
Network Working Group M. Allman
Request for Comments: 5681 V. Paxson
Obsoletes: 2581 ICSI
Category: Standards Track E. Blanton
 Purdue University
 September 2009

 TCP Congestion Control

Abstract

 This document defines TCP’s four intertwined congestion control
 algorithms: slow start, congestion avoidance, fast retransmit, and
 fast recovery. In addition, the document specifies how TCP should
 begin transmission after a relatively long idle period, as well as
 discussing various acknowledgment generation methods. This document
 obsoletes RFC 2581.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may

Allman, et al. Standards Track [Page 1]

RFC 5681 TCP Congestion Control September 2009

 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table Of Contents

 1. Introduction ..2
 2. Definitions ...3
 3. Congestion Control Algorithms4
 3.1. Slow Start and Congestion Avoidance4
 3.2. Fast Retransmit/Fast Recovery8
 4. Additional Considerations10
 4.1. Restarting Idle Connections10
 4.2. Generating Acknowledgments11
 4.3. Loss Recovery Mechanisms12
 5. Security Considerations ..13
 6. Changes between RFC 2001 and RFC 258113
 7. Changes Relative to RFC 258114
 8. Acknowledgments ..15
 9. References ...15
 9.1. Normative References15
 9.2. Informative References16

1. Introduction

 This document specifies four TCP [RFC793] congestion control
 algorithms: slow start, congestion avoidance, fast retransmit and
 fast recovery. These algorithms were devised in [Jac88] and [Jac90].
 Their use with TCP is standardized in [RFC1122]. Additional early
 work in additive-increase, multiplicative-decrease congestion control
 is given in [CJ89].

 Note that [Ste94] provides examples of these algorithms in action and
 [WS95] provides an explanation of the source code for the BSD
 implementation of these algorithms.

 In addition to specifying these congestion control algorithms, this
 document specifies what TCP connections should do after a relatively
 long idle period, as well as specifying and clarifying some of the
 issues pertaining to TCP ACK generation.

 This document obsoletes [RFC2581], which in turn obsoleted [RFC2001].

 This document is organized as follows. Section 2 provides various
 definitions that will be used throughout the document. Section 3
 provides a specification of the congestion control algorithms.
 Section 4 outlines concerns related to the congestion control
 algorithms and finally, section 5 outlines security considerations.

Allman, et al. Standards Track [Page 2]

RFC 5681 TCP Congestion Control September 2009

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Definitions

 This section provides the definition of several terms that will be
 used throughout the remainder of this document.

 SEGMENT: A segment is ANY TCP/IP data or acknowledgment packet (or
 both).

 SENDER MAXIMUM SEGMENT SIZE (SMSS): The SMSS is the size of the
 largest segment that the sender can transmit. This value can be
 based on the maximum transmission unit of the network, the path
 MTU discovery [RFC1191, RFC4821] algorithm, RMSS (see next item),
 or other factors. The size does not include the TCP/IP headers
 and options.

 RECEIVER MAXIMUM SEGMENT SIZE (RMSS): The RMSS is the size of the
 largest segment the receiver is willing to accept. This is the
 value specified in the MSS option sent by the receiver during
 connection startup. Or, if the MSS option is not used, it is 536
 bytes [RFC1122]. The size does not include the TCP/IP headers and
 options.

 FULL-SIZED SEGMENT: A segment that contains the maximum number of
 data bytes permitted (i.e., a segment containing SMSS bytes of
 data).

 RECEIVER WINDOW (rwnd): The most recently advertised receiver window.

 CONGESTION WINDOW (cwnd): A TCP state variable that limits the amount
 of data a TCP can send. At any given time, a TCP MUST NOT send
 data with a sequence number higher than the sum of the highest
 acknowledged sequence number and the minimum of cwnd and rwnd.

 INITIAL WINDOW (IW): The initial window is the size of the sender’s
 congestion window after the three-way handshake is completed.

 LOSS WINDOW (LW): The loss window is the size of the congestion
 window after a TCP sender detects loss using its retransmission
 timer.

 RESTART WINDOW (RW): The restart window is the size of the congestion
 window after a TCP restarts transmission after an idle period (if
 the slow start algorithm is used; see section 4.1 for more
 discussion).

Allman, et al. Standards Track [Page 3]

RFC 5681 TCP Congestion Control September 2009

 FLIGHT SIZE: The amount of data that has been sent but not yet
 cumulatively acknowledged.

 DUPLICATE ACKNOWLEDGMENT: An acknowledgment is considered a
 "duplicate" in the following algorithms when (a) the receiver of
 the ACK has outstanding data, (b) the incoming acknowledgment
 carries no data, (c) the SYN and FIN bits are both off, (d) the
 acknowledgment number is equal to the greatest acknowledgment
 received on the given connection (TCP.UNA from [RFC793]) and (e)
 the advertised window in the incoming acknowledgment equals the
 advertised window in the last incoming acknowledgment.

 Alternatively, a TCP that utilizes selective acknowledgments
 (SACKs) [RFC2018, RFC2883] can leverage the SACK information to
 determine when an incoming ACK is a "duplicate" (e.g., if the ACK
 contains previously unknown SACK information).

3. Congestion Control Algorithms

 This section defines the four congestion control algorithms: slow
 start, congestion avoidance, fast retransmit, and fast recovery,
 developed in [Jac88] and [Jac90]. In some situations, it may be
 beneficial for a TCP sender to be more conservative than the
 algorithms allow; however, a TCP MUST NOT be more aggressive than the
 following algorithms allow (that is, MUST NOT send data when the
 value of cwnd computed by the following algorithms would not allow
 the data to be sent).

 Also, note that the algorithms specified in this document work in
 terms of using loss as the signal of congestion. Explicit Congestion
 Notification (ECN) could also be used as specified in [RFC3168].

3.1. Slow Start and Congestion Avoidance

 The slow start and congestion avoidance algorithms MUST be used by a
 TCP sender to control the amount of outstanding data being injected
 into the network. To implement these algorithms, two variables are
 added to the TCP per-connection state. The congestion window (cwnd)
 is a sender-side limit on the amount of data the sender can transmit
 into the network before receiving an acknowledgment (ACK), while the
 receiver’s advertised window (rwnd) is a receiver-side limit on the
 amount of outstanding data. The minimum of cwnd and rwnd governs
 data transmission.

 Another state variable, the slow start threshold (ssthresh), is used
 to determine whether the slow start or congestion avoidance algorithm
 is used to control data transmission, as discussed below.

Allman, et al. Standards Track [Page 4]

RFC 5681 TCP Congestion Control September 2009

 Beginning transmission into a network with unknown conditions
 requires TCP to slowly probe the network to determine the available
 capacity, in order to avoid congesting the network with an
 inappropriately large burst of data. The slow start algorithm is
 used for this purpose at the beginning of a transfer, or after
 repairing loss detected by the retransmission timer. Slow start
 additionally serves to start the "ACK clock" used by the TCP sender
 to release data into the network in the slow start, congestion
 avoidance, and loss recovery algorithms.

 IW, the initial value of cwnd, MUST be set using the following
 guidelines as an upper bound.

 If SMSS > 2190 bytes:
 IW = 2 * SMSS bytes and MUST NOT be more than 2 segments
 If (SMSS > 1095 bytes) and (SMSS <= 2190 bytes):
 IW = 3 * SMSS bytes and MUST NOT be more than 3 segments
 if SMSS <= 1095 bytes:
 IW = 4 * SMSS bytes and MUST NOT be more than 4 segments

 As specified in [RFC3390], the SYN/ACK and the acknowledgment of the
 SYN/ACK MUST NOT increase the size of the congestion window.
 Further, if the SYN or SYN/ACK is lost, the initial window used by a
 sender after a correctly transmitted SYN MUST be one segment
 consisting of at most SMSS bytes.

 A detailed rationale and discussion of the IW setting is provided in
 [RFC3390].

 When initial congestion windows of more than one segment are
 implemented along with Path MTU Discovery [RFC1191], and the MSS
 being used is found to be too large, the congestion window cwnd
 SHOULD be reduced to prevent large bursts of smaller segments.
 Specifically, cwnd SHOULD be reduced by the ratio of the old segment
 size to the new segment size.

 The initial value of ssthresh SHOULD be set arbitrarily high (e.g.,
 to the size of the largest possible advertised window), but ssthresh
 MUST be reduced in response to congestion. Setting ssthresh as high
 as possible allows the network conditions, rather than some arbitrary
 host limit, to dictate the sending rate. In cases where the end
 systems have a solid understanding of the network path, more
 carefully setting the initial ssthresh value may have merit (e.g.,
 such that the end host does not create congestion along the path).

Allman, et al. Standards Track [Page 5]

RFC 5681 TCP Congestion Control September 2009

 The slow start algorithm is used when cwnd < ssthresh, while the
 congestion avoidance algorithm is used when cwnd > ssthresh. When
 cwnd and ssthresh are equal, the sender may use either slow start or
 congestion avoidance.

 During slow start, a TCP increments cwnd by at most SMSS bytes for
 each ACK received that cumulatively acknowledges new data. Slow
 start ends when cwnd exceeds ssthresh (or, optionally, when it
 reaches it, as noted above) or when congestion is observed. While
 traditionally TCP implementations have increased cwnd by precisely
 SMSS bytes upon receipt of an ACK covering new data, we RECOMMEND
 that TCP implementations increase cwnd, per:

 cwnd += min (N, SMSS) (2)

 where N is the number of previously unacknowledged bytes acknowledged
 in the incoming ACK. This adjustment is part of Appropriate Byte
 Counting [RFC3465] and provides robustness against misbehaving
 receivers that may attempt to induce a sender to artificially inflate
 cwnd using a mechanism known as "ACK Division" [SCWA99]. ACK
 Division consists of a receiver sending multiple ACKs for a single
 TCP data segment, each acknowledging only a portion of its data. A
 TCP that increments cwnd by SMSS for each such ACK will
 inappropriately inflate the amount of data injected into the network.

 During congestion avoidance, cwnd is incremented by roughly 1 full-
 sized segment per round-trip time (RTT). Congestion avoidance
 continues until congestion is detected. The basic guidelines for
 incrementing cwnd during congestion avoidance are:

 * MAY increment cwnd by SMSS bytes

 * SHOULD increment cwnd per equation (2) once per RTT

 * MUST NOT increment cwnd by more than SMSS bytes

 We note that [RFC3465] allows for cwnd increases of more than SMSS
 bytes for incoming acknowledgments during slow start on an
 experimental basis; however, such behavior is not allowed as part of
 the standard.

 The RECOMMENDED way to increase cwnd during congestion avoidance is
 to count the number of bytes that have been acknowledged by ACKs for
 new data. (A drawback of this implementation is that it requires
 maintaining an additional state variable.) When the number of bytes
 acknowledged reaches cwnd, then cwnd can be incremented by up to SMSS
 bytes. Note that during congestion avoidance, cwnd MUST NOT be

Allman, et al. Standards Track [Page 6]

RFC 5681 TCP Congestion Control September 2009

 increased by more than SMSS bytes per RTT. This method both allows
 TCPs to increase cwnd by one segment per RTT in the face of delayed
 ACKs and provides robustness against ACK Division attacks.

 Another common formula that a TCP MAY use to update cwnd during
 congestion avoidance is given in equation (3):

 cwnd += SMSS*SMSS/cwnd (3)

 This adjustment is executed on every incoming ACK that acknowledges
 new data. Equation (3) provides an acceptable approximation to the
 underlying principle of increasing cwnd by 1 full-sized segment per
 RTT. (Note that for a connection in which the receiver is
 acknowledging every-other packet, (3) is less aggressive than allowed
 -- roughly increasing cwnd every second RTT.)

 Implementation Note: Since integer arithmetic is usually used in TCP
 implementations, the formula given in equation (3) can fail to
 increase cwnd when the congestion window is larger than SMSS*SMSS.
 If the above formula yields 0, the result SHOULD be rounded up to 1
 byte.

 Implementation Note: Older implementations have an additional
 additive constant on the right-hand side of equation (3). This is
 incorrect and can actually lead to diminished performance [RFC2525].

 Implementation Note: Some implementations maintain cwnd in units of
 bytes, while others in units of full-sized segments. The latter will
 find equation (3) difficult to use, and may prefer to use the
 counting approach discussed in the previous paragraph.

 When a TCP sender detects segment loss using the retransmission timer
 and the given segment has not yet been resent by way of the
 retransmission timer, the value of ssthresh MUST be set to no more
 than the value given in equation (4):

 ssthresh = max (FlightSize / 2, 2*SMSS) (4)

 where, as discussed above, FlightSize is the amount of outstanding
 data in the network.

 On the other hand, when a TCP sender detects segment loss using the
 retransmission timer and the given segment has already been
 retransmitted by way of the retransmission timer at least once, the
 value of ssthresh is held constant.

Allman, et al. Standards Track [Page 7]

RFC 5681 TCP Congestion Control September 2009

 Implementation Note: An easy mistake to make is to simply use cwnd,
 rather than FlightSize, which in some implementations may
 incidentally increase well beyond rwnd.

 Furthermore, upon a timeout (as specified in [RFC2988]) cwnd MUST be
 set to no more than the loss window, LW, which equals 1 full-sized
 segment (regardless of the value of IW). Therefore, after
 retransmitting the dropped segment the TCP sender uses the slow start
 algorithm to increase the window from 1 full-sized segment to the new
 value of ssthresh, at which point congestion avoidance again takes
 over.

 As shown in [FF96] and [RFC3782], slow-start-based loss recovery
 after a timeout can cause spurious retransmissions that trigger
 duplicate acknowledgments. The reaction to the arrival of these
 duplicate ACKs in TCP implementations varies widely. This document
 does not specify how to treat such acknowledgments, but does note
 this as an area that may benefit from additional attention,
 experimentation and specification.

3.2. Fast Retransmit/Fast Recovery

 A TCP receiver SHOULD send an immediate duplicate ACK when an out-
 of-order segment arrives. The purpose of this ACK is to inform the
 sender that a segment was received out-of-order and which sequence
 number is expected. From the sender’s perspective, duplicate ACKs
 can be caused by a number of network problems. First, they can be
 caused by dropped segments. In this case, all segments after the
 dropped segment will trigger duplicate ACKs until the loss is
 repaired. Second, duplicate ACKs can be caused by the re-ordering of
 data segments by the network (not a rare event along some network
 paths [Pax97]). Finally, duplicate ACKs can be caused by replication
 of ACK or data segments by the network. In addition, a TCP receiver
 SHOULD send an immediate ACK when the incoming segment fills in all
 or part of a gap in the sequence space. This will generate more
 timely information for a sender recovering from a loss through a
 retransmission timeout, a fast retransmit, or an advanced loss
 recovery algorithm, as outlined in section 4.3.

 The TCP sender SHOULD use the "fast retransmit" algorithm to detect
 and repair loss, based on incoming duplicate ACKs. The fast
 retransmit algorithm uses the arrival of 3 duplicate ACKs (as defined
 in section 2, without any intervening ACKs which move SND.UNA) as an
 indication that a segment has been lost. After receiving 3 duplicate
 ACKs, TCP performs a retransmission of what appears to be the missing
 segment, without waiting for the retransmission timer to expire.

Allman, et al. Standards Track [Page 8]

RFC 5681 TCP Congestion Control September 2009

 After the fast retransmit algorithm sends what appears to be the
 missing segment, the "fast recovery" algorithm governs the
 transmission of new data until a non-duplicate ACK arrives. The
 reason for not performing slow start is that the receipt of the
 duplicate ACKs not only indicates that a segment has been lost, but
 also that segments are most likely leaving the network (although a
 massive segment duplication by the network can invalidate this
 conclusion). In other words, since the receiver can only generate a
 duplicate ACK when a segment has arrived, that segment has left the
 network and is in the receiver’s buffer, so we know it is no longer
 consuming network resources. Furthermore, since the ACK "clock"
 [Jac88] is preserved, the TCP sender can continue to transmit new
 segments (although transmission must continue using a reduced cwnd,
 since loss is an indication of congestion).

 The fast retransmit and fast recovery algorithms are implemented
 together as follows.

 1. On the first and second duplicate ACKs received at a sender, a
 TCP SHOULD send a segment of previously unsent data per [RFC3042]
 provided that the receiver’s advertised window allows, the total
 FlightSize would remain less than or equal to cwnd plus 2*SMSS,
 and that new data is available for transmission. Further, the
 TCP sender MUST NOT change cwnd to reflect these two segments
 [RFC3042]. Note that a sender using SACK [RFC2018] MUST NOT send
 new data unless the incoming duplicate acknowledgment contains
 new SACK information.

 2. When the third duplicate ACK is received, a TCP MUST set ssthresh
 to no more than the value given in equation (4). When [RFC3042]
 is in use, additional data sent in limited transmit MUST NOT be
 included in this calculation.

 3. The lost segment starting at SND.UNA MUST be retransmitted and
 cwnd set to ssthresh plus 3*SMSS. This artificially "inflates"
 the congestion window by the number of segments (three) that have
 left the network and which the receiver has buffered.

 4. For each additional duplicate ACK received (after the third),
 cwnd MUST be incremented by SMSS. This artificially inflates the
 congestion window in order to reflect the additional segment that
 has left the network.

 Note: [SCWA99] discusses a receiver-based attack whereby many
 bogus duplicate ACKs are sent to the data sender in order to
 artificially inflate cwnd and cause a higher than appropriate

Allman, et al. Standards Track [Page 9]

RFC 5681 TCP Congestion Control September 2009

 sending rate to be used. A TCP MAY therefore limit the number of
 times cwnd is artificially inflated during loss recovery to the
 number of outstanding segments (or, an approximation thereof).

 Note: When an advanced loss recovery mechanism (such as outlined
 in section 4.3) is not in use, this increase in FlightSize can
 cause equation (4) to slightly inflate cwnd and ssthresh, as some
 of the segments between SND.UNA and SND.NXT are assumed to have
 left the network but are still reflected in FlightSize.

 5. When previously unsent data is available and the new value of
 cwnd and the receiver’s advertised window allow, a TCP SHOULD
 send 1*SMSS bytes of previously unsent data.

 6. When the next ACK arrives that acknowledges previously
 unacknowledged data, a TCP MUST set cwnd to ssthresh (the value
 set in step 2). This is termed "deflating" the window.

 This ACK should be the acknowledgment elicited by the
 retransmission from step 3, one RTT after the retransmission
 (though it may arrive sooner in the presence of significant out-
 of-order delivery of data segments at the receiver).
 Additionally, this ACK should acknowledge all the intermediate
 segments sent between the lost segment and the receipt of the
 third duplicate ACK, if none of these were lost.

 Note: This algorithm is known to generally not recover efficiently
 from multiple losses in a single flight of packets [FF96]. Section
 4.3 below addresses such cases.

4. Additional Considerations

4.1. Restarting Idle Connections

 A known problem with the TCP congestion control algorithms described
 above is that they allow a potentially inappropriate burst of traffic
 to be transmitted after TCP has been idle for a relatively long
 period of time. After an idle period, TCP cannot use the ACK clock
 to strobe new segments into the network, as all the ACKs have drained
 from the network. Therefore, as specified above, TCP can potentially
 send a cwnd-size line-rate burst into the network after an idle
 period. In addition, changing network conditions may have rendered
 TCP’s notion of the available end-to-end network capacity between two
 endpoints, as estimated by cwnd, inaccurate during the course of a
 long idle period.

Allman, et al. Standards Track [Page 10]

RFC 5681 TCP Congestion Control September 2009

 [Jac88] recommends that a TCP use slow start to restart transmission
 after a relatively long idle period. Slow start serves to restart
 the ACK clock, just as it does at the beginning of a transfer. This
 mechanism has been widely deployed in the following manner. When TCP
 has not received a segment for more than one retransmission timeout,
 cwnd is reduced to the value of the restart window (RW) before
 transmission begins.

 For the purposes of this standard, we define RW = min(IW,cwnd).

 Using the last time a segment was received to determine whether or
 not to decrease cwnd can fail to deflate cwnd in the common case of
 persistent HTTP connections [HTH98]. In this case, a Web server
 receives a request before transmitting data to the Web client. The
 reception of the request makes the test for an idle connection fail,
 and allows the TCP to begin transmission with a possibly
 inappropriately large cwnd.

 Therefore, a TCP SHOULD set cwnd to no more than RW before beginning
 transmission if the TCP has not sent data in an interval exceeding
 the retransmission timeout.

4.2. Generating Acknowledgments

 The delayed ACK algorithm specified in [RFC1122] SHOULD be used by a
 TCP receiver. When using delayed ACKs, a TCP receiver MUST NOT
 excessively delay acknowledgments. Specifically, an ACK SHOULD be
 generated for at least every second full-sized segment, and MUST be
 generated within 500 ms of the arrival of the first unacknowledged
 packet.

 The requirement that an ACK "SHOULD" be generated for at least every
 second full-sized segment is listed in [RFC1122] in one place as a
 SHOULD and another as a MUST. Here we unambiguously state it is a
 SHOULD. We also emphasize that this is a SHOULD, meaning that an
 implementor should indeed only deviate from this requirement after
 careful consideration of the implications. See the discussion of
 "Stretch ACK violation" in [RFC2525] and the references therein for a
 discussion of the possible performance problems with generating ACKs
 less frequently than every second full-sized segment.

 In some cases, the sender and receiver may not agree on what
 constitutes a full-sized segment. An implementation is deemed to
 comply with this requirement if it sends at least one acknowledgment
 every time it receives 2*RMSS bytes of new data from the sender,
 where RMSS is the Maximum Segment Size specified by the receiver to
 the sender (or the default value of 536 bytes, per [RFC1122], if the
 receiver does not specify an MSS option during connection

Allman, et al. Standards Track [Page 11]

RFC 5681 TCP Congestion Control September 2009

 establishment). The sender may be forced to use a segment size less
 than RMSS due to the maximum transmission unit (MTU), the path MTU
 discovery algorithm or other factors. For instance, consider the
 case when the receiver announces an RMSS of X bytes but the sender
 ends up using a segment size of Y bytes (Y < X) due to path MTU
 discovery (or the sender’s MTU size). The receiver will generate
 stretch ACKs if it waits for 2*X bytes to arrive before an ACK is
 sent. Clearly this will take more than 2 segments of size Y bytes.
 Therefore, while a specific algorithm is not defined, it is desirable
 for receivers to attempt to prevent this situation, for example, by
 acknowledging at least every second segment, regardless of size.
 Finally, we repeat that an ACK MUST NOT be delayed for more than 500
 ms waiting on a second full-sized segment to arrive.

 Out-of-order data segments SHOULD be acknowledged immediately, in
 order to accelerate loss recovery. To trigger the fast retransmit
 algorithm, the receiver SHOULD send an immediate duplicate ACK when
 it receives a data segment above a gap in the sequence space. To
 provide feedback to senders recovering from losses, the receiver
 SHOULD send an immediate ACK when it receives a data segment that
 fills in all or part of a gap in the sequence space.

 A TCP receiver MUST NOT generate more than one ACK for every incoming
 segment, other than to update the offered window as the receiving
 application consumes new data (see [RFC813] and page 42 of [RFC793]).

4.3. Loss Recovery Mechanisms

 A number of loss recovery algorithms that augment fast retransmit and
 fast recovery have been suggested by TCP researchers and specified in
 the RFC series. While some of these algorithms are based on the TCP
 selective acknowledgment (SACK) option [RFC2018], such as [FF96],
 [MM96a], [MM96b], and [RFC3517], others do not require SACKs, such as
 [Hoe96], [FF96], and [RFC3782]. The non-SACK algorithms use "partial
 acknowledgments" (ACKs that cover previously unacknowledged data, but
 not all the data outstanding when loss was detected) to trigger
 retransmissions. While this document does not standardize any of the
 specific algorithms that may improve fast retransmit/fast recovery,
 these enhanced algorithms are implicitly allowed, as long as they
 follow the general principles of the basic four algorithms outlined
 above.

 That is, when the first loss in a window of data is detected,
 ssthresh MUST be set to no more than the value given by equation (4).
 Second, until all lost segments in the window of data in question are
 repaired, the number of segments transmitted in each RTT MUST be no
 more than half the number of outstanding segments when the loss was
 detected. Finally, after all loss in the given window of segments

Allman, et al. Standards Track [Page 12]

RFC 5681 TCP Congestion Control September 2009

 has been successfully retransmitted, cwnd MUST be set to no more than
 ssthresh and congestion avoidance MUST be used to further increase
 cwnd. Loss in two successive windows of data, or the loss of a
 retransmission, should be taken as two indications of congestion and,
 therefore, cwnd (and ssthresh) MUST be lowered twice in this case.

 We RECOMMEND that TCP implementors employ some form of advanced loss
 recovery that can cope with multiple losses in a window of data. The
 algorithms detailed in [RFC3782] and [RFC3517] conform to the general
 principles outlined above. We note that while these are not the only
 two algorithms that conform to the above general principles these two
 algorithms have been vetted by the community and are currently on the
 Standards Track.

5. Security Considerations

 This document requires a TCP to diminish its sending rate in the
 presence of retransmission timeouts and the arrival of duplicate
 acknowledgments. An attacker can therefore impair the performance of
 a TCP connection by either causing data packets or their
 acknowledgments to be lost, or by forging excessive duplicate
 acknowledgments.

 In response to the ACK division attack outlined in [SCWA99], this
 document RECOMMENDS increasing the congestion window based on the
 number of bytes newly acknowledged in each arriving ACK rather than
 by a particular constant on each arriving ACK (as outlined in section
 3.1).

 The Internet, to a considerable degree, relies on the correct
 implementation of these algorithms in order to preserve network
 stability and avoid congestion collapse. An attacker could cause TCP
 endpoints to respond more aggressively in the face of congestion by
 forging excessive duplicate acknowledgments or excessive
 acknowledgments for new data. Conceivably, such an attack could
 drive a portion of the network into congestion collapse.

6. Changes between RFC 2001 and RFC 2581

 [RFC2001] was extensively rewritten editorially and it is not
 feasible to itemize the list of changes between [RFC2001] and
 [RFC2581]. The intention of [RFC2581] was to not change any of the
 recommendations given in [RFC2001], but to further clarify cases that
 were not discussed in detail in [RFC2001]. Specifically, [RFC2581]
 suggested what TCP connections should do after a relatively long idle
 period, as well as specified and clarified some of the issues

Allman, et al. Standards Track [Page 13]

RFC 5681 TCP Congestion Control September 2009

 pertaining to TCP ACK generation. Finally, the allowable upper bound
 for the initial congestion window was raised from one to two
 segments.

7. Changes Relative to RFC 2581

 A specific definition for "duplicate acknowledgment" has been added,
 based on the definition used by BSD TCP.

 The document now notes that what to do with duplicate ACKs after the
 retransmission timer has fired is future work and explicitly
 unspecified in this document.

 The initial window requirements were changed to allow Larger Initial
 Windows as standardized in [RFC3390]. Additionally, the steps to
 take when an initial window is discovered to be too large due to Path
 MTU Discovery [RFC1191] are detailed.

 The recommended initial value for ssthresh has been changed to say
 that it SHOULD be arbitrarily high, where it was previously MAY.
 This is to provide additional guidance to implementors on the matter.

 During slow start, the usage of Appropriate Byte Counting [RFC3465]
 with L=1*SMSS is explicitly recommended. The method of increasing
 cwnd given in [RFC2581] is still explicitly allowed. Byte counting
 during congestion avoidance is also recommended, while the method
 from [RFC2581] and other safe methods are still allowed.

 The treatment of ssthresh on retransmission timeout was clarified.
 In particular, ssthresh must be set to half the FlightSize on the
 first retransmission of a given segment and then is held constant on
 subsequent retransmissions of the same segment.

 The description of fast retransmit and fast recovery has been
 clarified, and the use of Limited Transmit [RFC3042] is now
 recommended.

 TCPs now MAY limit the number of duplicate ACKs that artificially
 inflate cwnd during loss recovery to the number of segments
 outstanding to avoid the duplicate ACK spoofing attack described in
 [SCWA99].

 The restart window has been changed to min(IW,cwnd) from IW. This
 behavior was described as "experimental" in [RFC2581].

 It is now recommended that TCP implementors implement an advanced
 loss recovery algorithm conforming to the principles outlined in this
 document.

Allman, et al. Standards Track [Page 14]

RFC 5681 TCP Congestion Control September 2009

 The security considerations have been updated to discuss ACK division
 and recommend byte counting as a counter to this attack.

8. Acknowledgments

 The core algorithms we describe were developed by Van Jacobson
 [Jac88, Jac90]. In addition, Limited Transmit [RFC3042] was
 developed in conjunction with Hari Balakrishnan and Sally Floyd. The
 initial congestion window size specified in this document is a result
 of work with Sally Floyd and Craig Partridge [RFC2414, RFC3390].

 W. Richard ("Rich") Stevens wrote the first version of this document
 [RFC2001] and co-authored the second version [RFC2581]. This present
 version much benefits from his clarity and thoughtfulness of
 description, and we are grateful for Rich’s contributions in
 elucidating TCP congestion control, as well as in more broadly
 helping us understand numerous issues relating to networking.

 We wish to emphasize that the shortcomings and mistakes of this
 document are solely the responsibility of the current authors.

 Some of the text from this document is taken from "TCP/IP
 Illustrated, Volume 1: The Protocols" by W. Richard Stevens
 (Addison-Wesley, 1994) and "TCP/IP Illustrated, Volume 2: The
 Implementation" by Gary R. Wright and W. Richard Stevens (Addison-
 Wesley, 1995). This material is used with the permission of
 Addison-Wesley.

 Anil Agarwal, Steve Arden, Neal Cardwell, Noritoshi Demizu, Gorry
 Fairhurst, Kevin Fall, John Heffner, Alfred Hoenes, Sally Floyd,
 Reiner Ludwig, Matt Mathis, Craig Partridge, and Joe Touch
 contributed a number of helpful suggestions.

9. References

9.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Allman, et al. Standards Track [Page 15]

RFC 5681 TCP Congestion Control September 2009

9.2. Informative References

 [CJ89] Chiu, D. and R. Jain, "Analysis of the Increase/Decrease
 Algorithms for Congestion Avoidance in Computer Networks",
 Journal of Computer Networks and ISDN Systems, vol. 17, no.
 1, pp. 1-14, June 1989.

 [FF96] Fall, K. and S. Floyd, "Simulation-based Comparisons of
 Tahoe, Reno and SACK TCP", Computer Communication Review,
 July 1996, ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z.

 [Hoe96] Hoe, J., "Improving the Start-up Behavior of a Congestion
 Control Scheme for TCP", In ACM SIGCOMM, August 1996.

 [HTH98] Hughes, A., Touch, J., and J. Heidemann, "Issues in TCP
 Slow-Start Restart After Idle", Work in Progress, March
 1998.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", Computer
 Communication Review, vol. 18, no. 4, pp. 314-329, Aug.
 1988. ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

 [Jac90] Jacobson, V., "Modified TCP Congestion Avoidance
 Algorithm", end2end-interest mailing list, April 30, 1990.
 ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.

 [MM96a] Mathis, M. and J. Mahdavi, "Forward Acknowledgment:
 Refining TCP Congestion Control", Proceedings of
 SIGCOMM’96, August, 1996, Stanford, CA. Available from
 http://www.psc.edu/networking/papers/papers.html

 [MM96b] Mathis, M. and J. Mahdavi, "TCP Rate-Halving with Bounding
 Parameters", Technical report. Available from
 http://www.psc.edu/networking/papers/FACKnotes/current.

 [Pax97] Paxson, V., "End-to-End Internet Packet Dynamics",
 Proceedings of SIGCOMM ’97, Cannes, France, Sep. 1997.

 [RFC813] Clark, D., "Window and Acknowledgement Strategy in TCP",
 RFC 813, July 1982.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", RFC 2001,
 January 1997.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

Allman, et al. Standards Track [Page 16]

RFC 5681 TCP Congestion Control September 2009

 [RFC2414] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP’s
 Initial Window", RFC 2414, September 1998.

 [RFC2525] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner, J.,
 Heavens, I., Lahey, K., Semke, J., and B. Volz, "Known TCP
 Implementation Problems", RFC 2525, March 1999.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP’s
 Initial Window", RFC 3390, October 2002.

 [RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, February 2003.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
 Modification to TCP’s Fast Recovery Algorithm", RFC 3782,
 April 2004.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control With a Misbehaving Receiver", ACM
 Computer Communication Review, 29(5), October 1999.

 [Ste94] Stevens, W., "TCP/IP Illustrated, Volume 1: The Protocols",
 Addison-Wesley, 1994.

Allman, et al. Standards Track [Page 17]

RFC 5681 TCP Congestion Control September 2009

 [WS95] Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:
 The Implementation", Addison-Wesley, 1995.

Authors’ Addresses

 Mark Allman
 International Computer Science Institute (ICSI)
 1947 Center Street
 Suite 600
 Berkeley, CA 94704-1198
 Phone: +1 440 235 1792
 EMail: mallman@icir.org
 http://www.icir.org/mallman/

 Vern Paxson
 International Computer Science Institute (ICSI)
 1947 Center Street
 Suite 600
 Berkeley, CA 94704-1198
 Phone: +1 510/642-4274 x302
 EMail: vern@icir.org
 http://www.icir.org/vern/

 Ethan Blanton
 Purdue University Computer Sciences
 305 North University Street
 West Lafayette, IN 47907
 EMail: eblanton@cs.purdue.edu
 http://www.cs.purdue.edu/homes/eblanton/

Allman, et al. Standards Track [Page 18]

