
 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

Nancy J. Neigus See Also: RFCs 354, 454, 495
Bolt Beranek and Newman, Inc.
Cambridge, Mass.

 File Transfer Protocol for the ARPA Network

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 PREFACE

This document is the result of several months discussion via RFC
(relevant numbers are 430, 448, 454, 463, 468, 478, 480), followed by a
meeting of the FTP committee at BBN on March 16, followed by further
communication among committee members. There are a considerable number
of changes for the last "official" version, see RFCs 354, 385, but the
gross structure remains the same. The places to look for differences
are (1) in the definitions pf types and modes, (2) in the specification
of the data connection and data sockets, (3) in the command-reply
sequences, (4) in the functions dependent on the TELNET protocol (FTP
has been altered to correspond to the new TELNET spec). The model has
been clarified and enlarged to allow inter-server file transfer, and
several new commands have been added to accommodate more specialized (or
site-specific) functions. It is my belief that this new specificiation
reflects the views expressed by the committee at the above-mentioned
meeting and in subsequent conversations.

The large number of incompatibilities would complicate a phased
implementation schedule, such as is in effect for the TELNET protocol.
Therefore we have assigned a new socket, decimal 21, as a temporary
logger socket for the new version and a change-over date of 1 February
1974. Until that date the old (354, 385) version of FTP will be
available on Socket 3 and the new version (attached) should be
implemented on Socket 21. On 1 February the new version will shift to
Socket 3 and the old disappear from view.

The File Transfer protocol should be considered stable at least until
February, though one should feel free to propose further changes via
RFC. (Implementation of new commands on an experimental basis is
encouraged and should also be reported by RFC.) In addition, members of
the FTP committee may be contacted directly about changes. Based on
attendance at the March 16 meeting, they are:

 Abhay Bhushan MIT-DMCG
 Bob Braden UCLA-CCN
 Bob Bressler BBN-NET
 Bob Clements BBN-TENEX
 John Day ILL-ANTS
 Peter Deutsch PARC-MAXC
 Wayne Hathaway AMES-67
 Mike Kudlick SRI-ARC
 Alex McKenzie BBN-NET
 Bob Merryman UCSD-CC
 Nancy Neigus BBN-NET
 Mike Padlipsky MIT-Multics
 Jim Pepin USC-44
 Ken Pogran MIT-Multics
 Jon Postel UCLA-NMC

 1

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 Milton Reese FNWC
 Brad Reussow HARV-10
 Marc Seriff MIT-DMCG
 Ed Taft HARV-10
 Bob Thomas BBN-TENEX
 Ric Werme CMU-10
 Jim White SRI-ARC

I would especially like to thank Bob Braden, Ken Pogran, Wayne Hathaway,
Jon Postel, Ed Taft and Alex McKenzie for their help in preparing this
document.

NJN/jm

 2

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 FILE TRANSFER PROTOCOL

INTRODUCTION

 The File Transfer Protocol (FTP) is a protocol for file transfer
 between Hosts (including Terminal Interface Message Processors
 (TIPs)) on the ARPA Computer Network (ARPANET). The primary function
 of FTP is to transfer files efficiently and reliably among Hosts and
 to allow the convenient use of remote file storage capabilities.

 The objectives of FTP are 1) to promote sharing of files (computer
 programs and/or data), 2) to encourage indirect or implicit (via
 programs) use of remote computers, 3) to shield a user from
 variations in file storage systems among Hosts, and 4) to transfer
 data reliably and efficiently. FTP, though usable directly by a user
 at a terminal, is designed mainly for use by programs.

 The attempt in this specification is to satisfy the diverse needs of
 users of maxi-Hosts, mini-Hosts, TIPs, and the Datacomputer, with a
 simple, and easily implemented protocol design.

 This paper assumes knowledge of the following protocols described in
 NIC #7104:

 The Host-Host Protocol

 The Initial Connection Protocol

 The TELNET Protocol

DISCUSSION

 In this section, the terminology and the FTP model are discussed.
 The terms defined in this section are only those that have special
 significance in FTP.

 TERMINOLOGY

 ASCII

 The USASCII character set as defined in NIC #7104. In FTP,
 ASCII characters are defined to be the lower half of an
 eight-bit code set (i.e., the most significant bit is zero).

 access controls

 Access controls define users’ access privileges to the use of a
 system, and to the files in that system. Access controls are
 necessary to prevent unauthorized or accidental use of files.

 3

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 It is the prerogative of a server-FTP process to provide access
 controls.

 byte size

 The byte size specified for the transfer of data. The data
 connection is opened with this byte size. The data connection
 byte size is not necessarily the byte size in which data is to
 be stored in a system, nor the logical byte size for
 interpretation of the structure of the data.

 data connection

 A simplex connection over which data is transferred, in a
 specified byte size, mode and type. The data transferred may be
 a part of a file, an entire file or a number of files. The
 path may be between a server-DTP and a user-DTP, or between two
 server-DTPs.

 data socket

 The passive data transfer process "listens" on the data socket
 for an RFC from the active transfer process (server) in order
 to open the data connection. The server has fixed data
 sockets; the passive process may or may not.

 EOF

 The end-of-file condition that defines the end of a file being
 transferred.

 EOR

 The end-of-record condition that defines the end of a record
 being transferred.

 error recovery

 A procedure that allows a user to recover from certain errors
 such as failure of either Host system or transfer process. In
 FTP, error recovery may involve restarting a file transfer at a
 given checkpoint.

 FTP commands

 A set of commands that comprise the control information flowing
 from the user-FTP to the server-FTP process.

 4

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 file

 An ordered set of computer data (including programs), of
 arbitrary length, uniquely identified by a pathname.

 mode

 The mode in which data is to be transferred via the data
 connection. The mode defines the data format during transfer
 including EOR and EOF. The transfer modes defined in FTP are
 described in the Section on Transmission Modes.

 NVT

 The Network Virtual Terminal as defined in the ARPANET TELNET
 Protocol.

 NVFS

 The Network Virtual File System. A concept which defines a
 standard network file system with standard commands and
 pathname conventions. FTP only partially embraces the NVFS
 concept at this time.

 pathname

 Pathname is defined to be the character string which must be
 input to a file system by a user in order to identify a file.
 Pathname normally contains device and/or directory names, and
 file name specification. FTP does not yet specify a standard
 pathname convention. Each user must follow the file naming
 conventions of the file systems he wishes to use.

 record

 A sequential file may be structured as a number of contiguous
 parts called records. Record structures are supported by FTP
 but a file need not have record structure.

 reply

 A reply is an acknowledgment (positive or negative) sent from
 server to user via the TELNET connections in response to FTP
 commands. The general form of a reply is a completion code
 (including error codes) followed by a text string. The codes
 are for use by programs and the text is usually intended for
 human users.

 5

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 server-DTP

 The data transfer process, in its normal "active" state,
 establishes the data connection by RFC to the "listening" data
 socket, sets up parameters for transfer and storage, and
 tranfers data on command from its PI. The DTP can be placed in
 a "passive" state to listen for, rather than initiate, an RFC
 on the data socket.

 server-FTP process

 A process or set of processes which perform the function of
 file transfer in cooperation with a user-FTP process and,
 possibly, another server. The functions consist of a protocol
 interpreter (PI) and a data transfer process (DTP).

 server-PI

 The protocol interpreter "listens" on Socket 3 for an ICP from
 a user-PI and establishes a TELNET communication connection.
 It receives standard FTP commands from the user-PI, sends
 replies, and governs the server-DTP.

 TELNET connections

 The full-duplex communication path between a user-PI and a
 server-PI. The TELNET connections are established via the
 standard ARPANET Initial Connection Protocol (ICP).

 type

 The data representation type used for data transfer and
 storage. Type implies certain transformations between the time
 of data storage and data transfer. The representation types
 defined in FTP are described in the Section on Establishing
 Data Connections.

 user

 A human being or a process on behalf of a human being wishing
 to obtain file transfer service. The human user may interact
 directly with a server-FTP process, but use of a user-FTP
 process is preferred since the protocol design is weighted
 towards automata.

 6

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 user-DTP

 The data transfer process "listens" on the data socket for an
 RFC from a server-FTP process. If two servers are transferring
 data between them, the user-DTP is inactive.

 user-FTP process

 A set of functions including a protocol interpreter, a data
 transfer process and a user interface which together perform
 the function of file transfer in cooperation with one or more
 server-FTP processes. The user interface allows a local
 language to be used in the command-reply dialogue with the
 user.

 user-PI

 The protocol interpreter initiates the ICP to the server-FTP
 process, initiates FTP commands, and governs the user-DTP if
 that process is part of the file transfer.

 THE FTP MODEL

 With the above definitions in mind, the following model (shown in
 Figure 1) may be diagrammed for an FTP service.

 !/---------\!
 !! User !! --------
 !!Interface!<--->! User !
 !\----:----/! --------
 ---------- ! V !
 !/------\! FTP Commands !/---------\!
 !!Server!<-----------------! User !!
 !! PI !----------------->! PI !!
 !\--:---/! FTP Replies !\----:----/!
 ! V ! ! V !
 -------- !/------\! Data !/---------\! --------
 ! File !<--->!Server!<---------------->! User !<--->! File !
 !System! !! DTP !! Connections !! DTP !! !System!
 -------- !\------/! !\---------/! --------
 ---------- -------------

 Server-FTP User-FTP

 NOTES: 1. The data connection may be in either direction.
 2. The data connection need not exist all of the time.

 Figure 1 Model for FTP Use

 7

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 In the model described in Figure 1, the user-protocol interpreter
 initiates the TELNET connections. At the initiation of the user,
 standard FTP commands are generated by the user-PI and transmitted to
 the server process via the TELNET connections. (The user may
 establish a direct TELNET connection to the server-FTP, from a TIP
 terminal for example, and generate standard FTP commands himself,
 by-passing the user-FTP process.) Standard replies are sent from the
 server-PI to the user-PI over the TELNET connections in response to
 the commands.

 The FTP commands specify the parameters for the data connection (data
 socket, byte size, transfer mode, representation type, and structure)
 and the nature of file system operation (store, retrieve, append,
 delete, etc.). The user-DTP or its designate should "listen" on the
 specified data socket, and the server initiate the data connection
 and data transfer in accordance with the specified parameters. It
 should be noted that the data socket need not be in the same Host
 that initiates the FTP commands via the TELNET connections, but the
 user or his user-FTP process must ensure a "listen" on the specified
 data socket. It should also be noted that two data connections, one
 for send and the other for receive, may exist simultaneously.

 In another situation a user might wish to transfer files between two
 Hosts, neither of which is his local Host. He sets up TELNET
 connections to the two servers and then arranges for a data
 connection between them. In this manner control information is
 passed to the user-PI but data is transferred between he server data
 transfer processes. Following is a model of this server-server
 interaction.

 TELNET ------------ TELNET
 -----------! User-FTP !------------
 ! -------->! User-PI !<--------- !
 ! ! ! "C" ! ! !
 V ! ------------ ! V
 -------------- --------------
 ! Server-FTP ! Data Connection ! Server-FTP !
 ! "A" !<-----------------------! "B" !
 -------------- Socket(A) Socket(B) --------------

 Figure 2

 8

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 The protocol requires that the TELNET connections be open while data
 transfer is in progress. It is the responsibility of the user to
 request the closing of the TELNET connections when finished using the
 FTP service, while it is the server who takes the action. The server
 may abort data transfer if the TELNET connections are closed without
 command.

DATA TRANSFER FUNCTIONS

 Files are transferred only via the data connection(s). The TELNET
 connection is used for the transfer of commands, which describe the
 functions to be performed, and the replies to these commands (see the
 Section on FTP Replies). Several commands are concerned with the
 transfer of data between Hosts. These data transfer commands include
 the BYTE, MODE, and SOCKet commands which specify how the bits of the
 data are to be transmitted, and the STRUcture and TYPE commands,
 which are used to define the way in which the data are to be
 represented. The transmission and representation are basically
 independent but "Stream" transmission mode is dependent on the file
 structure attribute and if "Compressed" transmission mode is used the
 nature of the filler byte depends on the representation type.

 DATA REPRESENTATION AND STORAGE

 Data is transferred from a storage device in the sending Host to a
 storage device in the receiving Host. Often it is necessary to
 perform certain transformations on the data because data storage
 representations in the two systems are different. For example,
 NVT-ASCII has different data storage representations in diffeent
 systems. PDP-10’s generally store NVT-ASCII as five 7-bit ASCII
 characters, left-justified in a 36-bit word. 360’s store NVT-ASCII as
 8-bit EBCDIC codes. Multics stores NVT-ASCII as four 9-bit characters
 in a 36-bit word. It may be desirable to convert characters into the
 standard NVT-ASCII representation when transmitting text between
 dissimilar systems. The sending and receiving sites would have to
 perform the necessary transformations between the standard
 representation and their internal representations.

 A different problem in representation arises when transmitting binary
 data (not character codes) between Host systems with different word
 lengths. It is not always clear how the sender should send data, and
 the receiver store it. For example, when transmitting 32-bit bytes
 from a 32-bit word-length system to a 36-bit word-length system, it
 may be desirable (for reasons of efficiency and usefulness) to store
 the 32-bit bytes right-justified in a 36-bit word in the latter
 system. In any case, the user should have the option of specifying
 data representation and transformation functions. It should be noted
 that FTP provides for very limited data type representations.
 Transformations desired beyond this limited capability should be

 9

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 performed by the user directly or via the use of the Data
 Reconfiguration Sevice (DRS, RFC #138, NIC #6715). Additonal
 representation types may be defined later if there is a demonstrable
 need.

 Data representations are handled in FTP by a user specifying a
 representation type. This type may implicitly (as in ASCII or
 EBCDIC) or explicitly (as in Local byte) define a byte size for
 interpretation which is referred to as the "logical byte size." This
 has nothing to do with the byte size used for transmission over the
 data connection(s) (called the "transfer byte size") and the two
 should not be confused. For example, NVT-ASCII has a logical byte
 size of 8 bits but an ASCII file might be transferred using a
 transfer byte size of 32. If the type is Local byte, then the TYPE
 command has an obligatory second parameter specifying the logical
 byte size.

 The types ASCII and EBCDIC also take a second (optional) parameter;
 this is to indicate what kind of vertical format control, if any, is
 associated with a file. The following data representation types are
 defined in FTP:

 ASCII Format

 This is the default type and must be accepted by all FTP
 implementations. It is intended primarily for the transfer of
 text files, except when both Hosts would find the EBCDIC type
 more convenient.

 The sender converts the data from his internal character
 representation to the standard 8-bit NVT-ASCII representation
 (see the TELNET specification). The receiver will convert the
 data from the standard form to his own internal form.

 In accordance with the NVT standard, the <CRLF> sequence should
 be used, where necessary, to denote the end of a line of text.
 (See the discussion of file structure at the end of the Section
 on Data Representation and Storage).

 Using the standard NVT-ASCII representation means that data
 must be interpreted as 8-bit bytes. If the BYTE command (see
 the Section on Transfer Parameter Commands) specifies a
 transfer byte size different from 8 bits, the 8-bit ASCII
 characters should be packed contiguously without regard for
 transfer byte boundaries.

 The Format parameter for ASCII and EBCDIC types is discussed
 below.

 10

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 EBCDIC Format

 This type is intended for efficient transfer between Hosts
 which use EBCDIC for their internal character representation.

 For transmission the data are represented as 8-bit EBCDIC
 characters. The character code is the only difference between
 the functional specifications of EBCDIC and ASCII types.

 End-of-line (as opposed to end-of-record--see the discussion of
 structure) will probably be rarely used with EBCDIC type for
 purposes of denoting structure, but where it is necessary the
 <NL> character should be used.

 A character file may be transferred to a Host for one of three
 purposes: for printing, for storage and later retrieval, or for
 processing. If a file is sent for printing, the receiving Host must
 know how the vertical format control is represented. In the second
 case, it must be possible to store a file at a Host and then retrieve
 it later in exactly the same form. Finally, it ought to be possible
 to move a file from one Host to another and process the file at the
 second Host without undue trouble. A single ASCII or EBCDIC format
 does not satisfy all these conditions and so these types have a
 second parameter specifying one of the following three formats:

 Non-print

 This is the default format to be used if the second (format)
 parameter is omitted. Non-print format must be accepted by all
 FTP implementations.

 The file need contain no vertical format information. If it is
 passed to a printer process, this process may assume standard
 values for spacing and margins.

 Normally, this format will be used with files destined for
 processing or just storage.

 TELNET Format Controls

 The file contains ASCII/EBCDIC vertical format controls (i.e.,
 <CR>, <LF>, <NL>, <VT>, <FF>) which the printer process will
 interpret appropriately. <CRLF>, in exactly this sequence,
 also denotes end-of-line.

 Carriage Control (ASA)

 The file contains ASA (FORTRAN) vertical format control
 characters. (See NWG/RFC #189 Appendix C and Communications of

 11

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 the ACM, Vol. 7, No. 10, 606 (Oct. 1964)). In a line or a
 record, formatted according to the ASA Standard, the first
 character is not to be printed. Instead it should be used to
 determine the vertical movement of the paper which should take
 place before the rest of the record is printed. The ASA
 Standard specifies the following control characters:

 Character Vertical Spacing

 blank Move paper up one line
 0 Move paper up two lines
 1 Move paper to top of next page
 + No movement, i.e., overprint

 Clearly there must be some way for a printer process to
 distinguish the end of the structural entity. If a file has
 record structure (see below) this is no problem; records will
 be explicitly marked during transfer and storage. If the file
 has no record structure, the <CRLF> end-of-line sequence is
 used to separate printing lines, but these format effectors are
 overridden by the ASA controls.

 Image

 The data are sent as contiguous bits which, for transfer, are
 packed into transfer bytes of the size specified in the BYTE
 command. The receiving site must store the data as contiguous
 bits. The structure of the storage system might necessitate
 the padding of the file (or of each record, for a
 record-structured file) to some convenient boundary (byte, word
 or block). This padding, which must be all zeroes, may occur
 only at the end of the file (or at the end of each record) and
 there must be a way of identifying the padding bits so that
 they may be stripped off if the file is retrieved. The padding
 transformation should be well publicized to enable a user to
 process a file at the storage site.

 Image type is intended for the efficient storage and retrieval
 of files and for the transfer of binary data. It is
 recommended that this type be accepted by all FTP
 implementations.

 Local byte Byte size

 The data is transferred in logical bytes of the size specified
 by the obligatory second parameter, Byte size. The value of
 Byte size must be a decimal integer; there is no default value.
 The logical byte size is not necessarily the same as the
 transfer byte size. If there is a difference in byte sizes,

 12

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 then the logical bytes should be packed contiguously,
 disregarding transfer byte boundaries and with any necessary
 padding at the end.

 When the data reaches the receiving Host it will be transformed
 in a manner dependent on the logical byte size and the
 particular Host. This transformation must be invertible (that
 is an identical file can be retrieved if the same parameters
 are used) and should be well publicized by the FTP
 implementors.

 This type is intended for the transfer of structured data. For
 example, a user sending 36-bit floating-point numbers to a Host
 with a 32-bit word could send his data as Local byte with a
 logical byte size of 36. The receiving Host would then be
 expected to store the logical bytes so that they could be
 easily manipulated; in this example putting the 36-bit logical
 bytes into 64-bit double words should suffice.

 A note of caution about parameters: a file must be stored and
 retrieved with the same parameters if the retrieved version is to be
 identical to the version originally transmitted. Conversely, FTP
 implementations must return a file identical to the original if the
 parameters used to store and retrieve a file are the same.

 In addition to different representation types, FTP allows the
 structure of a file to be specified. Currently two file structures
 are recognized in FTP: file-structure, where there is no internal
 structure, and record-structure, where the file is made up of
 records. File-structure is the default, to be assumed if the
 STRUcture command has not been used but both structures must be
 accepted for "text" files (i.e., files with TYPE ASCII or EBCDIC) by
 all FTP implementations. The structure of a file will affect both
 the transfer mode of a file (see the Section on Transmission Modes)
 and the interpretation and storage of the file.

 The "natural" structure of a file will depend on which Host stores
 the file. A source-code file will usually be stored on an IBM 360 in
 fixed length records but on a PDP-10 as a stream of characters
 partitioned into lines, for example by <CRLF>. If the transfer of
 files between such disparate sites is to be useful, there must be
 some way for one site to recognize the other’s assumptions about the
 file.

 With some sites being naturally file-oriented and others naturally
 record-oriented there may be problems if a file with one structure is
 sent to a Host oriented to the other. If a text file is sent with
 record-structure to a Host which is file oriented, then that Host
 should apply an internal transformation to the file based on the

 13

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 record structure. Obviously this transformation should be useful but
 it must also be invertible so that an identical file may be
 retreieved using record structure.

 In the case of a file being sent with file-structure to a
 record-oriented Host, there exists the question of what criteria the
 Host should use to divide the file into records which can be
 processed locally. If this division is necessary the FTP
 implementation should use the end-of-line sequence, <CRLF> for ASCII,
 or <NL> for EBCDIC text files, as the delimiter. If an FTP
 implementation adopts this technique, it must be prepared to reverse
 the transformation if the file is retrieved with file-structure.

 ESTABLISHING DATA CONNECTIONS

 The mechanics of transferring data consists of setting up the data
 connection to the appropriate sockets and choosing the parameters for
 transfer--byte size and mode. Both the user and the server-DTPs have
 default data sockets; these are the two sockets (for send and
 receive) immediately following the standard ICP TELNET socket ,i.e.,
 (U+4) and (U+5) for the user-process and (S+2), (S+3) for the server.
 The use of default sockets will ensure the security of the data
 transfer, without requiring the socket information to be explicitly
 exchanged.

 The byte size for the data connection is specified by the BYTE
 command, or, if left unspecified, defaults to 8-bit bytes. This byte
 size is relevant only for the actual transfer of the data; it has no
 bearing on representation of the data within a Host’s file system.
 The protocol does not require servers to accept all possible byte
 sizes. Since the use of various byte sizes is intended for efficiency
 of transfer, servers may implement only those sizes for which their
 data transfer is efficient including the default byte size of 8 bits.

 The passive data transfer process (this may be a user-DTP or a second
 server-DTP) shall "listen" on the data socket prior to sending a
 transfer request command. The FTP request command determines the
 direction of the data transfer and thus which data socket (odd or
 even) is to be used in establishing the connection. The server, upon
 receiving the transfer request, will initiate the data connection by
 RFC to the appropriate socket using the specified (or default) byte
 size. When the connection is opened, the data transfer begins
 between DTP’s, and the server-PI sends a confirming reply to the
 user-PI.

 It is possible for the user to specify an alternate data socket by
 use of the SOCK command. He might want a file dumped on a TIP line
 printer or retrieved from a third party Host. In the latter case the
 user-PI sets up TELNET connections with both server-PI’s and sends

 14

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 each a SOCK command indicating the fixed data sockets of the other.
 One server is then told (by an FTP command) to "listen" for an RFC
 which the other will initiate and finally both are sent the
 appropriate transfer commands. The exact sequence of commands and
 replies sent between the user-controller and the servers is defined
 in the Section on FTP Replies.

 In general it is the server’s responsibility to maintain the data
 connection--to initiate the RFC’s and the closes. The exception to
 this is when the user-DTP is sending the data in a transfer mode that
 requires the connection to be closed to indicate EOF. The server
 MUST close the data connection under the following conditions:

 1. The server has completed sending data in a transfer mode that
 requires a close to indicate EOF.

 2. The server receives an ABORT command from the user.

 3. The socket or byte size specification is changed by a command
 from the user.

 4. The TELNET connections are closed legally or otherwise.

 5. An irrecoverable error condition occurs.

 Otherwise the close is a server option, the exercise of which he must
 indicate to the user-process by an appropriate reply.

 TRANSMISSION MODES

 The next consideration in transferring data is choosing the
 appropriate transmission mode. There are three modes: one which
 formats the data and allows for restart procedures; one which also
 compresses the data for efficient transfer; and one which passes the
 data with little or no processing. In this last case the mode
 interacts with the structure attribute to determine the type of
 processing. In the compressed mode the representation type
 determines the filler byte.

 All data transfers must be completed with an end-of-file (EOF) which
 may be explicitly stated or implied by the closing of the data
 connection. For files with record structure, all the end-of-record
 markers (EOR) are explicit, including the final one.

 Note: In the rest of this section, byte means "transfer byte" except
 where explicitly stated otherwise.

 15

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 The following transmission modes are defined in FTP:

 Stream

 The data is transmitted as a stream of bytes. There is no
 restriction on the representation type used; record structures
 are allowed, in which case the transfer byte size must be at
 least 3 bits!

 In a record structured file EOR and EOF will each be indicated
 by a two-byte control code of whatever byte size is used for
 the transfer. The first byte of the control code will be all
 ones, the escape character. The second byte will have the low
 order bit on and zeroes elsewhere for EOR and the second low
 order bit on for EOF; that is, the byte will have value 1 for
 EOR and value 2 for EOF. EOR and EOF may be indicated together
 on the last byte transmitted by turning both low order bits on,
 i.e., the value 3. If a byte of all ones was intended to be
 sent as data, it should be repeated in the second byte of the
 control code.

 If the file does not have record structure, the EOF is
 indicated by the sending Host closing the data connection and
 all bytes are data bytes.

 For the purpose of standardized transfer, the sending Host will
 translate his internal end of line or end of record denotation into
 the representation prescribed by the transfer mode and file
 structure, and the receiving Host will perform the inverse
 translation to his internal denotation. An IBM 360 record count
 field may not be recognized at another Host, so the end of record
 information may be transferred as a two byte control code in Stream
 mode or as a flagged bit in a Block or Compressed mode descriptor.
 End of line in an ASCII or EBCDIC file with no record structure
 should be indicated by <CRLF> or <NL>, respectively. Since these
 transformations imply extra work for some systems, identical systems
 transferring non-record structured text files might wish to use a
 binary representation and stream mode for the transfer.

 Block

 The file is transmitted as a series of data blocks preceded by
 one or more header bytes. The header bytes contain a count
 field, and descriptor code. The count field indicates the
 total length of the data block in bytes, thus marking the
 beginning of the next data block (there are no filler bits).
 The descriptor code defines: last block in the file (EOF) last
 block in the record (EOR), restart marker (see the Section on
 Error Recovery and Restart) or suspect data (i.e., the data

 16

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 being transferred is suspected of errors and is not reliable).
 This last code is NOT intended for error control within FTP.
 It is motivated by the desire of sites exchanging certain types
 of data (e.g., seismic or weather data) to send and receive all
 the data despite local errors (such as "magnetic tape read
 errors"), but to indicate in the transmission that certain
 portions are suspect). Record structures are allowed in this
 mode, and any representation type may be used. There is no
 restriction on the transfer byte size.

 The header consists of the smallest integral number of bytes
 whose length is greater than or equal to 24 bits. Only the
 LEAST significant 24 bits (right-justified) of header shall
 have information; the remaining most significant bits are
 "don’t care" bits. Of the 24 bits of header information, the
 16 low order bits shall represent byte count, and the 8 high
 order bits shall represent descriptor codes as shown below.

 Integral number of bytes greater than or equal to 24 bits
 --
 ! Don’t care ! Descriptor ! Byte Count !
 ! 0 to 231 bits ! 8 bits ! 16 bits !
 --

 The descriptor codes are indicated by bit flags in the
 descriptor byte. Four codes have been assigned, where each
 code number is the decimal value of the corresponding bit in
 the byte.

 Code Meaning

 128 End of data block is EOR
 64 End of data block is EOF
 32 Suspected errors in data block
 16 Data block is a restart marker

 With this encoding more than one descriptor coded condition may
 exist for a particular block. As many bits as necessary may be
 flagged.

 The restart marker is embedded in the data stream as an
 integral number of 8-bit bytes representing printable
 characters in the language being used over the TELNET
 connection (e.g., default--NVT-ASCII). These marker bytes are
 right-justified in the smallest integral number of transfer
 bytes greater than or equal to 8 bits. For example, if the

 17

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 byte size is 7 bits, the restart marker byte would be one byte
 right-justified per two 7-bit bytes as shown below:

 Two 7-bit bytes

 ! ! Marker Char !
 ! ! 8 bits !

 If the transfer byte size is 16 or more bits, the maximum
 possible number of complete marker bytes should be packed,
 right-justified, into each transfer byte. The restart marker
 should begin in the first marker byte. If there are any unused
 marker bytes, these should be filled with the character <SP>
 (Space, in the appropriate language). <SP> must not be used
 WITHIN a restart marker. For example, to transmit a
 six-character marker with a 36-bit transfer byte size, the
 following three 36-bit bytes would be sent:

 --
 ! Don’t care !Descriptor! Byte count = 2 !
 ! 12 bits ! code = 16! !
 --

 --
 ! ! Marker ! Marker ! Marker ! Marker !
 ! ! 8 bits ! 8 bits ! 8 bits ! 8 bits !
 --

 --
 ! ! Marker ! Marker ! Space ! Space !
 ! ! 8 bits ! 8 bits ! 8 bits ! 8 bits !
 --

 Compressed

 The file is transmitted as series of bytes of the size
 specified by the BYTE command. There are three kinds of
 information to be sent: regular data, sent in a byte string;
 compressed data, consisting of replications or filler; and
 control information, sent in a two-byte escape sequence. If
 the byte size is B bits and n>0 bytes of regular data are sent,
 these n bytes are preceded by a byte with the left-most bit set
 to 0 and the right-most B-1 bits containing the number n.

 18

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 1 B-1 B B
 ------- ------ ------
 Byte string: !0! n ! !d(1)!...!d(n)!
 ------- ------ ------
 ^ ^
 !---n bytes---!
 of data

 String of n data bytes d(1),..., d(n)
 Count n must be positive

 To compress a string of n replications of the data byte d, the
 following 2 bytes are sent:

 2 B-2 B
 --------------- ------
 Replicated Byte: ! 1 0 ! n ! ! d !
 --------------- ------

 A string of n filler bytes can be compressed into a single
 byte, where the filler byte varies with the representation
 type. If the type is ASCII or EBCDIC the filler byte is <SP>
 (Space, ASCII code 32., EBCDIC code 64). If the transfer byte
 size is not 8, the expanded byte string should be filled with
 8-bit <SP> characters in the manner described in the definition
 of ASCII representation type (see the Section on Data
 Representation and Storage). If the type is Image or Local
 byte the filler is a zero byte.

 2 B-2

 Filler String: ! 1 1 ! n !

 The escape sequence is a double byte, the first of which is the
 escape byte (all zeroes) and the second of which contains
 descriptor codes as defined in Block mode. This implies that
 the byte size must be at least 8 bits, which is not much of a
 restriction for efficiency in this mode. The descriptor codes
 have the same meaning as in Block mode and apply to the
 succeeding string of bytes.

 Compressed mode is useful for obtaining increased bandwidth on
 very large network transmissions at a little extra CPU cost.
 It is most efficient when the byte size chosen is that of the
 word size of the transmitting Host, and can be most effectively
 used to reduce the size of printer files such as those
 generated by RJE Hosts.

 19

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 ERROR RECOVERY AND RESTART

 There is no provision for detecting bits lost or scrambled in data
 transfer. This issue is perhaps handled best at the NCP level where
 it benefits most users. However, a restart procedure is provided to
 protect users from gross system failures (including failures of a
 Host, an FTP-process, or the IMP subnet).

 The restart procedure is defined only for the block and compressed
 modes of data transfer. It requires the sender of data to insert a
 special marker code in the data stream with some marker information.
 The marker information has meaning only to the sender, but must
 consist of printable characters in the default or negotiated language
 of the TELNET connection. The marker could represent a bit-count, a
 record-count, or any other information by which a system may identify
 a data checkpoint. The receiver of data, if it implements the
 restart procedure, would then mark the corresponding position of this
 marker in the recieving system, and return this information to the
 user.

 In the event of a system failure, the user can restart the data
 transfer by identifying the marker point with the FTP restart
 procedure. The following example illustrates the use of the restart
 procedure.

 The sender of the data inserts an appropriate marker block in the
 data stream at a convenient point. The receiving Host marks the
 corresponding data point in its file system and conveys the last
 known sender and receiver marker information to the user, either
 directly or over the TELNET connection in a 251 reply (depending on
 who is the sender). In the event of a system failure, the user or
 controller process restarts the server at the last server marker by
 sending a restart command with server’s marker code as its argument.
 The restrart command is transmitted over the TELNET connection and is
 immediately followed by the command (such as RETR, STOR or LIST)
 which was being executed when the system failure occurred.

FILE TRANSFER FUNCTIONS

 The communication channel from the user-PI to the server-PI is
 established by ICP from the user to a standard server socket. The
 user protocol interpreter is responsible for sending FTP commands and
 interpreting the replies received; the server-PI interprets commands,
 sends replies and directs its DTP to set up the data connection and
 transfer the data. If the second party to the data transfer (the
 passive transfer process) is the user-DTP then it is governed through
 the internal protocol of the user-FTP Host; if it is a second
 server-DTP then it is governed by its PI on command from the user-PI.

 20

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 FTP COMMANDS

 The File Transfer Protocol follows the specifications of the TELNET
 protocol for all communications over the TELNET connection - see NIC
 #7104. Since, in the future, the language used for TELNET
 communication may be a negotiated option, all references in the next
 two sections will be to the "TELNET language" and the corresponding
 "TELNET end of line code". Currently one may take these to mean
 NVT-ASCII and <CRLF>. No other specifications of the TELNET protocol
 will be cited.

 FTP commands are "TELNET strings" terminated by the "TELNET end of
 line code". The command codes themselves are alphabetic characters
 terminated by the character <SP> (Space) if parameters follow and
 TELNET-EOL otherwise. The command codes and the semantics of
 commands are described in this section; the detailed syntax of
 commands is specified in the Section on Commands, the reply sequences
 are discussed in the Section on Sequencing of Commands and Replies,
 and scenarios illustrating the use of commands are provided in the
 Section on Typical FTP Scenarios.

 FTP commands may be partitioned as those specifying access-control
 identifiers, data transfer parameters, or FTP service requests.
 Certain commands (such as ABOR, STAT, BYE) may be sent over the
 TELNET connections while a data transfer is in progress. Some
 servers may not be able to monitor the TELNET and data connections
 simultaneously, in which case some special action will be necessary
 to get the server’s attention. The exact form of the "special
 action" is related to decisions currently under review by the TELNET
 committee; but the following ordered format is tentatively
 recommended:

 1. User system inserts the TELNET "Interrupt Process" (IP) signal
 in the TELNET stream.

 2. User system sends the TELNET "Synch" signal

 3. User system inserts the command (e.g., ABOR) in the TELNET
 stream.

 4. Server PI,, after receiving "IP", scans the TELNET stream for
 EXACTLY ONE FTP command.

 (For other servers this may not be necessary but the actions listed
 above should have no unusual effect.)

 21

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 ACCESS CONTROL COMMANDS

 The following commands specify access control identifiers (command
 codes are shown in parentheses).

 USER NAME (USER)

 The argument field is a TELNET string identifying the user.
 The user identification is that which is required by the server
 for access to its file system. This command will normally be
 the first command transmitted by the user after the TELNET
 connections are made (some servers may require this).
 Additional identification information in the form of a password
 and/or an account command may also be required by some servers.
 Servers may allow a new USER command to be entered at any point
 in order to change the access control and/or accounting
 information. This has the effect of flushing any user,
 password, and account information already supplied and
 beginning the login sequence again. All transfer parameters
 are unchanged and any file transfer in progress is completed
 under the old acccount.

 PASSWORD (PASS)

 The argument field is a TELNET string identifying the user’s
 password. This command must be immediately preceded by the
 user name command, and, for some sites, completes the user’s
 identification for access control. Since password information
 is quite sensitive, it is desirable in general to "mask" it or
 suppress typeout. It appears that the server has no foolproof
 way to achieve this. It is therefore the responsibility of the
 user-FTP process to hide the sensitive password information.

 ACCOUNT (ACCT)

 The argument field is a TELNET string identifying the user’s
 account. The command is not necessarily related to the USER
 command, as some sites may require an account for login and
 others only for specific access, such as storing files. In the
 latter case the command may arrive at any time. There are two
 reply codes to differentiate these cases for the automaton:
 when account information is required for login, the response to
 a successful PASSword command is reply code 331; then if a
 command other than ACCounT is sent, the server may remember it
 and return a 331 reply, prepared to act on the command after
 the account information is received; or he may flush the
 command and return a 433 reply asking for the account. On the
 other hand, if account information is NOT required for login,
 the reply to a successful PASSword command is 230; and if the

 22

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 information is needed for a command issued later in the
 dialogue, the server should return a 331 or 433 reply depending
 on whether he stores (pending receipt of the ACCounT command)
 or discards the command, respectively.

 REINITIALIZE (REIN)

 This command terminates a USER, flushing all I/O and account
 information, except to allow any transfer in progress to be
 completed. All parameters are reset to the default settings
 and the TELNET connection is left open. This is identical to
 the state in which a user finds himself immediately after the
 ICP is completed and the TELNET connections are opened. A USER
 command may be expected to follow.

 LOGOUT (BYE)

 This command terminates a USER and if file transfer is not in
 progress, the server closes the TELNET connection. If file
 transfer is in progress, the connection will remain open for
 result response and the server will then close it. If the
 user-process is transferring files for several USERs but does
 not wish to close and then reopen connections for each, then
 the REIN command should be used instead of BYE.

 An unexpected close on the TELNET connection will cause the
 server to take the effective action of an abort (ABOR) and a
 logout (BYE).

 TRANSFER PARAMETER COMMANDS

 All data transfer parameters have default values, and the commands
 specifying data transfer parameters are required only if the default
 parameter values are to be changed. The default value is the last
 specified value, or if no value has been specified, the standard
 default value as stated here. This implies that the server must
 "remember" the applicable default values. The commands may be in any
 order except that they must precede the FTP service request. The
 following commands specify data transfer parameters.

 BYTE SIZE (BYTE)

 The argument is a decimal integer (1 through 255) specifying
 the byte size for the data connection. The default byte size
 is 8 bits. A server may reject certain byte sizes that he has
 not implemented.

 23

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 DATA SOCKET (SOCK)

 The argument is a HOST-SOCKET specification for the data socket
 to be used in data connection. There may be two data sockets,
 one for transfer from the "active" DTP to the "passive" DTP and
 one for "passive" to "active". An odd socket number defines a
 send socket and an even socket number defines a receive socket.
 The default HOST is the user Host to which TELNET connections
 are made. The default data sockets are (U+4) and (U+5) where U
 is the socket number used in the TELNET ICP and the TELNET
 connections are on sockets (U+2) and (U+3). The server has
 fixed data sockets (S+2) and (S+3) as well, and under normal
 circimstances this command and its reply are not needed.

 PASSIVE (PASV)

 This command requests the server-DTP to "listen" on both of his
 data sockets and to wait for an RFC to arrive for one socket
 rather than initiate one upon receipt of a transfer command.
 It is assumed the server has already received a SOCK command to
 indicate the foreign socket from which the RFC will arrive to
 ensure the security of the transfer.

 REPRESENTATION TYPE (TYPE)

 The argument specifies the representation type as described in
 the Section on Data Representation and Storage. Several types
 take a second parameter. The first parameter is denoted by a
 single TELNET character, as is the second Format parameter for
 ASCII and EBCDIC; the second parameter for local byte is a
 decimal integer to indicate Bytesize. The parameters are
 separated by a <SP> (Space, ASCII code 32.). The following
 codes are assigned for type:

 \ /
 A - ASCII ! ! N - Non-print
 !-><-! T - TELNET format effectors
 E - EBCDIC! ! C - Carriage Control (ASA)
 / \
 I - Image

 L # - Local byte Bytesize

 The default representation type is ASCII Non-print. If the
 Format parameter is changed, and later just the first argument
 is changed, Format then returns to the Non-print default.

 24

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 FILE STRUCTURE (STRU)

 The argument is a single TELNET character code specifying file
 structure described in the Section on Data Representation and
 Storage. The following codes are assigned for structure:

 F - File (no record structure)
 R - Record structure

 The default structure is File (i.e., no records).

 TRANSFER MODE (MODE)

 The argument is a single TELNET character code specifying the
 data transfer modes described in the Section on Transmission
 Modes. The following codes are assigned for transfer modes:

 S - Stream
 B - Block
 C - Compressed

 The default transfer mode is Stream.

 FTP SERVICE COMMANDS

 The FTP service commands define the file transfer or the file system
 function requested by the user. The argument of an FTP service
 command will normally be a pathname. The syntax of pathnames must
 conform to server site conventions (with standard defaults
 applicable), and the language conventions of the TELNET connection.
 The suggested default handling is to use the last specified device,
 directory or file name, or the standard default defined for local
 users. The commands may be in any order except that a "rename from"
 command must be followed by a "rename to" command and the restart
 command must be followed by the interrupted service command. The
 data, when transferred in response to FTP service commands, shall
 always be sent over the data connection, except for certain
 informative replies. The following commands specify FTP service
 requests:

 RETRIEVE (RETR)

 This command causes the server-DTP to transfer a copy of the
 file, specified in the pathname, to the server- or user-DTP at
 the other end of the data connection. The status and contents
 of the file at the server site shall be unaffected.

 25

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 STORE (STOR)

 This command causes the server-DTP to accept the data
 transferred via the data connection and to store the data as a
 file at the server site. If the file specified in the pathname
 exists at the server site then its contents shall be replaced
 by the data being transferred. A new file is created at the
 server site if the file specified in the pathname does not
 already exist.

 APPEND (with create) (APPE)

 This command causes the server-DTP to accept the data
 transferred via the data connection and to store the data in a
 file at the server site. If the file specified in the pathname
 exists at the server site, then the data shall be appended to
 that file; otherwise the file specified in the pathname shall
 be created at the server site.

 ALLOCATE (ALLO)

 This command may be required by some servers to reserve
 sufficient storage to accommodate the new file to be
 transferred. The argument shall be a decimal integer
 representing the number of bytes (using the logical byte size)
 of storage to be reserved for the file. For files sent with
 record structure a maximum record size (in logical bytes) might
 also be necessary; this is indicated by a decimal integer in a
 second argument field of the command. This second argument is
 optional, but when present should be separated from the first
 by the three TELNET characters <SP> R <SP>. This command shall
 be followed by a STORe or APPEnd command. The ALLO command
 should be treated as a NOOP (no operation) by those servers
 which do not require that the maximum size of the file be
 declared beforehand, and those servers interested in only the
 maximum record size should accept a dummy value in the first
 argument and ignore it.

 RESTART (REST)

 The argument field represents the server marker at which file
 transfer is to be restarted. This command does not cause file
 transfer but "spaces" over the file to the specified data
 checkpoint. This command shall be immediately followed by the
 appropriate FTP service command which shall cause file transfer
 to resume.

 26

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 RENAME FROM (RNFR)

 This command specifies the file which is to be renamed. This
 command must be immediately followed by a "rename to" command
 specifying the new file pathname.

 RENAME TO (RNTO)

 This command specifies the new pathname of the file specified
 in the immediately preceding "rename from" command. Together
 the two commands cause a file to be renamed.

 ABORT (ABOR)

 This command indicates to the server to abort the previous FTP
 service command and any associated transfer of data. The abort
 command may require "special action", as discussed in the
 Section on FTP Commands, to force recognition by the server.
 No action is to be taken if the previous command has been
 completed (including data transfer). The TELNET connections
 are not to be closed by the server, but the data connection
 must be closed. An appropriate reply should be sent by the
 server in all cases.

 DELETE (DELE)

 This command causes the file specified in the pathname to be
 deleted at the server site. If an extra level of protection is
 desired (such as the query, "DO you really wish to delete?"),
 it should be provided by the user-FTP process.

 LIST (LIST)

 This command causes a list to be sent from the server to the
 passive DTP. If the pathname specifies a directory, the server
 should transfer a list of files in the specified directory. If
 the pathname specifies a file then the server should send
 current information on the file. A null argument implies the
 user’s current working or default directory. The data transfer
 is over the data connection in type ASCII or type EBCDIC. (The
 user must ensure that the TYPE is appropriately ASCII or
 EBCDIC).

 NAME-LIST (NLST)

 This command causes a directory listing to be sent from server
 to user site. The pathname should specify a directory or other
 system-specific file group descriptor; a null argument implies
 the current directory. The server will return a stream of

 27

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 names of files and no other information. The data will be
 transferred in ASCII or EBCDIC type over the data connection as
 valid pathname strings separated by <CRLF> or <NL>. (Again the
 user must ensure that the TYPE is correct.)

 SITE PARAMETERS (SITE)

 This command is used by the server to provide services specific
 to his system that are essential to file transfer but not
 sufficiently universal to be included as commands in the
 protocol. The nature of these services and the specification
 of their syntax can be stated in a reply to the HELP SITE
 command.

 STATUS (STAT)

 This command shall cause a status response to be sent over the
 TELNET connection in the form of a reply. The command may be
 sent during a file transfer (along with the TELNET IP and Synch
 signals--see the Section on FTP Commands) in which case the
 server will respond with the status of the operation in
 progress, or it may be sent between file transfers. In the
 latter case the command may have an argument field. If the
 argument is a pathname, the command is analogous to the "list"
 command except that data shall be trasferred over the TELNET
 connection. If a partial pathname is given, the server may
 respond with a list of file names or attributes associated with
 that specification. If no argument is given, the server should
 return general status information about the server FTP process.
 This should include current values of all transfer parameters
 and the status of connections.

 HELP (HELP)

 This command shall cause the server to send helpful information
 regarding its implementation status over the TELNET connection
 to the user. The command may take an argument (e.g., any
 command name) and return more specific information as a
 response. The reply is type Oxx, general system status. It is
 suggested that HELP be allowed before entering a USER command.
 The server may use this reply to specify site-dependent
 parameters, e.g., in response to HELP SITE.

 NOOP (NOOP)

 This command does not affect any parameters or previously
 entered commands. It specifies no action other than that the
 server send a 200 reply.

 28

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 MISCELLANEOUS COMMANDS

 There are several functions that utilize the services of file
 transfer but go beyond it in scope. These are the Mail and Remote
 Job Entry functions. It is suggested that these become auxiliary
 protocols that can assume recognition of file transfer commands on
 the part of the server, i.e., they may depend on the core of FTP
 commands. The command sets specific to Mail and RJE will be given in
 separate documents.

 Commands that are closely related to file transfer but not proven
 essential to the protocol may be implemented by servers on an
 experimental basis. The command name should begin with an X and may
 be listed in the HELP command. The official command set is
 expandable from these experiments; all experimental commands or
 proposals for expanding the official command set should be announced
 via RFC. An example of a current experimental command is:

 Change Working Directory (XCWD)

 This command allows the user to work with a different directory
 or dataset for file storage or retrieval without altering his
 login or accounting information. Transfer parameters are
 similarly unchanged. The argument is a pathname specifying a
 directory or other system dependent file group designator.

 FTP REPLIES

 The server sends FTP replies over the TELNET connection in response
 to user FTP commands. The FTP replies constitute the acknowledgment
 or completion code (including errors). The FTP-server replies are
 formatted for human or program interpretation. Single line replies
 consist of a leading three-digit numeric code followed by a space,
 followed by a one-line text explanation of the code. For replies
 that contain several lines of text, the first line will have a
 leading three-digit numeric code followed immediately by the
 character "-" (Hyphen, ASCII code 45), and possibly some text. All
 succeeding continuation lines except the last are constrained NOT to
 begin with three digits; the last line must repeat the numeric code
 of the first line and be followed immediately by a space. For
 example:

 100-First Line
 Continuation Line
 Another Line
 100 Last Line

 It is possible to nest (but not overlap) a reply withiin a multi-line

 29

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 reply. The same format for matched number-coded first and last lines
 holds.

 The numeric codes are assigned by groups and for ease of
 interpretation by programs in a manner consistent with other
 protocols such as the RJE protocol. The three digits of the code are
 to be interpreted as follows:

 1. The first digit specifies type of response as indicated below:

 0xx These replies are purely informative and constitute
 neither a positive nor a negative acknowledgment.

 1xx Informative replies to status inquiries. These constitute
 a positive acknowledgment to the status command.

 2xx Positive acknowledgment of previous command or other
 successful action.

 3xx Incomplete information. Activity cannot proceed without
 further specification and input.

 4xx Unsuccessful reply. The request is correctly specified
 but the server is unsuccessful in correctly fulfilling it.

 5xx Incorrect or illegal command. The command or its
 parameters were invalid or incomplete from a syntactic
 viewpoint, or the command is inconsistent with a previous
 command. The command in question has been completely
 ignored.

 6xx-9xx Reserved for future expansion.

 2. The second digit specifies the general category to which the
 response refers:

 x00-x29 General purpose replies, not assignable to other
 categories.

 x3x Primary access. Informative replies to the "log-on"
 attempt.

 x4x Secondary access. The primary server is commenting on its
 ability to access a secondary service.

 x5x FTP results.

 x6x RJE results.

 30

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 x7x Mail Portocol results.

 x8x-x9x Reserved for future expansion.

 3. The final digit specifies a particular message type. Since the
 code is designed for an automaton process to interpret, it is
 not necessary for every variation of a reply to have a unique
 number. Only the basic meaning of replies need have unique
 numbers. The text of a reply can explain the specific reason
 for that reply to a human user.

 Each TELNET line delimited by a numeric code and the TELNET EOL (or
 group of text lines bounded by coded lines) that is sent by the
 server is intended to be a complete reply message. It should be noted
 that the text of replies is intended for a human user. Only the reply
 codes and in some instances the first line of text are intended for
 programs.

 The assigned reply codes relating to FTP are:

 000 Announcing FTP.
 010 Message from system operator.
 020 Exected delay.
 030 Server availability information.
 050 FTP commentary or user information.
 100 System status reply.
 110 System busy doing...
 150 File status reply.
 151 Directory listing reply.
 200 Last command received correctly.
 201 An ABORT has terminated activity, as requested.
 202 Abort request ignored, no activity in progress.
 230 User is "logged in". May proceed.
 231 User is "logged out". Service terminated.
 232 Logout command noted, will complete when transfer done.
 233 User is "logged out". Parameters reinitialized.
 250 FTP file transfer started correctly.
 251 FTP Restart-marker reply.
 Text is: MARK yyyy = mmmm
 where ’yyyy’ is user’s data stream marker (yours)
 and mmmm is server’s equivalent marker (mine)
 (Note the spaces between the markers and ’=’).
 252 FTP transfer completed correctly.
 253 Rename completed.
 254 Delete completed.
 257 Closing the data connection, transfer completed.
 300 Connection greeting message, awaiting input.
 301 Current command incomplete (no <CRLF> for long time).
 330 Enter password.

 31

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 331 Enter account (if account required as part of login sequence).
 332 Login first, please.
 400 This service not implemented.
 401 This service not accepting users now, goodbye.
 402 Command not implemented for requested value or action.
 430 Log-on time or tries exceeded, goodbye.
 431 Log-on unsuccessful. User and/or password invalid.
 432 User not valid for this service.
 433 Cannot transfer files without valid account. Enter account and
 resend command.
 434 Log-out forced by operator action. Phone site.
 435 Log-out forced by system problem.
 436 Service shutting down, goodbye.
 450 FTP: File not found.
 451 FTP: File access denied to you.
 452 FTP: File transfer incomplete, data connection closed.
 453 FTP: File transfer incomplete, insufficient storage space.
 454 FTP: Cannot connect to your data socket.
 455 FTP: File system error not covered by other reply codes.
 456 FTP: Name duplication; rename failed.
 457 FTP: Transfer parameters in error.
 500 Last command line completely unrecognized.
 501 Syntax of last command is incorrect.
 502 Last command incomplete, parameters missing.
 503 Last command invalid (ignored), illegal parameter combination.
 504 Last command invalid, action not possible at this time.
 505 Last command conflicts illegally with previous command(s).
 506 Last command not implemented by the server.
 507 Catchall error reply.
 550 Bad pathname specification (e.g., syntax error).

 32

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

DECLARATIVE SPECIFICATIONS

 MINIMUM IMPLEMENTATION

 In order to make FTP workable without needless error messages, the
 following minimum implementation is required for servers:

 TYPE - ASCII Non-print
 MODE - Stream
 STRUCTURE - File
 Record
 BYTE - 8
 COMMANDS - USER, BYE, SOCK,
 TYPE, BYTE, MODE, STRU,
 for the default values
 RETR, STOR,
 NOOP.

 The initial default values for transfer parameters are:

 TYPE - ASCII Non-print
 BYTE - 8
 MODE - Stream
 STRU - File

 All Hosts must accept the above as the standard defaults.

 CONNECTIONS

 The server protocol interpreter shall "listen" on Socket 3. The user
 or user protocol interpreter shall initiate the full-duplex TELNET
 connections performing the ARPANET standard initial connection
 protocol (ICP) to server Socket 3. Server- and user- processes
 should follow the conventions of the TELNET protocol as specified in
 NIC #7104. Servers are under no obligation to provide for editing of
 command lines and may specify that it be done in the user Host. The
 TELNET connections shall be closed by the server at the user’s
 request after all transfers and replies are completed.

 The user-DTP must "listen" on the specified data sockets (send and/or
 receive); these may be the default user sockets (U+4) and (U+5) or a
 socket specified in the SOCK command. The server shall initiate the
 data connection from his own fixed sockets (S+2) and (S+3) using the
 specified user data socket and byte size (default - 8 bits). The

 33

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 direction of the transfer and the sockets used will be determined by
 the FTP service command.

 When data is to be transferred between two servers, A and B (refer to
 Figure 2), the user-PI, C, sets up TELNET connections with both
 server-PI’s. He then sends A’s fixed sockets, S(A), to B in a SOCK
 command and B’s to A; replies are returned. One of the servers, say
 A, is then sent a PASV command telling him to "listen" on his data
 sockets rather than initiate an RFC when he receives a transfer
 service command. When the user-PI receives an acknowledgment to the
 PASV command, he may send (in either order) the corresponding service
 commands to A and B. Server B initiates the RFC and the transfer
 proceeds. The command-reply sequence is listed below where the
 messages are vertically synchronous but horizontally asynchronous:

 User-PI - Server A User-PI - Server B
 ------------------ ------------------

 C->A : ICP C->B : ICP
 C->A : SOCK HOST-B, SKT-S(B) C->B : SOCK HOST-A, SKT-S(A)
 A->C : 200 Okay B->C : 200 Okay
 C->A : PASV
 A->C : 200 Okay
 C->A : STOR C->B : RETR

 The data connection shall be closed by the server under the
 conditions described in the Section on Establishing Data Connections.
 If the server wishes to close the connection after a transfer where
 it is not required, he should do so immediately after the file
 transfer is completed. He should not wait until after a new transfer
 command is received because the user-process will have already tested
 the data connection to see if it needs to do a "listen"; (recall that
 the user must "listen" on a closed data socket BEFORE sending the
 transfer request). To prevent a race condition here, the server
 sends a secondary reply (257) after closing the data connection (or
 if the connection is left open, a "file transfer completed" reply
 (252) and the user-PI should wait for one of these replies before
 issuing a new transfer command.

 COMMANDS

 The commands are TELNET character string transmitted over the TELNET
 connections as described in the Section on FTP Commands. The command
 functions and semantics are described in the Section on Access
 Control Commands, Transfer Parameter Commands, FTP Service Commands,
 and Miscellaneous Commands. The command syntax is specified here.

 The commands begin with a command code followed by an argument field.

 34

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 The command codes are four or fewer alphabetic characters. Upper and
 lower case alphabetic characters are to be treated identically. Thus
 any of the following may represent the retrieve command:

 RETR Retr retr ReTr rETr

 This also applies to any symbols representing parameter values, such
 as A or a for ASCII TYPE. The command codes and the argument fields
 are separated by one or more spaces.

 The argument field consists of a variable length character string
 ending with the character sequence <CRLF> (Carriage Return, Linefeed)
 for NVT-ASCII representation; for other negotiated languages a
 different end of line character might be used. It should be noted
 that the server is to take NO action until the end of line code is
 received.

 The syntax is specified below in NVT-ASCII. All characters in the
 argument field are ASCII characters including any ASCII represented
 decimal integers. Square brackets denote an optional argument field.
 If the option is not taken, the appropriate default is implied.

 The following are all the currently defined FTP commmands:

 USER <SP> <username> <CRLF>
 PASS <SP> <password> <CRLF>
 ACCT <SP> <acctno> <CRLF>
 REIN <CRLF>
 BYE <CRLF>
 BYTE <SP> <byte size> <CRLF>
 SOCK <SP> <Host-socket> <CRLF>
 PASV <CRLF>
 TYPE <SP> <type code> <CRLF>
 STRU <SP> <structure code> <CRLF>
 MODE <SP> <mode code> <CRLF>
 RETR <SP> <pathname> <CRLF>
 STOR <SP> <pathname> <CRLF>
 APPE <SP> <pathname> <CRLF>
 ALLO <SP> <decimal integer> [<SP> R <SP> <decimal integer>] <CRLF>
 REST <SP> <marker> <CRLF>
 RNFR <SP> <pathname> <CRLF>
 RNTO <SP> <pathname> <CRLF>
 ABOR <CRLF>
 DELE <SP> <pathname> <CRLF>
 LIST [<SP> <pathname>] <CRLF>
 NLST [<SP> <pathname>] <CRLF>
 SITE <SP> <string> <CRLF>
 STAT [<SP> <pathname>] <CRLF>
 HELP [<SP> <string>] <CRLF>

 35

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 NOOP <CRLF>

 The syntax of the above argument fields (using BNF notation where
 applicable) is:

 <username> ::= <string>
 <password> ::= <string>
 <acctno> ::= <string>
 <string> ::= <char>|<char><string>
 <char> ::= any of the 128 ASCII characters except <CR> and <LF>
 <marker> ::= <pr string>
 <pr string> ::= <pr char>|<pr char><pr string>
 <pr char> ::= any ASCII code 33. through 126., printable
 characters
 <byte size> ::= any decimal integer 1 through 255
 <Host-socket> ::= <socket>|<Host number>, <socket>
 <Host-number> ::= a decimal integer specifying an ARPANET Host.
 <socket> ::= decimal integer between 0 and (2**32)-1
 <form code> ::= N|T|C
 <type code> ::= A[<SP> <form code>]|E [SP> <form code>]|I|
 L <SP> <byte size>
 <structure code> ::= F|R
 <mode code> ::= S|B|C
 <pathname> ::= <string>

 SEQUENCING OF COMMANDS AND REPLIES

 The communication between the user and server is intended to be an
 alternating dialogue. As such, the user issues an FTP command and
 the server responds with a prompt primary reply. The user should
 wait for this initial primary success or failure response before
 sending further commands.

 Certain commands require a second reply for which the user should
 also wait. These replies may, for example, report on the progress or
 completion of file transfer or the closing of the data connection.
 They are secondary replies to file transfer commands.

 The third class of replies are informational and spontaneous replies
 which may arrive at any time. The user-PI should be prepared to
 receive them. These replies are listed below as sponteneous.

 One important group of spontaneous replies is the connection
 greetings. Under normal circumstances, a server will send a 300
 reply, "awaiting input", when the ICP is completed. The user should
 wait for this greeting message before sending any commands. If the
 server is unable to accept input right away, he should send a 000
 "announcing FTP" or a 020 "expected delay" reply immediately and a

 36

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 300 reply when ready. The user will then know not to hang up if
 there is a delay.

 The table below lists alternative success and failure replies for
 each command. These must be strictly adhered to; a server may
 substitute text in the replies, but the meaning and action implied by
 the code numbers and by the specific command reply sequence cannot be
 altered.

 COMMAND-REPLY CORRESPONDENCE TABLE

 COMMAND SUCCESS FAILURE

 USER 230,330 430-432,500-505,507
 PASS 230,330 430-432,500-507
 ACCT 230 430-432,500-507
 REIN 232,233 401,436,500-507
 Secondary Reply 300
 BYE 231,232 500-505,507
 BYTE 200,331 402,500-505,507
 SOCK 200,331 500-505,507
 PASV 200,331 500-507
 TYPE 200,331 402,500-505,507
 STRU 200,331 500-505,507
 MODE 200,331 402,500-505,507
 RETR 250 402,433,450,451,454,455,457,
 500-505,507,550
 Secondary Reply 252,257 452
 STOR 250 402,433,451,454,455,457,
 500-505,507,550
 Secondary Reply 252,257 452,453
 APPE 250 402,433,451,454,455,457,500-507,
 550
 Secondary Reply 252,257 452,453
 ALLO 200,331 402,500-507
 REST 200,331 500-507
 RNFR 200 402,433,450,451,455,500-507,550
 RNTO 253 402,433,450,451,455,456,500-507,
 550
 ABOR 201,202,331 500-507
 DELE 254 402,433,450,451,455,500-507,550
 LIST 250 402,433,450,451,454,455,457,
 500-507,550
 Secondary Reply 252,257 452
 NLST 250 402,433,450,451,454,455,457,
 500-507,550
 Secondary Reply 252,257 452
 SITE 200,331 402,500-507

 37

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 STAT 100,110, 450,451,455,500-507,550
 150,151,331
 HELP 030,050 500-507
 NOOP 200 500-505,507
 Spontaneous Replies 000,010,020, 400,401,434-436
 300,301,251,255

 TYPICAL FTP SCENARIOS

 TIP User wanting to transfer file from Host X to local printer:

 1. TIP user opens TELNET connections by ICP to Host X socket 3.

 2. The following commands and replies are exchanged:

 TIP HOST X

 <---------- 300 Awaiting input <CRLF>
 USER username <CRLF> ---------->
 <---------- 330 Enter Password <CRLF>
 PASS password <CRLF> ---------->
 <---------- 230 User logged in <CRLF>
 SOCK 65538 <CRLF> ---------->
 <---------- 200 Commmand received OK<CRLF>
 RETR this.file <CRLF> ---------->
 (Host X initiates data connection to TIP socket 65538,
 i.e., PORT 1 receive)
 <---------- 250 File transfer started <CRLF>
 <---------- 252 File transfer completed <CRLF>
 BYE<CRLF> ---------->
 <---------- 231 User logged out <CRLF>

 3. Host X closes the TELNET and data connections.

 Note: The TIP user should be in line mode.

 User at Host U wanting to transfer files to/from Host S:

 In general the user will communicate to the server via a mediating
 user-FTP process. The following may be a typical scenario. The
 user-FTP prompts are shown in parentheses, ’---->’ represents
 commands from Host U to Host S, and ’<----’ represents replies from
 Host S to Host U.

 38

 File Transfer Protocol
 (Aug. 12, 1973)
 RFC 542 NIC 17759

 LOCAL COMMANDS BY USER ACTION INVOLVED

 ftp (host) multics<CR> ICP to Host S, socket 3,
 establishing TELNET connections
 <---- 330 Awaiting input <CRLF>
 username Doe <CR> USER Doe<CRLF>---->
 <---- 330 password<CRLF>
 password mumble <CR> PASS mumble<CRLF>---->
 <---- 230 Doe logged in.<CRLF>
 retrieve (local type) ASCII<CR>
 (local pathname) test 1 <CR> User-FTP opens local file in ASCII.
 (for.pathname) testp11<CR> RETR test.p11<CRLF> ---->
 Server makes data connection to
 (U+4)
 <---- 250 File transfer starts
 <CRLF>
 <---- 252 File transfer
 complete<CRLF>
 type Image<CR> TYPE I<CRLF> ---->
 <---- 200 Command OK<CRLF>
 byte 36<CR> BYTE 36<CR>LF ---->
 <---- 200 Command OK<CRLF>
 store (local type) image<CR>
 (local pathname) file dump<CR> User-FTP opens local file in Image.
 (for.pathname) >udd>cn>fd<CR> STOR >udd>cn>fd<CRLF> ---->
 <---- 451 Access denied<CRLF>
 terminate BYE <CRLF> ---->
 Server closes all connections.

 39

\000

\032\002

