs30
 8.4. Updated SDP Offers ..31
 8.5. Connection Negotiation31
 8.6. Content Type Negotiation32
 8.7. Example SDP Exchange34
 8.8. MSRP User Experience with SIP35
 8.9. SDP Direction Attribute and MSRP35
 9. Formal Syntax ..36
 10. Response Code Descriptions38
 10.1. 200 ..38
 10.2. 400 ..38
 10.3. 403 ..38
 10.4. 408 ..39
 10.5. 413 ..39
 10.6. 415 ..39
 10.7. 423 ..39
 10.8. 481 ..39
 10.9. 501 ..39
 10.10. 506 ...40

Campbell, et al. Standards Track [Page 2]

RFC 4975 MSRP September 2007

 11. Examples ..40
 11.1. Basic IM Session ...40
 11.2. Message with XHTML Content42
 11.3. Chunked Message ..43
 11.4. Chunked Message with Message/CPIM Payload43
 11.5. System Message ...44
 11.6. Positive Report ..44
 11.7. Forked IM ..45
 12. Extensibility ...48
 13. CPIM Compatibility ..48
 14. Security Considerations49
 14.1. Secrecy of the MSRP URI50
 14.2. Transport Level Protection50
 14.3. S/MIME ...51
 14.4. Using TLS in Peer-to-Peer Mode52
 14.5. Other Security Concerns53
 15. IANA Considerations ...55
 15.1. MSRP Method Names ..55
 15.2. MSRP Header Fields55
 15.3. MSRP Status Codes ..56
 15.4. MSRP Port ..56
 15.5. URI Schema ...56
 15.5.1. MSRP Scheme56
 15.5.2. MSRPS Scheme57
 15.6. SDP Transport Protocol57
 15.7. SDP Attribute Names58
 15.7.1. Accept Types58
 15.7.2. Wrapped Types58
 15.7.3. Max Size ..58
 15.7.4. Path ..58
 16. Contributors and Acknowledgments59
 17. References ..59
 17.1. Normative References59
 17.2. Informative References60

Campbell, et al. Standards Track [Page 3]

RFC 4975 MSRP September 2007

1. Introduction

 A series of related instant messages between two or more parties can
 be viewed as part of a "message session", that is, a conversational
 exchange of messages with a definite beginning and end. This is in
 contrast to individual messages each sent independently. Messaging
 schemes that track only individual messages can be described as
 "page-mode" messaging, whereas messaging that is part of a "session"
 with a definite start and end is called "session-mode" messaging.

 Page-mode messaging is enabled in SIP via the SIP [4] MESSAGE method
 [22]. Session-mode messaging has a number of benefits over page-mode
 messaging, however, such as explicit rendezvous, tighter integration
 with other media-types, direct client-to-client operation, and
 brokered privacy and security.

 This document defines a session-oriented instant message transport
 protocol called the Message Session Relay Protocol (MSRP), whose
 sessions can be negotiated with an offer or answer [3] using the
 Session Description Protocol (SDP) [2]. The exchange is carried by
 some signaling protocol, such as SIP [4]. This allows a
 communication user agent to offer a messaging session as one of the
 possible media-types in a session. For instance, Alice may want to
 communicate with Bob. Alice doesn’t know at the moment whether Bob
 has his phone or his IM client handy, but she’s willing to use
 either. She sends an invitation to a session to the address of
 record she has for Bob, sip:bob@example.com. Her invitation offers
 both voice and an IM session. The SIP services at example.com
 forward the invitation to Bob at his currently registered clients.
 Bob accepts the invitation at his IM client, and they begin a
 threaded chat conversation.

 When a user uses an Instant Messaging (IM) URL, RFC 3861 [32] defines
 how DNS can be used to map this to a particular protocol to establish
 the session such as SIP. SIP can use an offer/answer model to
 transport the MSRP URIs for the media in SDP. This document defines
 how the offer/answer exchange works to establish MSRP connections and
 how messages are sent across the MSRP, but it does not deal with the
 issues of mapping an IM URL to a session establishment protocol.

 This session model allows message sessions to be integrated into
 advanced communications applications with little to no additional
 protocol development. For example, during the above chat session,
 Bob decides Alice really needs to be talking to Carol. Bob can
 transfer [21] Alice to Carol, introducing them into their own
 messaging session. Messaging sessions can then be easily integrated
 into call-center and dispatch environments using third-party call
 control [20] and conferencing [19] applications.

Campbell, et al. Standards Track [Page 4]

RFC 4975 MSRP September 2007

 This document specifies MSRP behavior only for peer-to-peer sessions,
 that is, sessions crossing only a single hop. MSRP relay devices
 [23] (referred to herein as "relays") are specified in a separate
 document. An endpoint that implements this specification, but not
 the relay specification, will be unable to introduce relays into the
 message path, but will still be able to interoperate with peers that
 do use relays.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [5].

 This document consistently refers to a "message" as a complete unit
 of MIME or text content. In some cases, a message is split and
 delivered in more than one MSRP request. Each of these portions of
 the complete message is called a "chunk".

3. Applicability of MSRP

 MSRP is not designed for use as a standalone protocol. MSRP MUST be
 used only in the context of a rendezvous mechanism meeting the
 following requirements:

 o The rendezvous mechanism MUST provide both MSRP URIs associated
 with an MSRP session to each of the participating endpoints. The
 rendezvous mechanism MUST implement mechanisms to protect the
 confidentiality of these URIs -- they MUST NOT be made available
 to an untrusted third party or be easily discoverable.

 o The rendezvous mechanism MUST provide mechanisms for the
 negotiation of any supported MSRP extensions that are not
 backwards compatible.

 o The rendezvous mechanism MUST be able to natively transport im:
 URIs or automatically translate im: URIs [27] into the addressing
 identifiers of the rendezvous protocol.

 To use a rendezvous mechanism with MSRP, an RFC MUST be prepared that
 describes how it exchanges MSRP URIs and meets these requirements
 listed here. This document provides such a description for the use
 of MSRP in the context of SIP and SDP.

 SIP meets these requirements for a rendezvous mechanism. The MSRP
 URIs are exchanged using SDP in an offer/answer exchange via SIP.

Campbell, et al. Standards Track [Page 5]

RFC 4975 MSRP September 2007

 The exchanged SDP can also be used to negotiate MSRP extensions.
 This SDP can be secured using any of the mechanisms available in SIP,
 including using the sips mechanism to ensure transport security
 across intermediaries and Secure/Multipurpose Internet Mail
 Extensions (S/MIME) for end-to-end protection of the SDP body. SIP
 can carry arbitrary URIs (including im: URIs) in the Request-URI, and
 procedures are available to map im: URIs to sip: or sips: URIs. It
 is expected that initial deployments of MSRP will use SIP as its
 rendezvous mechanism.

4. Protocol Overview

 MSRP is a text-based, connection-oriented protocol for exchanging
 arbitrary (binary) MIME [8] content, especially instant messages.
 This section is a non-normative overview of how MSRP works and how it
 is used with SIP.

 MSRP sessions are typically arranged using SIP the same way a session
 of audio or video media is set up. One SIP user agent (Alice) sends
 the other (Bob) a SIP invitation containing an offered session-
 description that includes a session of MSRP. The receiving SIP user
 agent can accept the invitation and include an answer session-
 description that acknowledges the choice of media. Alice’s session
 description contains an MSRP URI that describes where she is willing
 to receive MSRP requests from Bob, and vice versa. (Note: Some lines
 in the examples are removed for clarity and brevity.)

 Alice sends to Bob:

 INVITE sip:bob@biloxi.example.com SIP/2.0
 To: <sip:bob@biloxi.example.com>
 From: <sip:alice@atlanta.example.com>;tag=786
 Call-ID: 3413an89KU
 Content-Type: application/sdp

 c=IN IP4 atlanta.example.com
 m=message 7654 TCP/MSRP *
 a=accept-types:text/plain
 a=path:msrp://atlanta.example.com:7654/jshA7weztas;tcp

Campbell, et al. Standards Track [Page 6]

RFC 4975 MSRP September 2007

 Bob sends to Alice:

 SIP/2.0 200 OK
 To: <sip:bob@biloxi.example.com>;tag=087js
 From: <sip:alice@atlanta.example.com>;tag=786
 Call-ID: 3413an89KU
 Content-Type: application/sdp

 c=IN IP4 biloxi.example.com
 m=message 12763 TCP/MSRP *
 a=accept-types:text/plain
 a=path:msrp://biloxi.example.com:12763/kjhd37s2s20w2a;tcp

 Alice sends to Bob:

 ACK sip:bob@biloxi SIP/2.0
 To: <sip:bob@biloxi.example.com>;tag=087js
 From: <sip:alice@atlanta.example.com>;tag=786
 Call-ID: 3413an89KU

 Figure 1: Session Setup

 MSRP defines two request types, or methods. SEND requests are used
 to deliver a complete message or a chunk (a portion of a complete
 message), while REPORT requests report on the status of a previously
 sent message, or a range of bytes inside a message. When Alice
 receives Bob’s answer, she checks to see if she has an existing
 connection to Bob. If not, she opens a new connection to Bob using
 the URI he provided in the SDP. Alice then delivers a SEND request
 to Bob with her initial message, and Bob replies indicating that
 Alice’s request was received successfully.

Campbell, et al. Standards Track [Page 7]

RFC 4975 MSRP September 2007

 MSRP a786hjs2 SEND
 To-Path: msrp://biloxi.example.com:12763/kjhd37s2s20w2a;tcp
 From-Path: msrp://atlanta.example.com:7654/jshA7weztas;tcp
 Message-ID: 87652491
 Byte-Range: 1-25/25
 Content-Type: text/plain

 Hey Bob, are you there?
 -------a786hjs2$

 MSRP a786hjs2 200 OK
 To-Path: msrp://atlanta.example.com:7654/jshA7weztas;tcp
 From-Path: msrp://biloxi.example.com:12763/kjhd37s2s20w2a;tcp
 -------a786hjs2$

 Figure 2: Example MSRP Exchange

 Alice’s request begins with the MSRP start line, which contains a
 transaction identifier that is also used for request framing. Next
 she includes the path of URIs to the destination in the To-Path
 header field, and her own URI in the From-Path header field. In this
 typical case, there is just one "hop", so there is only one URI in
 each path header field. She also includes a message ID, which she
 can use to correlate status reports with the original message. Next
 she puts the actual content. Finally, she closes the request with an
 end-line of seven hyphens, the transaction identifier, and a "$" to
 indicate that this request contains the end of a complete message.

 If Alice wants to deliver a very large message, she can split the
 message into chunks and deliver each chunk in a separate SEND
 request. The message ID corresponds to the whole message, so the
 receiver can also use it to reassemble the message and tell which
 chunks belong with which message. Chunking is described in more
 detail in Section 5.1. The Byte-Range header field identifies the
 portion of the message carried in this chunk and the total size of
 the message.

 Alice can also specify what type of reporting she would like in
 response to her request. If Alice requests positive acknowledgments,
 Bob sends a REPORT request to Alice confirming the delivery of her
 complete message. This is especially useful if Alice sent a series
 of SEND requests containing chunks of a single message. More on
 requesting types of reports and errors is described in Section 5.3.

 Alice and Bob choose their MSRP URIs in such a way that it is
 difficult to guess the exact URI. Alice and Bob can reject requests
 to URIs they are not expecting to service and can correlate the
 specific URI with the probable sender. Alice and Bob can also use

Campbell, et al. Standards Track [Page 8]

RFC 4975 MSRP September 2007

 TLS [1] to provide channel security over this hop. To receive MSRP
 requests over a TLS protected connection, Alice or Bob could
 advertise URIs with the "msrps" scheme instead of "msrp".

 MSRP is designed with the expectation that MSRP can carry URIs for
 nodes on the far side of relays. For this reason, a URI with the
 "msrps" scheme makes no assertion about the security properties of
 other hops, just the next hop. The user agent knows the URI for each
 hop, so it can verify that each URI has the desired security
 properties.

 MSRP URIs are discussed in more detail in Section 6.

 An adjacent pair of busy MSRP nodes (for example, two relays) can
 easily have several sessions, and exchange traffic for several
 simultaneous users. The nodes can use existing connections to carry
 new traffic with the same destination host, port, transport protocol,
 and scheme. MSRP nodes can keep track of how many sessions are using
 a particular connection and close these connections when no sessions
 have used them for some period of time. Connection management is
 discussed in more detail in Section 5.4.

5. Key Concepts

5.1. MSRP Framing and Message Chunking

 Messages sent using MSRP can be very large and can be delivered in
 several SEND requests, where each SEND request contains one chunk of
 the overall message. Long chunks may be interrupted in mid-
 transmission to ensure fairness across shared transport connections.
 To support this, MSRP uses a boundary-based framing mechanism. The
 start line of an MSRP request contains a unique identifier that is
 also used to indicate the end of the request. Included at the end of
 the end-line, there is a flag that indicates whether this is the last
 chunk of data for this message or whether the message will be
 continued in a subsequent chunk. There is also a Byte-Range header
 field in the request that indicates the overall position of this
 chunk inside the complete message.

 For example, the following snippet of two SEND requests demonstrates
 a message that contains the text "abcdEFGH" being sent as two chunks.

Campbell, et al. Standards Track [Page 9]

RFC 4975 MSRP September 2007

 MSRP dkei38sd SEND
 Message-ID: 4564dpWd
 Byte-Range: 1-*/8
 Content-Type: text/plain

 abcd
 -------dkei38sd+

 MSRP dkei38ia SEND
 Message-ID: 4564dpWd
 Byte-Range: 5-8/8
 Content-Type: text/plain

 EFGH
 -------dkei38ia$

 Figure 3: Breaking a Message into Chunks

 This chunking mechanism allows a sender to interrupt a chunk part of
 the way through sending it. The ability to interrupt messages allows
 multiple sessions to share a TCP connection, and for large messages
 to be sent efficiently while not blocking other messages that share
 the same connection, or even the same MSRP session. Any chunk that
 is larger than 2048 octets MUST be interruptible. While MSRP would
 be simpler to implement if each MSRP session used its own TCP
 connection, there are compelling reasons to conserve connections.
 For example, the TCP peer may be a relay device that connects to many
 other peers. Such a device will scale better if each peer does not
 create a large number of connections. (Note that in the above
 example, the initial chunk was interruptible for the sake of example,
 even though its size is well below the limit for which
 interruptibility would be required.)

 The chunking mechanism only applies to the SEND method, as it is the
 only method used to transfer message content.

5.2. MSRP Addressing

 MSRP entities are addressed using URIs. The MSRP URI schemes are
 defined in Section 6. The syntax of the To-Path and From-Path header
 fields each allows for a list of URIs. This was done to allow the
 protocol to work with relays, which are defined in a separate
 document, to provide a complete path to the end recipient. When two
 MSRP nodes communicate directly, they need only one URI in the To-
 Path list and one URI in the From-Path list.

Campbell, et al. Standards Track [Page 10]

RFC 4975 MSRP September 2007

5.3. MSRP Transaction and Report Model

 A sender sends MSRP requests to a receiver. The receiver MUST
 quickly accept or reject the request. If the receiver initially
 accepted the request, it still may then do things that take
 significant time to succeed or fail. For example, if the receiver is
 an MSRP to Extensible Messaging and Presence Protocol (XMPP) [30]
 gateway, it may forward the message over XMPP. The XMPP side may
 later indicate that the request did not work. At this point, the
 MSRP receiver may need to indicate that the request did not succeed.
 There are two important concepts here: first, the hop-by-hop delivery
 of the request may succeed or fail; second, the end result of the
 request may or may not be successfully processed. The first type of
 status is referred to as "transaction status" and may be returned in
 response to a request. The second type of status is referred to as
 "delivery status" and may be returned in a REPORT transaction.

 The original sender of a request can indicate if they wish to receive
 reports for requests that fail, and can independently indicate if
 they wish to receive reports for requests that succeed. A receiver
 only sends a success REPORT if it knows that the request was
 successfully delivered, and the sender requested a success report. A
 receiver only sends a failure REPORT if the request failed to be
 delivered and the sender requested failure reports.

 This document describes the behavior of MSRP endpoints. MSRP
 relays will introduce additional conditions that indicate a
 failure REPORT should be sent, such as the failure to receive a
 positive response from the next hop.

 Two header fields control the sender’s desire to receive reports.
 The Success-Report header field can have a value of "yes" or "no" and
 the Failure-Report header field can have a value of "yes", "no", or
 "partial".

 The combinations of reporting are needed to meet the various
 scenarios of currently deployed IM systems. Success-Report might be
 "no" in many public systems to reduce load, but might be "yes" in
 certain enterprise systems, such as systems used for securities
 trading. A Failure-Report value of "no" is useful for sending system
 messages such as "the system is going down in 5 minutes" without
 causing a response explosion to the sender. A Failure-Report of
 "yes" is used by many systems that wish to notify the user if the
 message failed. A Failure-Report of "partial" is a way to report
 errors other than timeouts. Timeout error reporting requires the
 sending hop to run a timer and the receiving hop to send an

Campbell, et al. Standards Track [Page 11]

RFC 4975 MSRP September 2007

 acknowledgment to stop the timer. Some systems don’t want the
 overhead of doing this. "Partial" allows them to choose not to do
 so, but still allows error responses to be sent in many cases.

 The term "partial" denotes that the hop-by-hop acknowledgment
 mechanism that would be required with a Failure-Report value of
 "yes" is not invoked. Thus, each device uses only "part" of the
 set of error detection tools available to them. This allows a
 compromise between no reporting of failures at all, and reporting
 every possible failure. For example, with "partial", a sending
 device does not have to keep transaction state around waiting for
 a positive acknowledgment. But it still allows devices to report
 other types of errors. The receiving device could still report a
 policy violation such as an unacceptable content-type, or an ICMP
 error trying to connect to a downstream device.

5.4. MSRP Connection Model

 When an MSRP endpoint wishes to send a request to a peer identified
 by an MSRP URI, it first needs a transport connection, with the
 appropriate security properties, to the host specified in the URI.
 If the sender already has such a connection, that is, one associated
 with the same host, port, and URI scheme, then it SHOULD reuse that
 connection.

 When a new MSRP session is created, the initiating endpoint MUST act
 as the "active" endpoint, meaning that it is responsible for opening
 the transport connection to the answerer, if a new connection is
 required. However, this requirement MAY be weakened if standardized
 mechanisms for negotiating the connection direction become available
 and are implemented by both parties to the connection.

 Likewise, the active endpoint MUST immediately issue a SEND request.
 This initial SEND request MAY have a body if the sender has content
 to send, or it MAY have no body at all.

 The first SEND request serves to bind a connection to an MSRP
 session from the perspective of the passive endpoint. If the
 connection is not authenticated with TLS, and the active endpoint
 did not send an immediate request, the passive endpoint would have
 no way to determine who had connected, and would not be able to
 safely send any requests towards the active party until after the
 active party sends its first request.

 When an element needs to form a new connection, it looks at the URI
 to decide on the type of connection (TLS, TCP, etc.) then connects to
 the host indicated by the URI, following the URI resolution rules in
 Section 6.2. Connections using the "msrps" scheme MUST use TLS. The

Campbell, et al. Standards Track [Page 12]

RFC 4975 MSRP September 2007

 SubjectAltName in the received certificate MUST match the hostname
 part of the URI and the certificate MUST be valid according to RFC
 3280 [16], including having a date that is valid and being signed by
 an acceptable certification authority. At this point, the device
 that initiated the connection can assume that this connection is with
 the correct host.

 The rules on certificate name matching and CA signing MAY be relaxed
 when using TLS peer-to-peer. In this case, a mechanism to ensure
 that the peer used a correct certificate MUST be used. See Section
 14.4 for details.

 If the connection used mutual TLS authentication, and the TLS client
 presented a valid certificate, then the element accepting the
 connection can verify the identity of the connecting device by
 comparing the hostname part of the target URI in the SDP provided by
 the peer device against the SubjectAltName in the client certificate.

 When mutual TLS authentication is not used, the listening device MUST
 wait until it receives a request on the connection, at which time it
 infers the identity of the connecting device from the associated
 session description.

 When the first request arrives, its To-Path header field should
 contain a URI that the listening element provided in the SDP for a
 session. The element that accepted the connection looks up the URI
 in the received request, and determines which session it matches. If
 a match exists, the node MUST assume that the host that formed the
 connection is the host to which this URI was given. If no match
 exists, the node MUST reject the request with a 481 response. The
 node MUST also check to make sure the session is not already in use
 on another connection. If the session is already in use, it MUST
 reject the request with a 506 response.

 If it were legal to have multiple connections associated with the
 same session, a security problem would exist. If the initial SEND
 request is not protected, an eavesdropper might learn the URI, and
 use it to insert messages into the session via a different
 connection.

 If a connection fails for any reason, then an MSRP endpoint MUST
 consider any sessions associated with the connection as also having
 failed. When either endpoint notices such a failure, it MAY attempt
 to re-create any such sessions. If it chooses to do so, it MUST use
 a new SDP exchange, for example, in a SIP re-INVITE. If a
 replacement session is successfully created, endpoints MAY attempt to
 resend any content for which delivery on the original session could
 not be confirmed. If it does this, the Message-ID values for the

Campbell, et al. Standards Track [Page 13]

RFC 4975 MSRP September 2007

 resent messages MUST match those used in the initial attempts. If
 the receiving endpoint receives more than one message with the same
 Message-ID, it SHOULD assume that the messages are duplicates. The
 specific action that an endpoint takes when it receives a duplicate
 message is a matter of local policy, except that it SHOULD NOT
 present the duplicate messages to the user without warning of the
 duplication. Note that acknowledgments as needed based on the
 Failure-Report and Success-Report settings are still necessary even
 for requests containing duplicate content.

 When endpoints create a new session in this fashion, the chunks for a
 given logical message MAY be split across the sessions. However,
 endpoints SHOULD NOT split chunks between sessions under non-failure
 circumstances.

 If an endpoint attempts to re-create a failed session in this manner,
 it MUST NOT assume that the MSRP URIs in the SDP will be the same as
 the old ones.

 A connection SHOULD NOT be closed while there are sessions associated
 with it.

6. MSRP URIs

 URIs using the "msrp" and "msrps" schemes are used to identify a
 session of instant messages at a particular MSRP device, as well as
 to identify an MSRP relay in general. This document describes the
 former usage; the latter usage is described in the MSRP relay
 specification [23]. MSRP URIs that identify sessions are ephemeral;
 an MSRP device will use a different MSRP URI for each distinct
 session. An MSRP URI that identifies a session has no meaning
 outside the scope of that session.

 An MSRP URI follows a subset of the URI syntax in Appendix A of RFC
 3986 [10], with a scheme of "msrp" or "msrps". The syntax is
 described in Section 9.

 MSRP URIs are primarily expected to be generated and exchanged
 between systems, and are not intended for "human consumption".
 Therefore, they are encoded entirely in US-ASCII.

 The constructions for "authority", "userinfo", and "unreserved" are
 detailed in RFC 3986 [10]. URIs designating MSRP over TCP MUST
 include the "tcp" transport parameter.

Campbell, et al. Standards Track [Page 14]

RFC 4975 MSRP September 2007

 Since this document only specifies MSRP over TCP, all MSRP URIs
 herein use the "tcp" transport parameter. Documents that provide
 bindings on other transports should define respective parameters
 for those transports.

 The MSRP URI authority field identifies a participant in a particular
 MSRP session. If the authority field contains a numeric IP address,
 it MUST also contain a port. The session-id part identifies a
 particular session of the participant. The absence of the session-id
 part indicates a reference to an MSRP host device, but does not refer
 to a particular session at that device. A particular value of
 session-id is only meaningful in the context of the associated
 authority; thus, the authority component can be thought of as
 identifying the "authority" governing a namespace for the session-id.

 A scheme of "msrps" indicates that the underlying connection MUST be
 protected with TLS.

 MSRP has an IANA-registered recommended port defined in Section 15.4.
 This value is not a default, as the URI negotiation process described
 herein will always include explicit port numbers. However, the URIs
 SHOULD be configured so that the recommended port is used whenever
 appropriate. This makes life easier for network administrators who
 need to manage firewall policy for MSRP.

 The authority component will typically not contain a userinfo
 component, but MAY do so to indicate a user account for which the
 session is valid. Note that this is not the same thing as
 identifying the session itself. A userinfo part MUST NOT contain
 password information.

 The following is an example of a typical MSRP URI:

 msrp://host.example.com:8493/asfd34;tcp

6.1. MSRP URI Comparison

 In the context of the MSRP protocol, MSRP URI comparisons MUST be
 performed according to the following rules:

 1. The scheme MUST match. Scheme comparison is case insensitive.

 2. If the authority component contains an explicit IP address and/or
 port, these are compared for address and port equivalence.
 Percent-encoding normalization [10] applies; that is, if any
 percent-encoded nonreserved characters exist in the authority
 component, they must be decoded prior to comparison. Userinfo

Campbell, et al. Standards Track [Page 15]

RFC 4975 MSRP September 2007

 parts are not considered for URI comparison. Otherwise, the
 authority component is compared as a case-insensitive character
 string.

 3. If the port exists explicitly in either URI, then it MUST match
 exactly. A URI with an explicit port is never equivalent to
 another with no port specified.

 4. The session-id part is compared as case sensitive. A URI without
 a session-id part is never equivalent to one that includes one.

 5. URIs with different "transport" parameters never match. Two URIs
 that are identical except for transport are not equivalent. The
 transport parameter is case insensitive.

 Path normalization [10] is not relevant for MSRP URIs.

6.2. Resolving MSRP Host Device

 An MSRP host device is identified by the authority component of an
 MSRP URI.

 If the authority component contains a numeric IP address and port,
 they MUST be used as listed.

 If the authority component contains a host name and a port, the
 connecting device MUST determine a host address by doing an A or AAAA
 DNS query and use the port as listed.

 If a connection attempt fails, the device SHOULD attempt to connect
 to the addresses returned in any additional A or AAAA records, in the
 order the records were presented.

 This process assumes that the connection port is always known
 prior to resolution. This is always true for the MSRP URI uses
 described in this document, that is, URIs exchanged in the SDP
 offer and answer. The introduction of relays creates situations
 where this is not the case. For example, when a user configures
 her client to use a relay, it is desirable that the relay’s MSRP
 URI is easy to remember and communicate to humans. Often this
 type of MSRP will omit the port number. Therefore, the relay
 specification [23] describes additional steps to resolve the port
 number.

 MSRP devices MAY use other methods for discovering other such
 devices, when appropriate. For example, MSRP endpoints may use other
 mechanisms to discover relays, which are beyond the scope of this
 document.

Campbell, et al. Standards Track [Page 16]

RFC 4975 MSRP September 2007

7. Method-Specific Behavior

7.1. Constructing Requests

 To form a new request, the sender creates a transaction identifier
 and uses this and the method name to create an MSRP request start
 line. The transaction identifier MUST NOT collide with that of other
 transactions that exist at the same time. Therefore, it MUST contain
 at least 64 bits of randomness.

 Next, the sender places the target path in a To-Path header field,
 and the sender’s URI in a From-Path header field. If multiple URIs
 are present in the To-Path, the leftmost is the first URI visited;
 the rightmost URI is the last URI visited. The processing then
 becomes method specific. Additional method-specific header fields
 are added as described in the following sections.

 After any method-specific header fields are added, processing
 continues to handle a body, if present. If the request has a body,
 it MUST contain a Content-Type header field. It may contain other
 MIME-specific header fields. The Content-Type header field MUST be
 the last field in the message header section. The body MUST be
 separated from the header fields with an extra CRLF.

 Non-SEND requests are not intended to carry message content, and are
 therefore not interruptible. Non-SEND request bodies MUST NOT be
 larger than 10240 octets.

 Although this document does not discuss any particular usage of
 bodies in non-SEND requests, they may be useful in the future for
 carrying security or identity information, information about a
 message in progress, etc. The 10K size limit was chosen to be
 large enough for most of such applications, but small enough to
 avoid the fairness issues caused by sending arbitrarily large
 content in non-interruptible method bodies.

 A request with no body MUST NOT include a Content-Type or any other
 MIME-specific header fields. A request without a body MUST contain
 an end-line after the final header field. No extra CRLF will be
 present between the header section and the end-line.

 Requests with no bodies are useful when a client wishes to send
 "traffic", but does not wish to send content to be rendered to the
 peer user. For example, the active endpoint sends a SEND request
 immediately upon establishing a connection. If it has nothing to
 say at the moment, it can send a request with no body. Bodiless
 requests may also be used in certain applications to keep Network
 Address Translation (NAT) bindings alive, etc.

Campbell, et al. Standards Track [Page 17]

RFC 4975 MSRP September 2007

 Bodiless requests are distinct from requests with empty bodies. A
 request with an empty body will have a Content-Type header field
 value and will generally be rendered to the recipient according to
 the rules for that type.

 The end-line that terminates the request MUST be composed of seven
 "-" (minus sign) characters, the transaction ID as used in the start
 line, and a flag character. If a body is present, the end-line MUST
 be preceded by a CRLF that is not part of the body. If the chunk
 represents the data that forms the end of the complete message, the
 flag value MUST be a "$". If the sender is aborting an incomplete
 message, and intends to send no further chunks in that message, the
 flag MUST be a "#". Otherwise, the flag MUST be a "+".

 If the request contains a body, the sender MUST ensure that the end-
 line (seven hyphens, the transaction identifier, and a continuation
 flag) is not present in the body. If the end-line is present in the
 body, the sender MUST choose a new transaction identifier that is not
 present in the body, and add a CRLF if needed, and the end-line,
 including the "$", "#", or "+" character.

 Some implementations may choose to scan for the closing sequence as
 they send the body, and if it is encountered, simply interrupt the
 chunk at that point and start a new transaction with a different
 transaction identifier to carry the rest of the body. Other
 implementations may choose to scan the data and ensure that the body
 does not contain the transaction identifier before they start sending
 the transaction.

 Once a request is ready for delivery, the sender follows the
 connection management (Section 5.4) rules to forward the request over
 an existing open connection or create a new connection.

7.1.1. Sending SEND Requests

 When an endpoint has a message to deliver, it first generates a new
 Message-ID. The value MUST be highly unlikely to be repeated by
 another endpoint instance, or by the same instance in the future. If
 necessary, the endpoint breaks the message into chunks. It then
 generates a SEND request for each chunk, following the procedures for
 constructing requests (Section 7.1).

 The Message-ID header field provides a unique message identifier
 that refers to a particular version of a particular message. The
 term "Message" in this context refers to a unit of content that
 the sender wishes to convey to the recipient. While such a
 message may be broken into chunks, the Message-ID refers to the
 entire message, not a chunk of the message.

Campbell, et al. Standards Track [Page 18]

RFC 4975 MSRP September 2007

 The uniqueness of the message identifier is ensured by the host
 that generates it. This message identifier is intended to be
 machine readable and not necessarily meaningful to humans. A
 message identifier pertains to exactly one version of a particular
 message; subsequent revisions to the message each receive new
 message identifiers. Endpoints can ensure sufficient uniqueness
 in any number of ways, the selection of which is an implementation
 choice. For example, an endpoint could concatenate an instance
 identifier such as a MAC address, its idea of the number of
 seconds since the epoch, a process ID, and a monotonically
 increasing 16-bit integer, all base-64 encoded. Alternately, an
 endpoint without an on-board clock could simply use a 64-bit
 random number.

 Each chunk of a message MUST contain a Message-ID header field
 containing the Message-ID. If the sender wishes non-default status
 reporting, it MUST insert a Failure-Report and/or Success-Report
 header field with an appropriate value. All chunks of the same
 message MUST use the same Failure-Report and Success-Report values in
 their SEND requests.

 If success reports are requested, i.e., the value of the Success-
 Report header field is "yes", the sending device MAY wish to run a
 timer of some value that makes sense for its application and take
 action if a success report is not received in this time. There is no
 universal value for this timer. For many IM applications, it may be
 2 minutes while for some trading systems it may be under a second.
 Regardless of whether such a timer is used, if the success report has
 not been received by the time the session is ended, the device SHOULD
 inform the user.

 If the value of "Failure-Report" is set to "yes", then the sender of
 the request runs a timer. If a 200 response to the transaction is
 not received within 30 seconds from the time the last byte of the
 transaction is sent, or submitted to the operating system for
 sending, the element MUST inform the user that the request probably
 failed. If the value is set to "partial", then the element sending
 the transaction does not have to run a timer, but MUST inform the
 user if it receives a non-recoverable error response to the
 transaction. Regardless of the Failure-Report value, there is no
 requirement to wait for a response prior to sending the next request.

 The treatment of timers for success reports and failure reports is
 intentionally inconsistent. An explicit timeout value makes sense
 for failure reports since such reports will usually refer to a
 message "chunk" that is acknowledged on a hop-by-hop basis. This

Campbell, et al. Standards Track [Page 19]

RFC 4975 MSRP September 2007

 is not the case for success reports, which are end-to-end and may
 refer to the entire message content, which can be arbitrarily
 large.

 If no Success-Report header field is present in a SEND request, it
 MUST be treated the same as a Success-Report header field with a
 value of "no". If no Failure-Report header field is present, it MUST
 be treated the same as a Failure-Report header field with a value of
 "yes". If an MSRP endpoint receives a REPORT for a Message-ID it
 does not recognize, it SHOULD silently ignore the REPORT.

 The Byte-Range header field value contains a starting value (range-
 start) followed by a "-", an ending value (range-end) followed by a
 "/", and finally the total length. The first octet in the message
 has a position of one, rather than a zero.

 The first chunk of the message SHOULD, and all subsequent chunks
 MUST, include a Byte-Range header field. The range-start field MUST
 indicate the position of the first byte in the body in the overall
 message (for the first chunk this field will have a value of one).
 The range-end field SHOULD indicate the position of the last byte in
 the body, if known. It MUST take the value of "*" if the position is
 unknown, or if the request needs to be interruptible. The total
 field SHOULD contain the total size of the message, if known. The
 total field MAY contain a "*" if the total size of the message is not
 known in advance. The sender MUST send all chunks in Byte-Range
 order. (However, the receiver cannot assume that the requests will
 be delivered in order, as intervening relays may have changed the
 order.)

 There are some circumstances where an endpoint may choose to send an
 empty SEND request. For the sake of consistency, a Byte-Range header
 field referring to nonexistent or zero-length content MUST still have
 a range-start value of 1. For example, "1-0/0".

 To ensure fairness over a connection, senders MUST NOT send chunks
 with a body larger than 2048 octets unless they are prepared to
 interrupt them (meaning that any chunk with a body of greater than
 2048 octets will have a "*" character in the range-end field). A
 sender can use one of the following two strategies to satisfy this
 requirement. The sender is STRONGLY RECOMMENDED to send messages
 larger than 2048 octets using as few chunks as possible, interrupting
 chunks (at least 2048 octets long) only when other traffic is waiting
 to use the same connection. Alternatively, the sender MAY simply
 send chunks in 2048-octet increments until the final chunk. Note
 that the former strategy results in markedly more efficient use of
 the connection. All MSRP nodes MUST be able to receive chunks of any
 size from zero octets to the maximum number of octets they can

Campbell, et al. Standards Track [Page 20]

RFC 4975 MSRP September 2007

 receive for a complete message. Senders SHOULD NOT break messages
 into chunks smaller than 2048 octets, except for the final chunk of a
 complete message.

 A SEND request is interrupted while a body is in the process of being
 written to the connection by simply noting how much of the message
 has already been written to the connection, then writing out the end-
 line to end the chunk. It can then be resumed in a another chunk
 with the same Message-ID and a Byte-Range header field range start
 field containing the position of the first byte after the
 interruption occurred.

 SEND requests larger than 2048 octets MUST be interrupted if the
 sender needs to send pending responses or REPORT requests. If
 multiple SEND requests from different sessions are concurrently being
 sent over the same connection, the device SHOULD implement some
 scheme to alternate between them such that each concurrent request
 gets a chance to send some fair portion of data at regular intervals
 suitable to the application.

 The sender MUST NOT assume that a message is received by the peer
 with the same chunk allocation with which it was sent. An
 intervening relay could possibly break SEND requests into smaller
 chunks, or aggregate multiple chunks into larger ones.

 The default disposition of messages is to be rendered to the user.
 If the sender wants a different disposition, it MAY insert a Content-
 Disposition [9] header field. Values MAY include any from RFC 2183
 [9] or the IANA registry it defines. Since MSRP can carry unencoded
 binary payloads, transfer encoding is always "binary", and transfer-
 encoding parameters MUST NOT be present.

7.1.2. Sending REPORT Requests

 REPORT requests are similar to SEND requests, except that report
 requests MUST NOT include Success-Report or Failure-Report header
 fields, and MUST contain a Status header field. REPORT requests MUST
 contain the Message-ID header field from the original SEND request.

 If an MSRP element receives a REPORT for a Message-ID it does not
 recognize, it SHOULD silently ignore the REPORT.

 An MSRP endpoint MUST be able to generate success REPORT requests.

 REPORT requests will normally not include a body, as the REPORT
 request header fields can carry sufficient information in most cases.
 However, REPORT requests MAY include a body containing additional
 information about the status of the associated SEND request. Such a

Campbell, et al. Standards Track [Page 21]

RFC 4975 MSRP September 2007

 body is informational only, and the sender of the REPORT request
 SHOULD NOT assume that the recipient pays any attention to the body.
 REPORT requests are not interruptible.

 Success-Report and Failure-Report header fields MUST NOT be present
 in REPORT requests. MSRP nodes MUST NOT send REPORT requests in
 response to REPORT requests. MSRP nodes MUST NOT send MSRP responses
 to REPORT requests.

 Endpoints SHOULD NOT send REPORT requests if they have reason to
 believe the request will not be delivered. For example, they SHOULD
 NOT send a REPORT request for a session that is no longer valid.

7.1.3. Generating Success Reports

 When an endpoint receives a message in one or more chunks that
 contain a Success-Report value of "yes", it MUST send a success
 report or reports covering all bytes that are received successfully.
 The success reports are sent in the form of REPORT requests,
 following the normal procedures (Section 7.1), with a few additional
 requirements.

 The receiver MAY wait until it receives the last chunk of a message,
 and send a success report that covers the complete message.
 Alternately, it MAY generate incremental success REPORTs as the
 chunks are received. These can be sent periodically and cover all
 the bytes that have been received so far, or they can be sent after a
 chunk arrives and cover just the part from that chunk.

 It is helpful to think of a success REPORT as reporting on a
 particular range of bytes, rather than on a particular chunk sent
 by a client. The sending client cannot depend on the Byte-Range
 header field in a given success report matching that of a
 particular SEND request. For example, an intervening MSRP relay
 may break chunks into smaller chunks, or aggregate multiple chunks
 into larger ones. A side effect of this is, even if no relay is
 used, the receiving client may report on byte ranges that do not
 exactly match those in the original chunks sent by the sender. It
 can wait until all bytes in a message are received and report on
 the whole, it can report as it receives each chunk, or it can
 report on any other received range. Reporting on ranges smaller
 than the entire message contents allows certain improved user
 experiences for the sender. For example, a sending client could
 display incremental status information showing which ranges of
 bytes have been acknowledged by the receiver. However, the choice
 on whether to report incrementally is entirely up to the receiving
 client. There is no mechanism for the sender to assert its desire
 to receive incremental reports or not. Since the presence of a

Campbell, et al. Standards Track [Page 22]

RFC 4975 MSRP September 2007

 relay can cause the receiver to see a very different chunk
 allocation than the sender, such a mechanism would be of
 questionable value.

 When generating a REPORT request, the endpoint inserts a To-Path
 header field containing the From-Path value from the original
 request, and a From-Path header field containing the URI identifying
 itself in the session. The endpoint then inserts a Status header
 field with a namespace of "000", a status-code of "200", and an
 implementation-defined comment phrase. It also inserts a Message-ID
 header field containing the value from the original request.

 The namespace field denotes the context of the status-code field.
 The namespace value of "000" means the status-code should be
 interpreted in the same way as the matching MSRP transaction
 response code. If a future specification uses the status-code
 field for some other purpose, it MUST define a new namespace field
 value.

 The endpoint MUST NOT send a success report for a SEND request that
 either contained no Success-Report header field or contained such a
 field with a value of "no". That is, if no Success-Report header
 field is present, it is treated identically to one with a value of
 "no".

7.1.4. Generating Failure Reports

 If an MSRP endpoint receives a SEND request that it cannot process
 for some reason, and the Failure-Report header field either was not
 present in the original request or had a value of "yes", it SHOULD
 simply include the appropriate error code in the transaction
 response. However, there may be situations where the error cannot be
 determined quickly, such as when the endpoint is a gateway that waits
 for a downstream network to indicate an error. In this situation, it
 MAY send a 200 OK response to the request, and then send a failure
 REPORT request when the error is detected.

 If the endpoint receives a SEND request with a Failure-Report header
 field value of "no", then it MUST NOT send a failure REPORT request,
 and MUST NOT send a transaction response. If the value is "partial",
 it MUST NOT send a 200 transaction response to the request, but
 SHOULD send an appropriate non-200 class response if a failure
 occurs.

 As stated above, if no Failure-Report header field is present, it
 MUST be treated the same as a Failure-Report header field with a
 value of "yes".

Campbell, et al. Standards Track [Page 23]

RFC 4975 MSRP September 2007

 Construction of failure REPORT requests is identical to that for
 success REPORT requests, except the Status header field code field
 MUST contain the appropriate error code. Any error response code
 defined in this specification MAY also be used in failure reports.

 If a failure REPORT request is sent in response to a SEND request
 that contained a chunk, it MUST include a Byte-Range header field
 indicating the actual range being reported on. It can take the
 range-start and total values from the original SEND request, but MUST
 calculate the range-end field from the actual body data.

 This section only describes failure report generation behavior for
 MSRP endpoints. Relay behavior is beyond the scope of this
 document, and will be considered in a separate document [23]. We
 expect failure reports to be more commonly generated by relays
 than by endpoints.

7.2. Constructing Responses

 If an MSRP endpoint receives a request that either contains a
 Failure-Report header field value of "yes" or does not contain a
 Failure-Report header field at all, it MUST immediately generate a
 response. Likewise, if an MSRP endpoint receives a request that
 contains a Failure-Report header field value of "partial", and the
 receiver is unable to process the request, it SHOULD immediately
 generate a response.

 To construct the response, the endpoint first creates the response
 start line, inserting the appropriate response code and optionally a
 comment. The transaction identifier in the response start line MUST
 match the transaction identifier from the original request.

 The endpoint then inserts an appropriate To-Path header field. If
 the request triggering the response was a SEND request, the To-Path
 header field is formed by copying the first (leftmost) URI in the
 From-Path header field of the request. (Responses to SEND requests
 are returned only to the previous hop.) For responses to all other
 request methods, the To-Path header field contains the full path back
 to the original sender. This full path is generated by copying the
 list of URIs from the From-Path of the original request into the To-
 Path of the response. (Legal REPORT requests do not request
 responses, so this specification doesn’t exercise the behavior
 described above; however, we expect that extensions for gateways and
 relays will need such behavior.)

 Finally, the endpoint inserts a From-Path header field containing the
 URI that identifies it in the context of the session, followed by the
 end-line after the last header field. Since a response is never

Campbell, et al. Standards Track [Page 24]

RFC 4975 MSRP September 2007

 chunked, the continuation flag in the end-line will always contain a
 dollar sign ("$"). The response MUST be transmitted back on the same
 connection on which the original request arrived.

7.3. Receiving Requests

 The receiving endpoint MUST first check the URI in the To-Path to
 make sure the request belongs to an existing session. When the
 request is received, the To-Path will have exactly one URI, which
 MUST map to an existing session that is associated with the
 connection on which the request arrived. If this is not true, then
 the receiver MUST generate a 481 error and ignore the request. Note
 that if the Failure-Report header field had a value of "no", then no
 error report would be sent.

 Further request processing by the receiver is method specific.

7.3.1. Receiving SEND Requests

 When the receiving endpoint receives a SEND request, it first
 determines if it contains a complete message or a chunk from a larger
 message. If the request contains no Byte-Range header field, or
 contains one with a range-start value of "1", and the closing line
 continuation flag has a value of "$", then the request contained the
 entire message. Otherwise, the receiver looks at the Message-ID
 value to associate chunks together into the original message. The
 receiver forms a virtual buffer to receive the message, keeping track
 of which bytes have been received and which are missing. The
 receiver takes the data from the request and places it in the
 appropriate place in the buffer. The receiver SHOULD determine the
 actual length of each chunk by inspecting the payload itself; it is
 possible the body is shorter than the range-end field indicates.
 This can occur if the sender interrupted a SEND request unexpectedly.
 It is worth noting that the chunk that has a termination character of
 "$" defines the total length of the message.

 It is technically illegal for the sender to prematurely interrupt
 a request that had anything other than "*" in the last-byte
 position of the Byte-Range header field. But having the receiver
 calculate a chunk length based on actual content adds resilience
 in the face of sender errors. Since this should never happen with
 compliant senders, this only has a "SHOULD" strength.

 Receivers MUST not assume that the chunks will be delivered in order
 or that they will receive all the chunks with "+" flags before they
 receive the chunk with the "$" flag. In certain cases of connection
 failure, it is possible for information to be duplicated. If chunk
 data is received that overlaps already received data for the same

Campbell, et al. Standards Track [Page 25]

RFC 4975 MSRP September 2007

 message, the last chunk received SHOULD take precedence (even though
 this may not have been the last chunk transmitted). For example, if
 bytes 1 to 100 were received and a chunk arrives that contains bytes
 50 to 150, this second chunk will overwrite bytes 50 to 100 of the
 data that had already been received. Although other schemes work,
 this is the easiest for the receiver and results in consistent
 behavior between clients.

 There are situations in which the receiver may not be able to give
 precedence to the last chunk received when chunks overlap. For
 example, the recipient might incrementally render chunks as they
 arrive. If a new chunk arrives that overlaps with a previously
 rendered chunk, it would be too late to "take back" any
 conflicting data from the first chunk. Therefore, the requirement
 to give precedence to the most recent chunk is specified at a
 "SHOULD" strength. This requirement is not intended to disallow
 applications where this behavior does not make sense.

 The seven "-" in the end-line are used so that the receiver can
 search for the value "----", 32 bits at a time to find the probable
 location of the end-line. This allows most processors to locate the
 boundaries and copy the memory at the same rate that a normal memory
 copy could be done. This approach results in a system that is as
 fast as framing based on specifying the body length in the header
 fields of the request, but also allows for the interruption of
 messages.

 What is done with the body is outside the scope of MSRP and largely
 determined by the MIME Content-Type and Content-Disposition. The
 body MAY be rendered after the whole message is received or partially
 rendered as it is being received.

 If the SEND request contained a Content-Type header field indicating
 an unsupported media-type, and the Failure-Report value is not "no",
 the receiver MUST generate a response with a status code of 415. All
 MSRP endpoints MUST be able to receive the multipart/mixed [15] and
 multipart/alternative [15] media-types.

 If the Success-Report header field was set to "yes", the receiver
 must construct and send one or more success reports, as described in
 Section 7.1.3.

Campbell, et al. Standards Track [Page 26]

RFC 4975 MSRP September 2007

7.3.2. Receiving REPORT Requests

 When an endpoint receives a REPORT request, it correlates the report
 to the original SEND request using the Message-ID and the Byte-Range,
 if present. If it requested success reports, then it SHOULD keep
 enough state about each outstanding sent message so that it can
 correlate REPORT requests to the original messages.

 An endpoint that receives a REPORT request containing a Status header
 field with a namespace field of "000" MUST interpret the report in
 exactly the same way it would interpret an MSRP transaction response
 with a response code matching the status-code field.

 It is possible to receive a failure report or a failure transaction
 response for a chunk that is currently being delivered. In this
 case, the entire message corresponding to that chunk SHOULD be
 aborted, by including the "#" character in the continuation field of
 the end-line.

 It is possible that an endpoint will receive a REPORT request on a
 session that is no longer valid. The endpoint’s behavior if this
 happens is a matter of local policy. The endpoint is not required to
 take any steps to facilitate such late delivery; i.e., it is not
 expected to keep a connection active in case late REPORTs might
 arrive.

 When an endpoint that sent a SEND request receives a failure REPORT
 indicating that a particular byte range was not received, it MUST
 treat the session as failed. If it wishes to recover, it MUST first
 re-negotiate the URIs at the signaling level then resend that range
 of bytes of the message on the resulting new session.

 MSRP nodes MUST NOT send MSRP REPORT requests in response to other
 REPORT requests.

8. Using MSRP with SIP and SDP

 MSRP sessions will typically be initiated using the Session
 Description Protocol (SDP) [2] via the SIP offer/answer mechanism
 [3].

 This document defines a handful of new SDP parameters to set up MSRP
 sessions. These are detailed below and in the IANA Considerations
 section.

 An MSRP media-line (that is, a media-line proposing MSRP) in the
 session description is accompanied by a mandatory "path" attribute.
 This attribute contains a space-separated list of URIs to be visited

Campbell, et al. Standards Track [Page 27]

RFC 4975 MSRP September 2007

 to contact the user agent advertising this session description. If
 more than one URI is present, the leftmost URI is the first URI to be
 visited to reach the target resource. (The path list can contain
 multiple URIs to allow for the deployment of gateways or relays in
 the future.) MSRP implementations that can accept incoming
 connections without the need for relays will typically only provide a
 single URI here.

 An MSRP media line is also accompanied by an "accept-types"
 attribute, and optionally an "accept-wrapped-types" attribute. These
 attributes are used to specify the media-types that are acceptable to
 the endpoint.

8.1. SDP Connection and Media-Lines

 An SDP connection-line takes the following format:

 c=<network type> <address type> <connection address>

 Figure 4: Standard SDP Connection Line

 The network type and address type fields are used as normal for SDP.
 The connection address field MUST be set to the IP address or fully
 qualified domain name from the MSRP URI identifying the endpoint in
 its path attribute.

 The general format of an SDP media-line is:

 m=<media> <port> <protocol> <format list>

 Figure 5: Standard SDP Media Line

 An offered or accepted media-line for MSRP over TCP MUST include a
 protocol field value of "TCP/MSRP", or "TCP/TLS/MSRP" for TLS. The
 media field value MUST be "message". The format list field MUST be
 set to "*".

 The port field value MUST match the port value used in the endpoint’s
 MSRP URI in the path attribute, except that, as described in [3], a
 user agent that wishes to accept an offer, but not a specific media-
 line, MUST set the port number of that media-line to zero (0) in the
 response. Since MSRP allows multiple sessions to share the same TCP
 connection, multiple m-lines in a single SDP document may share the
 same port field value; MSRP devices MUST NOT assume any particular
 relationship between m-lines on the sole basis that they have
 matching port field values.

Campbell, et al. Standards Track [Page 28]

RFC 4975 MSRP September 2007

 MSRP devices do not use the c-line address field, or the m-line
 port and format list fields to determine where to connect.
 Rather, they use the attributes defined in this specification.
 The connection information is copied to the c-line and m-line for
 purposes of backwards compatibility with conventional SDP usages.
 While MSRP could theoretically carry any media-type, "message" is
 appropriate.

8.2. URI Negotiations

 Each endpoint in an MSRP session is identified by a URI. These URIs
 are negotiated in the SDP exchange. Each SDP offer or answer that
 proposes MSRP MUST contain a "path" attribute containing one or more
 MSRP URIs. The path attribute is used in an SDP a-line, and has the
 following syntax:

 path = path-label ":" path-list
 path-label = "path"
 path-list= MSRP-URI *(SP MSRP-URI)

 Figure 6: Path Attribute

 where MSRP-URI is an "msrp" or "msrps" URI as defined in Section 6.
 MSRP URIs included in an SDP offer or answer MUST include explicit
 port numbers.

 An MSRP device uses the URI to determine a host address, port,
 transport, and protection level when connecting, and to identify the
 target when sending requests and responses.

 The offerer and answerer each selects a URI to represent itself and
 sends that URI to its peer in the SDP document. Each peer stores the
 path value received from the other peer and uses that value as the
 target for requests inside the resulting session. If the path
 attribute received from the peer contains more than one URI, then the
 target URI is the rightmost, while the leftmost entry represents the
 adjacent hop. If only one entry is present, then it is both the peer
 and adjacent hop URI. The target path is the entire path attribute
 value received from the peer.

 The following example shows an SDP offer with a session URI of
 "msrp://alice.example.com:7394/2s93i9ek2a;tcp"

Campbell, et al. Standards Track [Page 29]

RFC 4975 MSRP September 2007

 v=0
 o=alice 2890844526 2890844527 IN IP4 alice.example.com
 s= -
 c=IN IP4 alice.example.com
 t=0 0
 m=message 7394 TCP/MSRP *
 a=accept-types:text/plain
 a=path:msrp://alice.example.com:7394/2s93i9ek2a;tcp

 Figure 7: Example SDP with Path Attribute

 The rightmost URI in the path attribute MUST identify the endpoint
 that generated the SDP document, or some other location where that
 endpoint wishes to receive requests associated with the session. It
 MUST be assigned for this particular session, and MUST NOT duplicate
 any URI in use for any other session in which the endpoint is
 currently participating. It SHOULD be hard to guess, and protected
 from eavesdroppers. This is discussed in more detail in Section 14.

8.3. Path Attributes with Multiple URIs

 As mentioned previously, this document describes MSRP for peer-to-
 peer scenarios, that is, when no relays are used. The use of relays
 is described in a separate document [23]. In order to allow an MSRP
 device that only implements the core specification to interoperate
 with devices that use relays, this document must include a few
 assumptions about how relays work.

 An endpoint that uses one or more relays will indicate that by
 putting a URI for each device in the relay chain into the SDP path
 attribute. The final entry will point to the endpoint itself. The
 other entries will indicate each proposed relay, in order. The first
 entry will point to the first relay in the chain from the perspective
 of the peer, that is, the relay to which the peer device, or a relay
 operating on its behalf, should connect.

 Endpoints that do not wish to insert a relay, including those that do
 not support relays at all, will put exactly one URI into the path
 attribute. This URI represents both the endpoint for the session and
 the connection point.

 Even though endpoints that implement only this specification will
 never introduce a relay, they need to be able to interoperate with
 other endpoints that do use relays. Therefore, they MUST be prepared
 to receive more than one URI in the SDP path attribute. When an
 endpoint receives more than one URI in a path attribute, only the

Campbell, et al. Standards Track [Page 30]

RFC 4975 MSRP September 2007

 first entry is relevant for purposes of resolving the address and
 port, and establishing the network connection, as it describes the
 first adjacent hop.

 If an endpoint puts more than one URI in a path attribute, the final
 URI in the path attribute (the peer URI) identifies the session, and
 MUST not duplicate the URI of any other session in which the endpoint
 is currently participating. Uniqueness requirements for other
 entries in the path attribute are out of scope for this document.

8.4. Updated SDP Offers

 MSRP endpoints may sometimes need to send additional SDP exchanges
 for an existing session. They may need to send periodic exchanges
 with no change to refresh state in the network, for example, SIP
 session timers or the SIP UPDATE [24] request. They may need to
 change some other stream in a session without affecting the MSRP
 stream, or they may need to change an MSRP stream without affecting
 some other stream.

 Either peer may initiate an updated exchange at any time. The
 endpoint that sends the new offer assumes the role of offerer for all
 purposes. The answerer MUST respond with a path attribute that
 represents a valid path to itself at the time of the updated
 exchange. This new path may be the same as its previous path, but
 may be different. The new offerer MUST NOT assume that the peer will
 answer with the same path it used previously.

 If either party wishes to send an SDP document that changes nothing
 at all, then it MUST use the same o-line as in the previous exchange.

8.5. Connection Negotiation

 Previous versions of this document included a mechanism to negotiate
 the direction for any required TCP connection. The mechanism was
 loosely based on the Connection-Oriented Media (COMEDIA) [26] work
 done by the MMUSIC working group. The primary motivation was to
 allow MSRP sessions to succeed in situations where the offerer could
 not accept connections but the answerer could. For example, the
 offerer might be behind a NAT, while the answerer might have a
 globally routable address.

 The SIMPLE working group chose to remove that mechanism from MSRP, as
 it added a great deal of complexity to connection management.
 Instead, MSRP now specifies a default connection direction. The
 party that sent the original offer is responsible for connecting to
 its peer.

Campbell, et al. Standards Track [Page 31]

RFC 4975 MSRP September 2007

8.6. Content Type Negotiation

 An SDP media-line proposing MSRP MUST be accompanied by an accept-
 types attribute.

 An entry of "*" in the accept-types attribute indicates that the
 sender may attempt to send content with media-types that have not
 been explicitly listed. Likewise, an entry with an explicit type and
 a "*" character as the subtype indicates that the sender may attempt
 to send content with any subtype of that type. If the receiver
 receives an MSRP request and is able to process the media-type, it
 does so. If not, it will respond with a 415 response. Note that all
 explicit entries SHOULD be considered preferred over any non-listed
 types. This feature is needed as, otherwise, the list of formats for
 rich IM devices may be prohibitively large.

 This specification requires the support of certain data formats.
 Mandatory formats MUST be signaled like any other, either explicitly
 or by the use of a "*".

 The accept-types attribute may include container types, that is, MIME
 formats that contain other types internally. If compound types are
 used, the types listed in the accept-types attribute may be used as
 the root payload or may be wrapped in a listed container type. Any
 container types MUST also be listed in the accept-types attribute.

 Occasionally, an endpoint will need to specify a MIME media-type that
 can only be used if wrapped inside a listed container type.

 Endpoints MAY specify media-types that are only allowed when wrapped
 inside compound types using the "accept-wrapped-types" attribute in
 an SDP a-line.

 The semantics for accept-wrapped-types are identical to those of the
 accept-types attribute, with the exception that the specified types
 may only be used when wrapped inside container types listed in the
 accept-types attribute. Only types listed in the accept-types
 attribute may be used as the "root" type for the entire body. Since
 any type listed in accept-types may be both used as a root body and
 wrapped in other bodies, format entries from accept-types SHOULD NOT
 be repeated in this attribute.

 This approach does not allow for specifying distinct lists of
 acceptable wrapped types for different types of containers. If an
 endpoint understands a media-type in the context of one wrapper, it
 is assumed to understand it in the context of any other acceptable
 wrappers, subject to any constraints defined by the wrapper types
 themselves.

Campbell, et al. Standards Track [Page 32]

RFC 4975 MSRP September 2007

 The approach of specifying types that are only allowed inside of
 containers separately from the primary payload types allows an
 endpoint to force the use of certain wrappers. For example, a
 Common Presence and Instant Messaging (CPIM) [12] gateway device
 may require all messages to be wrapped inside message/cpim bodies,
 but may allow several content types inside the wrapper. If the
 gateway were to specify the wrapped types in the accept-types
 attribute, its peer might attempt to use those types without the
 wrapper.

 If the recipient of an offer does not understand any of the payload
 types indicated in the offered SDP, it SHOULD indicate that using the
 appropriate mechanism of the rendezvous protocol. For example, in
 SIP, it SHOULD return a SIP 488 response.

 An MSRP endpoint MUST NOT send content of a type not signaled by the
 peer in either an accept-types or an accept-wrapped-types attribute.
 Furthermore, it MUST NOT send a top-level (i.e., not wrapped) MIME
 document of a type not signaled in the accept-types attribute. In
 either case, the signaling could be explicit, or implicit through the
 use of the "*" character.

 An endpoint MAY indicate the maximum size message it wishes to
 receive using the max-size a-line attribute. Max-size refers to the
 complete message in octets, not the size of any one chunk. Senders
 SHOULD NOT exceed the max-size limit for any message sent in the
 resulting session. However, the receiver should consider max-size
 value as a hint.

 Media format entries may include parameters. The interpretation of
 such parameters varies between media-types. For the purposes of
 media-type negotiation, a format-entry with one or more parameters is
 assumed to match the same format-entry with no parameters.

Campbell, et al. Standards Track [Page 33]

RFC 4975 MSRP September 2007

 The formal syntax for these attributes is as follows:

 accept-types = accept-types-label ":" format-list
 accept-types-label = "accept-types"
 accept-wrapped-types = wrapped-types-label ":" format-list
 wrapped-types-label = "accept-wrapped-types"
 format-list = format-entry *(SP format-entry)
 format-entry = (((type "/" subtype)
 / (type "/" "*"))
 *(";" type-param))
 / ("*")

 type = token
 subtype = token
 type-param = parm-attribute "=" parm-value
 parm-attribute = token
 parm-value = token / quoted-string

 max-size = max-size-label ":" max-size-value
 max-size-label = "max-size"
 max-size-value = 1*(DIGIT) ; max size in octets

 Figure 8: Attribute Syntax

8.7. Example SDP Exchange

 Endpoint A wishes to invite Endpoint B to an MSRP session. A offers
 the following session description:

 v=0
 o=usera 2890844526 2890844527 IN IP4 alice.example.com
 s= -
 c=IN IP4 alice.example.com
 t=0 0
 m=message 7394 TCP/MSRP *
 a=accept-types:message/cpim text/plain text/html
 a=path:msrp://alice.example.com:7394/2s93i93idj;tcp

 Figure 9: SDP from Endpoint A

Campbell, et al. Standards Track [Page 34]

RFC 4975 MSRP September 2007

 B responds with its own URI:

 v=0
 o=userb 2890844530 2890844532 IN IP4 bob.example.com
 s= -
 c=IN IP4 bob.example.com
 t=0 0
 m=message 8493 TCP/MSRP *
 a=accept-types:message/cpim text/plain
 a=path:msrp://bob.example.com:8493/si438dsaodes;tcp

 Figure 10: SDP from Endpoint B

8.8. MSRP User Experience with SIP

 In typical SIP applications, when an endpoint receives an INVITE
 request, it alerts the user, and waits for user input before
 responding. This is analogous to the typical telephone user
 experience, where the callee "answers" the call.

 In contrast, the typical user experience for instant messaging
 applications is that the initial received message is immediately
 displayed to the user, without waiting for the user to "join" the
 conversation. Therefore, the principle of least surprise would
 suggest that MSRP endpoints using SIP signaling SHOULD allow a mode
 where the endpoint quietly accepts the session and begins displaying
 messages.

 This guideline may not make sense for all situations, such as for
 mixed-media applications, where both MSRP and audio sessions are
 offered in the same INVITE. In general, good application design
 should take precedence.

 SIP INVITE requests may be forked by a SIP proxy, resulting in more
 than one endpoint receiving the same INVITE. SIP early media [29]
 techniques can be used to establish a preliminary session with each
 endpoint so the initial message(s) are displayed on each endpoint,
 and canceling the INVITE transaction for any endpoints that do not
 send MSRP traffic after some period of time, so that they cease
 receiving MSRP traffic from the inviter.

8.9. SDP Direction Attribute and MSRP

 SDP defines a number of attributes that modify the direction of media
 flows. These are the "sendonly", "recvonly", "inactive", and
 "sendrecv" attributes.

Campbell, et al. Standards Track [Page 35]

RFC 4975 MSRP September 2007

 If a "sendonly" or "recvonly" attribute modifies an MSRP media
 description line, the attribute indicates the direction of MSRP SEND
 requests that contain regular message payloads. Unless otherwise
 specified, these attributes do not affect the direction of other
 types of requests, such as REPORT. SEND requests that contain some
 kind of control or reporting protocol rather than regular message
 payload (e.g., Instant Message Delivery Notification (IMDN) reports)
 should be generated according to the protocol rules as if no
 direction attribute were present.

9. Formal Syntax

 MSRP is a text protocol that uses the UTF-8 [14] transformation
 format.

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) as described in RFC 4234 [6].

 msrp-req-or-resp = msrp-request / msrp-response
 msrp-request = req-start headers [content-stuff] end-line
 msrp-response = resp-start headers end-line

 req-start = pMSRP SP transact-id SP method CRLF
 resp-start = pMSRP SP transact-id SP status-code [SP comment] CRLF
 comment = utf8text

 pMSRP = %x4D.53.52.50 ; MSRP in caps
 transact-id = ident
 method = mSEND / mREPORT / other-method
 mSEND = %x53.45.4e.44 ; SEND in caps
 mREPORT = %x52.45.50.4f.52.54; REPORT in caps

 other-method = 1*UPALPHA
 status-code = 3DIGIT ; any code defined in this document
 ; or an extension document

 MSRP-URI = msrp-scheme "://" authority
 ["/" session-id] ";" transport *(";" URI-parameter)
 ; authority as defined in RFC3986

 msrp-scheme = "msrp" / "msrps"
 session-id = 1*(unreserved / "+" / "=" / "/")
 ; unreserved as defined in RFC3986
 transport = "tcp" / 1*ALPHANUM
 URI-parameter = token ["=" token]

 headers = To-Path CRLF From-Path CRLF 1*(header CRLF)

Campbell, et al. Standards Track [Page 36]

RFC 4975 MSRP September 2007

 header = Message-ID
 / Success-Report
 / Failure-Report
 / Byte-Range
 / Status
 / ext-header

 To-Path = "To-Path:" SP MSRP-URI *(SP MSRP-URI)
 From-Path = "From-Path:" SP MSRP-URI *(SP MSRP-URI)
 Message-ID = "Message-ID:" SP ident
 Success-Report = "Success-Report:" SP ("yes" / "no")
 Failure-Report = "Failure-Report:" SP ("yes" / "no" / "partial")
 Byte-Range = "Byte-Range:" SP range-start "-" range-end "/" total
 range-start = 1*DIGIT
 range-end = 1*DIGIT / "*"
 total = 1*DIGIT / "*"

 Status = "Status:" SP namespace SP status-code [SP comment]
 namespace = 3(DIGIT); "000" for all codes defined in this document.

 ident = ALPHANUM 3*31ident-char
 ident-char = ALPHANUM / "." / "-" / "+" / "%" / "="

 content-stuff = *(Other-Mime-header CRLF)
 Content-Type 2CRLF data CRLF

 Content-Type = "Content-Type:" SP media-type
 media-type = type "/" subtype *(";" gen-param)
 type = token
 subtype = token

 gen-param = pname ["=" pval]
 pname = token
 pval = token / quoted-string

 token = 1*(%x21 / %x23-27 / %x2A-2B / %x2D-2E
 / %x30-39 / %x41-5A / %x5E-7E)
 ; token is compared case-insensitive

 quoted-string = DQUOTE *(qdtext / qd-esc) DQUOTE
 qdtext = SP / HTAB / %x21 / %x23-5B / %x5D-7E
 / UTF8-NONASCII
 qd-esc = (BACKSLASH BACKSLASH) / (BACKSLASH DQUOTE)
 BACKSLASH = "\"
 UPALPHA = %x41-5A
 ALPHANUM = ALPHA / DIGIT

Campbell, et al. Standards Track [Page 37]

RFC 4975 MSRP September 2007

 Other-Mime-header = (Content-ID
 / Content-Description
 / Content-Disposition
 / mime-extension-field)

 ; Content-ID, and Content-Description are defined in RFC2045.
 ; Content-Disposition is defined in RFC2183
 ; MIME-extension-field indicates additional MIME extension
 ; header fields as described in RFC2045

 data = *OCTET
 end-line = "-------" transact-id continuation-flag CRLF
 continuation-flag = "+" / "$" / "#"

 ext-header = hname ":" SP hval CRLF
 hname = ALPHA *token
 hval = utf8text

 utf8text = *(HTAB / %x20-7E / UTF8-NONASCII)

 UTF8-NONASCII = %xC0-DF 1UTF8-CONT
 / %xE0-EF 2UTF8-CONT
 / %xF0-F7 3UTF8-CONT
 / %xF8-Fb 4UTF8-CONT
 / %xFC-FD 5UTF8-CONT
 UTF8-CONT = %x80-BF

 Figure 11: MSRP ABNF

10. Response Code Descriptions

 This section summarizes the semantics of various response codes that
 may be used in MSRP transaction responses. These codes may also be
 used in the Status header field in REPORT requests.

10.1. 200

 The 200 response code indicates a successful transaction.

10.2. 400

 A 400 response indicates that a request was unintelligible. The
 sender may retry the request after correcting the error.

10.3. 403

 A 403 response indicates that the attempted action is not allowed.
 The sender should not try the request again.

Campbell, et al. Standards Track [Page 38]

RFC 4975 MSRP September 2007

10.4. 408

 A 408 response indicates that a downstream transaction did not
 complete in the allotted time. It is never sent by any elements
 described in this specification. However, 408 is used in the MSRP
 relay extension; therefore, MSRP endpoints may receive it. An
 endpoint MUST treat a 408 response in the same manner as it would
 treat a local timeout.

10.5. 413

 A 413 response indicates that the receiver wishes the sender to stop
 sending the particular message. Typically, a 413 is sent in response
 to a chunk of an undesired message.

 If a message sender receives a 413 in a response, or in a REPORT
 request, it MUST NOT send any further chunks in the message, that is,
 any further chunks with the same Message-ID value. If the sender
 receives the 413 while in the process of sending a chunk, and the
 chunk is interruptible, the sender MUST interrupt it.

10.6. 415

 A 415 response indicates that the SEND request contained a media type
 that is not understood by the receiver. The sender should not send
 any further messages with the same content-type for the duration of
 the session.

10.7. 423

 A 423 response indicates that one of the requested parameters is out
 of bounds. It is used by the relay extensions to this document.

10.8. 481

 A 481 response indicates that the indicated session does not exist.
 The sender should terminate the session.

10.9. 501

 A 501 response indicates that the recipient does not understand the
 request method.

 The 501 response code exists to allow some degree of method
 extensibility. It is not intended as a license to ignore methods
 defined in this document; rather, it is a mechanism to report lack
 of support of extension methods.

Campbell, et al. Standards Track [Page 39]

RFC 4975 MSRP September 2007

10.10. 506

 A 506 response indicates that a request arrived on a session that is
 already bound to another network connection. The sender should cease
 sending messages for that session on this connection.

11. Examples

11.1. Basic IM Session

 This section shows an example flow for the most common scenario. The
 example assumes SIP is used to transport the SDP exchange. Details
 of the SIP messages and SIP proxy infrastructure are omitted for the
 sake of brevity. In the example, assume that the offerer is
 sip:alice@example.com and the answerer is sip:bob@example.com.

 Alice Bob
 | |
 | |
 |(1) (SIP) INVITE |
 |----------------------->|
 |(2) (SIP) 200 OK |
 |<-----------------------|
 |(3) (SIP) ACK |
 |----------------------->|
 |(4) (MSRP) SEND |
 |----------------------->|
 |(5) (MSRP) 200 OK |
 |<-----------------------|
 |(6) (MSRP) SEND |
 |<-----------------------|
 |(7) (MSRP) 200 OK |
 |----------------------->|
 |(8) (SIP) BYE |
 |----------------------->|
 |(9) (SIP) 200 OK |
 |<-----------------------|
 | |
 | |

 Figure 12: Basic IM Session Example

Campbell, et al. Standards Track [Page 40]

RFC 4975 MSRP September 2007

 1. Alice constructs a local URI of
 msrp://alicepc.example.com:7777/iau39soe2843z;tcp .

 Alice->Bob (SIP): INVITE sip:bob@example.com

 v=0
 o=alice 2890844557 2890844559 IN IP4 alicepc.example.com
 s= -
 c=IN IP4 alicepc.example.com
 t=0 0
 m=message 7777 TCP/MSRP *
 a=accept-types:text/plain
 a=path:msrp://alicepc.example.com:7777/iau39soe2843z;tcp

 2. Bob listens on port 8888, and sends the following response:

 Bob->Alice (SIP): 200 OK

 v=0
 o=bob 2890844612 2890844616 IN IP4 bob.example.com
 s= -
 c=IN IP4 bob.example.com
 t=0 0
 m=message 8888 TCP/MSRP *
 a=accept-types:text/plain
 a=path:msrp://bob.example.com:8888/9di4eae923wzd;tcp

 3. Alice->Bob (SIP): ACK sip:bob@example.com

 4. (Alice opens connection to Bob.) Alice->Bob (MSRP):

 MSRP d93kswow SEND
 To-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 From-Path: msrp://alicepc.example.com:7777/iau39soe2843z;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-16/16
 Content-Type: text/plain

 Hi, I’m Alice!
 -------d93kswow$

 5. Bob->Alice (MSRP):

 MSRP d93kswow 200 OK
 To-Path: msrp://alicepc.example.com:7777/iau39soe2843z;tcp
 From-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 -------d93kswow$

Campbell, et al. Standards Track [Page 41]

RFC 4975 MSRP September 2007

 6. Bob->Alice (MSRP):

 MSRP dkei38sd SEND
 To-Path: msrp://alicepc.example.com:7777/iau39soe2843z;tcp
 From-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 Message-ID: 456s9wlk3
 Byte-Range: 1-21/21
 Content-Type: text/plain

 Hi, Alice! I’m Bob!
 -------dkei38sd$

 7. Alice->Bob (MSRP):

 MSRP dkei38sd 200 OK
 To-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 From-Path: msrp://alicepc.example.com:7777/iau39soe2843z;tcp
 -------dkei38sd$

 8. Alice->Bob (SIP): BYE sip:bob@example.com

 Alice invalidates local session state.

 9. Bob invalidates local state for the session.

 Bob->Alice (SIP): 200 OK

11.2. Message with XHTML Content

 MSRP dsdfoe38sd SEND
 To-Path: msrp://alice.example.com:7777/iau39soe2843z;tcp
 From-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 Message-ID: 456so39s
 Byte-Range: 1-374/374
 Content-Type: application/xhtml+xml

Campbell, et al. Standards Track [Page 42]

RFC 4975 MSRP September 2007

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "_http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd_">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>FY2005 Results</title>
 </head>
 <body>
 <p>See the results at example.org.</p>
 </body>
 </html>
 -------dsdfoe38sd$

 Figure 13: Example Message with XHTML

11.3. Chunked Message

 For an example of a chunked message, see the example in Section 5.1.

11.4. Chunked Message with Message/CPIM Payload

 This example shows a chunked message containing a CPIM message that
 wraps a text/plain payload. It is worth noting that MSRP considers
 the complete CPIM message before chunking the message; thus, the CPIM
 headers are included in only the first chunk. The MSRP Content-Type
 and Byte-Range headers, present in both chunks, refer to the whole
 CPIM message.

 MSRP d93kswow SEND
 To-Path: msrp://bobpc.example.com:8888/9di4eae923wzd;tcp
 From-Path: msrp://alicepc.example.com:7654/iau39soe2843z;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-137/148
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>
 DateTime: 2006-05-15T15:02:31-03:00
 Content-Type: text/plain

 ABCD
 -------d93kswow+

 Figure 14: First Chunk

Campbell, et al. Standards Track [Page 43]

RFC 4975 MSRP September 2007

 Alice sends the second and last chunk.

 MSRP op2nc9a SEND
 To-Path: msrp://bobpc.example.com:8888/9di4eae923wzd;tcp
 From-Path: msrp://alicepc.example.com:7654/iau39soe2843z;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 138-148/148
 Content-Type: message/cpim

 1234567890
 -------op2nc9a$

 Figure 15: Second Chunk

11.5. System Message

 Sysadmin->Alice (MSRP):

 MSRP d93kswow SEND
 To-Path: msrp://alicepc.example.com:8888/9di4eae923wzd;tcp
 From-Path: msrp://example.com:7777/iau39soe2843z;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-38/38
 Failure-Report: no
 Success-Report: no
 Content-Type: text/plain

 This conference will end in 5 minutes
 -------d93kswow$

11.6. Positive Report

 Alice->Bob (MSRP):

 MSRP d93kswow SEND
 To-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 From-Path: msrp://alicepc.example.com:7777/iau39soe2843z;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-106/106
 Success-Report: yes
 Failure-Report: no
 Content-Type: text/html

Campbell, et al. Standards Track [Page 44]

RFC 4975 MSRP September 2007

 <html><body>
 <p>Here is that important link...
 foobar
 </p>
 </body></html>
 -------d93kswow$

 Figure 16: Initial SEND Request

 Bob->Alice (MSRP):

 MSRP dkei38sd REPORT
 To-Path: msrp://alicepc.example.com:7777/iau39soe2843z;tcp
 From-Path: msrp://bob.example.com:8888/9di4eae923wzd;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-106/106
 Status: 000 200 OK
 -------dkei38sd$

 Figure 17: Success Report

11.7. Forked IM

 Traditional IM systems generally do a poor job of handling multiple
 simultaneous IM clients online for the same person. While some do a
 better job than many existing systems, handling of multiple clients
 is fairly crude. This becomes a much more significant issue when
 always-on mobile devices are available, but it is desirable to use
 them only if another IM client is not available.

 Using SIP makes rendezvous decisions explicit, deterministic, and
 very flexible. In contrast, "page-mode" IM systems use implicit
 implementation-specific decisions that IM clients cannot influence.
 With SIP session-mode messaging, rendezvous decisions can be under
 control of the client in a predictable, interoperable way for any
 host that implements callee capabilities [31]. As a result,
 rendezvous policy is managed consistently for each address of record.

 The following example shows Juliet with several IM clients where she
 can be reached. Each of these has a unique SIP contact and MSRP
 session. The example takes advantage of SIP’s capability to "fork"
 an invitation to several contacts in parallel, in sequence, or in
 combination. Juliet has registered from her chamber, the balcony,
 her PDA, and as a last resort, you can leave a message with her
 nurse. Juliet’s contacts are listed below. The q-values express
 relative preference (q=1.0 is the highest preference).

Campbell, et al. Standards Track [Page 45]

RFC 4975 MSRP September 2007

 When Romeo opens his IM program, he selects Juliet and types the
 message "art thou hither?" (instead of "you there?"). His client
 sends a SIP invitation to sip:juliet@thecapulets.example.com. The
 proxy there tries first the balcony and the chamber simultaneously.
 A client is running on each of those systems, both of which set up
 early sessions of MSRP with Romeo’s client. The client automatically
 sends the message over MSRP to the two MSRP URIs involved. After a
 delay of a several seconds with no reply or activity from Juliet, the
 proxy cancels the invitation at her first two contacts, and forwards
 the invitation on to Juliet’s PDA. Since her father is talking to
 her about her wedding, she selects "Do Not Disturb" on her PDA, which
 sends a "Busy Here" response. The proxy then tries the nurse, who
 answers and tells Romeo what is going on.

Campbell, et al. Standards Track [Page 46]

RFC 4975 MSRP September 2007

 Romeo Juliet’s Juliet/ Juliet/ Juliet/ Nurse
 Proxy balcony chamber PDA
 | | | | | |
 |--INVITE--->| | | | |
 | |--INVITE--->| | | |
 | |<----180----| | | |
 |<----180----| | | | |
 |---PRACK---------------->| | | |
 |<----200-----------------| | | |
 |<===Early MSRP Session==>| art thou hither? | |
 | | | | | |
 | |--INVITE---------------->| | |
 | |<----180-----------------| | |
 |<----180----| | | | |
 |---PRACK----------------------------->| | |
 |<----200------------------------------| | |
 |<========Early MSRP Session==========>| art thou hither? |
 | | | | | |
 | | | | | |
 | | Time Passes | | |
 | | | | | |
 | | | | | |
 | |--CANCEL--->| | | |
 | |<---200-----| | | |
 | |<---487-----| | | |
 | |----ACK---->| | | |
 | |--CANCEL---------------->| | |
 | |<---200------------------| | |
 | |<---487------------------| | |
 | |----ACK----------------->| | |
 | |--INVITE---------------------------->| romeo wants
 | | | | | to IM w/ you
 | |<---486 Busy Here--------------------| | | |
 | |----ACK----------------------------->| |
 | | | | | |
 | |--INVITE-->|
 | |<---200 OK---------------------------------------|
 |<--200 OK---| | | | |
 |---ACK--->|
 |<================MSRP Session================================>|
 | | | | | |
 | Hi Romeo, Juliet is |
 | with her father now |
 | can I take a message?|
 | |
 | Tell her to go to confession tomorrow.... |

 Figure 18: Forking Example

Campbell, et al. Standards Track [Page 47]

RFC 4975 MSRP September 2007

12. Extensibility

 MSRP was designed to be only minimally extensible. New MSRP methods,
 header fields, and status codes can be defined in standards-track
 RFCs. MSRP does not contain a version number or any negotiation
 mechanism to require or discover new features. If an extension is
 specified in the future that requires negotiation, the specification
 will need to describe how the extension is to be negotiated in the
 encapsulating signaling protocol. If a non-interoperable update or
 extension occurs in the future, it will be treated as a new protocol,
 and MUST describe how its use will be signaled.

 In order to allow extension header fields without breaking
 interoperability, if an MSRP device receives a request or response
 containing a header field that it does not understand, it MUST ignore
 the header field and process the request or response as if the header
 field was not present. If an MSRP device receives a request with an
 unknown method, it MUST return a 501 response.

 MSRP was designed to use lists of URIs instead of a single URI in the
 To-Path and From-Path header fields in anticipation of relay or
 gateway functionality being added. In addition, "msrp" and "msrps"
 URIs can contain parameters that are extensible.

13. CPIM Compatibility

 MSRP sessions may go to a gateway to other Common Profile for Instant
 Messaging (CPIM) [27] compatible protocols. If this occurs, the
 gateway MUST maintain session state, and MUST translate between the
 MSRP session semantics and CPIM semantics, which do not include a
 concept of sessions. Furthermore, when one endpoint of the session
 is a CPIM gateway, instant messages SHOULD be wrapped in
 "message/cpim" [12] bodies. Such a gateway MUST include
 "message/cpim" as the first entry in its SDP accept-types attribute.
 MSRP endpoints sending instant messages to a peer that has included
 "message/cpim" as the first entry in the accept-types attribute
 SHOULD encapsulate all instant message bodies in "message/ cpim"
 wrappers. All MSRP endpoints MUST support the message/cpim type, and
 SHOULD support the S/MIME[7] features of that format.

 If a message is to be wrapped in a message/cpim envelope, the
 wrapping MUST be done prior to breaking the message into chunks, if
 needed.

Campbell, et al. Standards Track [Page 48]

RFC 4975 MSRP September 2007

 All MSRP endpoints MUST recognize the From, To, DateTime, and Require
 header fields as defined in RFC 3862. Such applications SHOULD
 recognize the CC header field, and MAY recognize the Subject header
 field. Any MSRP application that recognizes any message/cpim header
 field MUST understand the NS (name space) header field.

 All message/cpim body parts sent by an MSRP endpoint MUST include the
 From and To header fields. If the message/cpim body part is
 protected using S/MIME, then it MUST also include the DateTime header
 field.

 The NS, To, and CC header fields may occur multiple times. Other
 header fields defined in RFC 3862 MUST NOT occur more than once in a
 given message/cpim body part in an MSRP message. The Require header
 field MAY include multiple values. The NS header field MAY occur
 zero or more times, depending on how many name spaces are being
 referenced.

 Extension header fields MAY occur more than once, depending on the
 definition of such header fields.

 Using message/cpim envelopes is also useful if an MSRP device
 wishes to send a message on behalf of some other identity. The
 device may add a message/cpim envelope with the appropriate From
 header field value.

14. Security Considerations

 Instant messaging systems are used to exchange a variety of sensitive
 information ranging from personal conversations, to corporate
 confidential information, to account numbers and other financial
 trading information. IM is used by individuals, corporations, and
 governments for communicating important information. IM systems need
 to provide the properties of integrity and confidentiality for the
 exchanged information, and the knowledge that you are communicating
 with the correct party, and they need to allow the possibility of
 anonymous communication. MSRP pushes many of the hard problems to
 SIP when SIP sets up the session, but some of the problems remain.
 Spam and Denial of Service (DoS) attacks are also very relevant to IM
 systems.

 MSRP needs to provide confidentiality and integrity for the messages
 it transfers. It also needs to provide assurances that the connected
 host is the host that it meant to connect to and that the connection
 has not been hijacked.

Campbell, et al. Standards Track [Page 49]

RFC 4975 MSRP September 2007

14.1. Secrecy of the MSRP URI

 When an endpoint sends an MSRP URI to its peer in a rendezvous
 protocol, that URI is effectively a secret shared between the peers.
 If an attacker learns or guesses the URI prior to the completion of
 session setup, it may be able to impersonate one of the peers.

 Assuming the URI exchange in the rendezvous protocol is sufficiently
 protected, it is critical that the URI remain difficult to "guess"
 via brute force methods. Most components of the URI, such as the
 scheme and the authority components, are common knowledge. The
 secrecy is entirely provided by the session-id component.

 Therefore, when an MSRP device generates an MSRP URI to be used in
 the initiation of an MSRP session, the session-id component MUST
 contain at least 80 bits of randomness.

14.2. Transport Level Protection

 When using only TCP connections, MSRP security is fairly weak. If
 host A is contacting host B, B passes its hostname and a secret to A
 using a rendezvous protocol. Although MSRP requires the use of a
 rendezvous protocol with the ability to protect this exchange, there
 is no guarantee that the protection will be used all the time. If
 such protection is not used, anyone can see this secret. Host A then
 connects to the provided hostname and passes the secret in the clear
 across the connection to B. Host A assumes that it is talking to B
 based on where it sent the SYN packet and then delivers the secret in
 plain text across the connections. Host B assumes it is talking to A
 because the host on the other end of the connection delivered the
 secret. An attacker that could ACK the SYN packet could insert
 itself as a man-in-the-middle in the connection.

 When using TLS connections, the security is significantly improved.
 We assume that the host accepting the connection has a certificate
 from a well-known certification authority. Furthermore, we assume
 that the signaling to set up the session is protected by the
 rendezvous protocol. In this case, when host A contacts host B, the
 secret is passed through a confidential channel to A. A connects
 with TLS to B. B presents a valid certificate, so A knows it really
 is connected to B. A then delivers the secret provided by B, so that
 B can verify it is connected to A. In this case, a rogue SIP Proxy
 can see the secret in the SIP signaling traffic and could potentially
 insert itself as a man-in-the-middle.

 Realistically, using TLS with certificates from well-known
 certification authorities is difficult for peer-to-peer connections,
 as the types of hosts that end clients use for sending instant

Campbell, et al. Standards Track [Page 50]

RFC 4975 MSRP September 2007

 messages are unlikely to have long-term stable IP addresses or DNS
 names that the certificates can bind to. In addition, the cost of
 server certificates from well-known certification authorities is
 currently expensive enough to discourage their use for each client.
 Using TLS in a peer-to-peer mode without well-known certificates is
 discussed in Section 14.4.

 TLS becomes much more practical when some form of relay is
 introduced. Clients can then form TLS connections to relays, which
 are much more likely to have TLS certificates. While this
 specification does not address such relays, they are described by a
 companion document [23]. That document makes extensive use of TLS to
 protect traffic between clients and relays, and between one relay and
 another.

 TLS is used to authenticate devices and to provide integrity and
 confidentiality for the header fields being transported. MSRP
 elements MUST implement TLS and MUST also implement the TLS
 ClientExtendedHello extended hello information for server name
 indication as described in [11]. A TLS cipher-suite of
 TLS_RSA_WITH_AES_128_CBC_SHA [13] MUST be supported (other cipher-
 suites MAY also be supported).

14.3. S/MIME

 The only strong security for non-TLS connections is achieved using
 S/MIME.

 Since MSRP carries arbitrary MIME content, it can trivially carry
 S/MIME protected messages as well. All MSRP implementations MUST
 support the multipart/signed media-type even if they do not support
 S/MIME. Since SIP can carry a session key, S/MIME messages in the
 context of a session could also be protected using a key-wrapped
 shared secret [28] provided in the session setup. MSRP can carry
 unencoded binary payloads. Therefore, MIME bodies MUST be
 transferred with a transfer encoding of binary. If a message is both
 signed and encrypted, it SHOULD be signed first, then encrypted. If
 S/MIME is supported, SHA-1, SHA-256, RSA, and AES-128 MUST be
 supported. For RSA, implementations MUST support key sizes of at
 least 1024 bits and SHOULD support key sizes of 2048 bits or more.

 This does not actually require the endpoint to have certificates from
 a well-known certification authority. When MSRP is used with SIP,
 the Identity [17] and Certificates [25] mechanisms provide S/MIME-
 based delivery of a secret between A and B. No SIP intermediary
 except the explicitly trusted authentication service (one per user)
 can see the secret. The S/MIME encryption of the SDP can also be
 used by SIP to exchange keying material that can be used in MSRP.

Campbell, et al. Standards Track [Page 51]

RFC 4975 MSRP September 2007

 The MSRP session can then use S/MIME with this keying material to
 sign and encrypt messages sent over MSRP. The connection can still
 be hijacked since the secret is sent in clear text to the other end
 of the TCP connection, but the consequences are mitigated if all the
 MSRP content is signed and encrypted with S/MIME. Although out of
 scope for this document, the SIP negotiation of an MSRP session can
 negotiate symmetric keying material to be used with S/MIME for
 integrity and privacy.

14.4. Using TLS in Peer-to-Peer Mode

 TLS can be used with a self-signed certificate as long as there is a
 mechanism for both sides to ascertain that the other side used the
 correct certificate. When used with SDP and SIP, the correct
 certificate can be verified by passing a fingerprint of the
 certificate in the SDP and ensuring that the SDP has suitable
 integrity protection. When SIP is used to transport the SDP, the
 integrity can be provided by the SIP Identity mechanism [17]. The
 rest of this section describes the details of this approach.

 If self-signed certificates are used, the content of the
 subjectAltName attribute inside the certificate MAY use the URI of
 the user. In SIP, this URI of the user is the User’s Address of
 Record (AOR). This is useful for debugging purposes only and is not
 required to bind the certificate to one of the communication
 endpoints. Unlike normal TLS operations in this protocol, when doing
 peer-to-peer TLS, the subjectAltName is not an important component of
 the certificate verification. If the endpoint is also able to make
 anonymous sessions, a distinct, unique certificate MUST be used for
 this purpose. For a client that works with multiple users, each user
 SHOULD have its own certificate. Because the generation of
 public/private key pairs is relatively expensive, endpoints are not
 required to generate certificates for each session.

 A certificate fingerprint is the output of a one-way hash function
 computed over the Distinguished Encoding Rules (DER) form of the
 certificate. The endpoint MUST use the certificate fingerprint
 attribute as specified in [18] and MUST include this in the SDP. The
 certificate presented during the TLS handshake needs to match the
 fingerprint exchanged via the SDP, and if the fingerprint does not
 match the hashed certificate then the endpoint MUST tear down the
 media session immediately.

 When using SIP, the integrity of the fingerprint can be ensured
 through the SIP Identity mechanism [17]. When a client wishes to use
 SIP to set up a secure MSRP session with another endpoint, it sends
 an SDP offer in a SIP message to the other endpoint. This offer
 includes, as part of the SDP payload, the fingerprint of the

Campbell, et al. Standards Track [Page 52]

RFC 4975 MSRP September 2007

 certificate that the endpoint wants to use. The SIP message
 containing the offer is sent to the offerer’s SIP proxy, which will
 add an Identity header according to the procedures outlined in [17].
 When the far endpoint receives the SIP message, it can verify the
 identity of the sender using the Identity header. Since the Identity
 header is a digital signature across several SIP headers, in addition
 to the body or bodies of the SIP message, the receiver can also be
 certain that the message has not been tampered with after the digital
 signature was added to the SIP message.

 An example of SDP with a fingerprint attribute is shown in the
 following figure. Note the fingerprint is shown spread over two
 lines due to formatting consideration but should all be on one line.

 c=IN IP4 atlanta.example.com
 m=message 7654 TCP/TLS/MSRP *
 a=accept-types:text/plain
 a=path:msrps://atlanta.example.com:7654/jshA7weso3ks;tcp
 a=fingerprint:SHA-1 \
 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB

 Figure 19: SDP with Fingerprint Attribute

14.5. Other Security Concerns

 MSRP cannot be used as an amplifier for DoS attacks, but it can be
 used to form a distributed attack to consume TCP connection resources
 on servers. The attacker, Mallory, sends a SIP INVITE with no offer
 to Alice. Alice returns a 200 with an offer and Mallory returns an
 answer with SDP indicating that his MSRP address is the address of
 Tom. Since Alice sent the offer, Alice will initiate a connection to
 Tom using up resources on Tom’s server. Given the huge number of IM
 clients, and the relatively few TCP connections that most servers
 support, this is a fairly straightforward attack.

 SIP is attempting to address issues in dealing with spam. The spam
 issue is probably best dealt with at the SIP level when an MSRP
 session is initiated and not at the MSRP level.

 If a sender chooses to employ S/MIME to protect a message, all S/MIME
 operations apply to the complete message, prior to any breaking of
 the message into chunks.

 The signaling will have set up the session to or from some specific
 URIs that will often have "im:" or "sip:" URI schemes. When the
 signaling has been set up to a specific end user, and S/MIME is
 implemented, then the client needs to verify that the name in the
 SubjectAltName of the certificate contains an entry that matches the

Campbell, et al. Standards Track [Page 53]

RFC 4975 MSRP September 2007

 URI that was used for the other end in the signaling. There are some
 cases, such as IM conferencing, where the S/MIME certificate name and
 the signaled identity will not match. In these cases, the client
 should ensure that the user is informed that the message came from
 the user identified in the certificate and does not assume that the
 message came from the party they signaled.

 In some cases, a sending device may need to attribute a message to
 some other identity, and may use different identities for different
 messages in the same session. For example, a conference server may
 send messages on behalf of multiple users on the same session.
 Rather than add additional header fields to MSRP for this purpose,
 MSRP relies on the message/cpim format for this purpose. The sender
 may envelop such a message in a message/cpim body, and place the
 actual sender identity in the From field. The trustworthiness of
 such an attribution is affected by the security properties of the
 session in the same way that the trustworthiness of the identity of
 the actual peer is affected, with the additional issue of determining
 whether the recipient trusts the sender to assert the identity.

 This approach can result in nesting of message/cpim envelopes. For
 example, a message originates from a CPIM gateway, and is then
 forwarded by a conference server onto a new session. Both the
 gateway and the conference server introduce envelopes. In this case,
 the recipient client SHOULD indicate the chain of identity assertions
 to the user, rather than allow the user to assume that either the
 gateway or the conference server originated the message.

 It is possible that a recipient might receive messages that are
 attributed to the same sender via different MSRP sessions. For
 example, Alice might be in a conversation with Bob via an MSRP
 session over a TLS protected channel. Alice might then receive a
 different message from Bob over a different session, perhaps with a
 conference server that asserts Bob’s identity in a message/cpim
 envelope signed by the server.

 MSRP does not prohibit multiple simultaneous sessions between the
 same pair of identities. Nor does it prohibit an endpoint sending a
 message on behalf of another identity, such as may be the case for a
 conference server. The recipient’s endpoint should determine its
 level of trust of the authenticity of the sender independently for
 each session. The fact that an endpoint trusts the authenticity of
 the sender on any given session should not affect the level of trust
 it assigns for apparently the same sender on a different session.

Campbell, et al. Standards Track [Page 54]

RFC 4975 MSRP September 2007

 When MSRP clients form or acquire a certificate, they SHOULD ensure
 that the subjectAltName has a GeneralName entry of type
 uniformResourceIdentifier for each URI corresponding to this client
 and should always include an "im:" URI. It is fine if the
 certificate contains other URIs such as "sip:" or "xmpp:" URIs.

 MSRP implementors should be aware of a potential attack on MSRP
 devices that involves placing very large values in the byte-range
 header field, potentially causing the device to allocate very large
 memory buffers to hold the message. Implementations SHOULD apply
 some degree of sanity checking on byte-range values before allocating
 such buffers.

15. IANA Considerations

 This specification instructs IANA to create a new registry for MSRP
 parameters. The MSRP Parameter registry is a container for sub-
 registries. This section further introduces sub-registries for MSRP
 method names, status codes, and header field names.

 Additionally, Section 15.4 through Section 15.7 register new
 parameters in existing IANA registries.

15.1. MSRP Method Names

 This specification establishes the Methods sub-registry under MSRP
 Parameters and initiates its population as follows. New parameters
 in this sub-registry must be published in an RFC (either as an IETF
 submission or RFC Editor submission).

 SEND - [RFC4975]
 REPORT - [RFC4975]

 The following information MUST be provided in an RFC publication in
 order to register a new MSRP method:

 o The method name.
 o The RFC number in which the method is registered.

15.2. MSRP Header Fields

 This specification establishes the header field-Field sub-registry
 under MSRP Parameters. New parameters in this sub-registry must be
 published in an RFC (either as an IETF submission or RFC Editor
 submission). Its initial population is defined as follows:

Campbell, et al. Standards Track [Page 55]

RFC 4975 MSRP September 2007

 To-Path - [RFC4975]
 From-Path - [RFC4975]
 Message-ID - [RFC4975]
 Success-Report - [RFC4975]
 Failure-Report - [RFC4975]
 Byte-Range - [RFC4975]
 Status - [RFC4975]

 The following information MUST be provided in an RFC publication in
 order to register a new MSRP header field:

 o The header field name.
 o The RFC number in which the method is registered.

15.3. MSRP Status Codes

 This specification establishes the Status-Code sub-registry under
 MSRP Parameters. New parameters in this sub-registry must be
 published in an RFC (either as an IETF submission or RFC Editor
 submission). Its initial population is defined in Section 10. It
 takes the following format:

 Code [RFC Number]

 The following information MUST be provided in an RFC publication in
 order to register a new MSRP status code:

 o The status code number.
 o The RFC number in which the method is registered.

15.4. MSRP Port

 MSRP uses TCP port 2855, from the "registered" port range. Usage of
 this value is described in Section 6.

15.5. URI Schema

 This document requests permanent registration the URI schemes of
 "msrp" and "msrps".

15.5.1. MSRP Scheme

 URI Scheme Name: "msrp"
 URI Scheme Syntax: See the ABNF construction for "MSRP-URI" in
 Section 9 of RFC 4975.
 URI Scheme Semantics: See Section 6 of RFC 4975.
 Encoding Considerations: See Section 6 of RFC 4975.

Campbell, et al. Standards Track [Page 56]

RFC 4975 MSRP September 2007

 Applications/Protocols that use this URI Scheme: The Message Session
 Relay Protocol (MSRP).
 Interoperability Considerations: MSRP URIs are expected to be used
 only by implementations of MSRP. No additional interoperability
 issues are expected.
 Security Considerations: See Section 14.1 of RFC 4975 for specific
 security considerations for MSRP URIs, and Section 14 of RFC 4975
 for security considerations for MSRP in general.
 Contact: Ben Campbell (ben@estacado.net).
 Author/Change Controller: This is a permanent registration request.
 Change control does not apply.

15.5.2. MSRPS Scheme

 URI Scheme Name: "msrps"
 URI Scheme Syntax: See the ABNF construction for "MSRP-URI" in
 Section 9 of RFC 4975.
 URI Scheme Semantics: See Section 6 of RFC 4975.
 Encoding Considerations: See Section 6 of RFC 4975.
 Applications/Protocols that use this URI Scheme: The Message Session
 Relay Protocol (MSRP).
 Interoperability Considerations: MSRP URIs are expected to be used
 only by implementations of MSRP. No additional interoperability
 issues are expected.
 Security Considerations: See Section 14.1 of RFC 4975 for specific
 security considerations for MSRP URIs, and Section 14 of RFC 4975
 for security considerations for MSRP in general.
 Contact: Ben Campbell (ben@estacado.net).
 Author/Change Controller: This is a permanent registration request.
 Change control does not apply.

15.6. SDP Transport Protocol

 MSRP defines the new SDP protocol field values "TCP/MSRP" and "TCP/
 TLS/MSRP", which should be registered in the sdp-parameters registry
 under "proto". This first value indicates the MSRP protocol when TCP
 is used as an underlying transport. The second indicates that TLS
 over TCP is used.

 Specifications defining new protocol values must define the rules for
 the associated media format namespace. The "TCP/MSRP" and "TCP/TLS/
 MSRP" protocol values allow only one value in the format field (fmt),
 which is a single occurrence of "*". Actual format determination is
 made using the "accept-types" and "accept-wrapped-types" attributes.

Campbell, et al. Standards Track [Page 57]

RFC 4975 MSRP September 2007

15.7. SDP Attribute Names

 This document registers the following SDP attribute parameter names
 in the sdp-parameters registry. These names are to be used in the
 SDP att-name field.

15.7.1. Accept Types

 Contact Information: Ben Campbell (ben@estacado.net)
 Attribute-name: accept-types
 Long-form Attribute Name: Acceptable media types
 Type: Media level
 Subject to Charset Attribute: No
 Purpose and Appropriate Values: The "accept-types" attribute
 contains a list of media types that the endpoint is willing to
 receive. It may contain zero or more registered media-types, or
 "*" in a space-delimited string.

15.7.2. Wrapped Types

 Contact Information: Ben Campbell (ben@estacado.net)
 Attribute-name: accept-wrapped-types
 Long-form Attribute Name: Acceptable media types Inside Wrappers
 Type: Media level
 Subject to Charset Attribute: No
 Purpose and Appropriate Values: The "accept-wrapped-types" attribute
 contains a list of media types that the endpoint is willing to
 receive in an MSRP message with multipart content, but may not be
 used as the outermost type of the message. It may contain zero or
 more registered media-types, or "*" in a space-delimited string.

15.7.3. Max Size

 Contact Information: Ben Campbell (ben@estacado.net)
 Attribute-name: max-size
 Long-form Attribute Name: Maximum message size
 Type: Media level
 Subject to Charset Attribute: No
 Purpose and Appropriate Values: The "max-size" attribute indicates
 the largest message an endpoint wishes to accept. It may take any
 whole numeric value, specified in octets.

15.7.4. Path

 Contact Information: Ben Campbell (ben@estacado.net)
 Attribute-name: path
 Long-form Attribute Name: MSRP URI Path
 Type: Media level

Campbell, et al. Standards Track [Page 58]

RFC 4975 MSRP September 2007

 Subject to Charset Attribute: No
 Purpose and Appropriate Values: The "path" attribute indicates a
 series of MSRP devices that must be visited by messages sent in
 the session, including the final endpoint. The attribute contains
 one or more MSRP URIs, delimited by the space character.

16. Contributors and Acknowledgments

 In addition to the editors, the following people contributed
 extensive work to this document: Chris Boulton, Paul Kyzivat, Orit
 Levin, Hans Persson, Adam Roach, Jonathan Rosenberg, and Robert
 Sparks.

 The following people contributed substantial discussion and feedback
 to this ongoing effort: Eric Burger, Allison Mankin, Jon Peterson,
 Brian Rosen, Dean Willis, Aki Niemi, Hisham Khartabil, Pekka Pessi,
 Miguel Garcia, Peter Ridler, Sam Hartman, and Jean Mahoney.

17. References

17.1. Normative References

 [1] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.1", RFC 4346, April 2006.

 [2] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [3] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [4] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [7] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
 (S/MIME) Version 3.1 Message Specification", RFC 3851, July
 2004.

 [8] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

Campbell, et al. Standards Track [Page 59]

RFC 4975 MSRP September 2007

 [9] Troost, R., Dorner, S., and K. Moore, "Communicating
 Presentation Information in Internet Messages: The Content-
 Disposition Header Field", RFC 2183, August 1997.

 [10] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [11] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and
 T. Wright, "Transport Layer Security (TLS) Extensions", RFC
 4366, April 2006.

 [12] Klyne, G. and D. Atkins, "Common Presence and Instant Messaging
 (CPIM): Message Format", RFC 3862, August 2004.

 [13] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [14] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
 63, RFC 3629, November 2003.

 [15] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046, November
 1996.

 [16] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509
 Public Key Infrastructure Certificate and Certificate
 Revocation List (CRL) Profile", RFC 3280, April 2002.

 [17] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",
 RFC 4474, August 2006.

 [18] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

17.2. Informative References

 [19] Johnston, A. and O. Levin, "Session Initiation Protocol (SIP)
 Call Control - Conferencing for User Agents", BCP 119, RFC
 4579, August 2006.

 [20] Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo,
 "Best Current Practices for Third Party Call Control (3pcc) in
 the Session Initiation Protocol (SIP)", BCP 85, RFC 3725, April
 2004.

Campbell, et al. Standards Track [Page 60]

RFC 4975 MSRP September 2007

 [21] Sparks, R., Johnston, A., and D. Petrie, "Session Initiation
 Protocol Call Control - Transfer", Work in Progress, October
 2006.

 [22] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and
 D. Gurle, "Session Initiation Protocol (SIP) Extension for
 Instant Messaging", RFC 3428, December 2002.

 [23] Jennings, C., Mahy, R., and A. Roach, "Relay Extensions for the
 Message Session Relay Protocol (MSRP)", RFC 4976, September
 2007.

 [24] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
 Method", RFC 3311, October 2002.

 [25] Jennings, C., Peterson, J., and J. Fischl, "Certificate
 Management Service for SIP", Work in Progress, July 2007.

 [26] Yon, D. and G. Camarillo, "TCP-Based Media Transport in the
 Session Description Protocol (SDP)", RFC 4145, September 2005.

 [27] Peterson, J., "Common Profile for Instant Messaging (CPIM)",
 RFC 3860, August 2004.

 [28] Housley, R., "Triple-DES and RC2 Key Wrapping", RFC 3217,
 December 2001.

 [29] Camarillo, G. and H. Schulzrinne, "Early Media and Ringing Tone
 Generation in the Session Initiation Protocol (SIP)", RFC 3960,
 December 2004.

 [30] Saint-Andre, P., "Extensible Messaging and Presence Protocol
 (XMPP): Instant Messaging and Presence", RFC 3921, October
 2004.

 [31] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [32] Peterson, J., "Address Resolution for Instant Messaging and
 Presence", RFC 3861, August 2004.

Campbell, et al. Standards Track [Page 61]

RFC 4975 MSRP September 2007

Authors’ Addresses

 Ben Campbell (editor)
 Estacado Systems
 17210 Campbell Road
 Suite 250
 Dallas, TX 75252
 USA

 EMail: ben@estacado.net

 Rohan Mahy (editor)
 Plantronics
 345 Encincal Street
 Santa Cruz, CA 95060
 USA

 EMail: rohan@ekabal.com

 Cullen Jennings (editor)
 Cisco Systems, Inc.
 170 West Tasman Dr.
 MS: SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 421-9990
 EMail: fluffy@cisco.com

Campbell, et al. Standards Track [Page 62]

RFC 4975 MSRP September 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Campbell, et al. Standards Track [Page 63]

