
Internet Engineering Task Force (IETF) S. McGlashan
Request for Comments: 6231 Hewlett-Packard
Category: Standards Track T. Melanchuk
ISSN: 2070-1721 Rainwillow
 C. Boulton
 NS-Technologies
 May 2011

 An Interactive Voice Response (IVR) Control Package
 for the Media Control Channel Framework

Abstract

 This document defines a Media Control Channel Framework Package for
 Interactive Voice Response (IVR) dialog interaction on media
 connections and conferences. The package defines dialog management
 request elements for preparing, starting, and terminating dialog
 interactions, as well as associated responses and notifications.
 Dialog interactions are specified in a dialog language. This package
 defines a lightweight IVR dialog language (supporting prompt
 playback, runtime controls, Dual-Tone Multi-Frequency (DTMF)
 collection, and media recording) and allows other dialog languages to
 be used. The package also defines elements for auditing package
 capabilities and IVR dialogs.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6231.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

McGlashan, et al. Standards Track [Page 1]

RFC 6231 IVR Control Package May 2011

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 5
 2. Conventions and Terminology 8
 3. Control Package Definition 9
 3.1. Control Package Name 9
 3.2. Framework Message Usage 9
 3.3. Common XML Support 10
 3.4. CONTROL Message Body 10
 3.5. REPORT Message Body 10
 3.6. Audit . 11
 3.7. Examples . 11
 4. Element Definitions . 11
 4.1. <mscivr> . 12
 4.2. Dialog Management Elements 14
 4.2.1. <dialogprepare> 18
 4.2.2. <dialogstart> . 20
 4.2.2.1. <subscribe> 24
 4.2.2.1.1. <dtmfsub> 25
 4.2.2.2. <stream> . 26
 4.2.2.2.1. <region> 27
 4.2.2.2.2. <priority> 27
 4.2.3. <dialogterminate> 28
 4.2.4. <response> . 28
 4.2.5. <event> . 30
 4.2.5.1. <dialogexit> 30
 4.2.5.2. <dtmfnotify> 32
 4.2.6. <params> . 33
 4.2.6.1. <param> . 33

McGlashan, et al. Standards Track [Page 2]

RFC 6231 IVR Control Package May 2011

 4.3. IVR Dialog Elements 34
 4.3.1. <dialog> . 35
 4.3.1.1. <prompt> . 38
 4.3.1.1.1. <variable> 39
 4.3.1.1.1.1. Date Type 40
 4.3.1.1.1.2. Time Type 41
 4.3.1.1.1.3. Digits Type 42
 4.3.1.1.2. <dtmf> 42
 4.3.1.1.3. <par> . 43
 4.3.1.1.3.1. <seq> 45
 4.3.1.2. <control> . 46
 4.3.1.3. <collect> . 49
 4.3.1.3.1. <grammar> 52
 4.3.1.4. <record> . 53
 4.3.1.5. <media> . 57
 4.3.2. Exit Information 59
 4.3.2.1. <promptinfo> 59
 4.3.2.2. <controlinfo> 59
 4.3.2.2.1. <controlmatch> 59
 4.3.2.3. <collectinfo> 60
 4.3.2.4. <recordinfo> 60
 4.3.2.4.1. <mediainfo> 61
 4.4. Audit Elements . 61
 4.4.1. <audit> . 61
 4.4.2. <auditresponse> 63
 4.4.2.1. <codecs> . 65
 4.4.2.1.1. <codec> 65
 4.4.2.2. <capabilities> 66
 4.4.2.2.1. <dialoglanguages> 68
 4.4.2.2.2. <grammartypes> 68
 4.4.2.2.3. <recordtypes> 68
 4.4.2.2.4. <prompttypes> 68
 4.4.2.2.5. <variables> 69
 4.4.2.2.5.1. <variabletype> 69
 4.4.2.2.6. <maxpreparedduration> 70
 4.4.2.2.7. <maxrecordduration> 70
 4.4.2.3. <dialogs> . 70
 4.4.2.3.1. <dialogaudit> 71
 4.5. Response Status Codes 71
 4.6. Type Definitions . 77
 4.6.1. Boolean . 77
 4.6.2. DTMFChar . 77
 4.6.3. DTMFString . 77
 4.6.4. Non-Negative Integer 77
 4.6.5. Positive Integer 77
 4.6.6. String . 78
 4.6.7. Time Designation 78
 4.6.8. Percentage . 78

McGlashan, et al. Standards Track [Page 3]

RFC 6231 IVR Control Package May 2011

 4.6.9. URI . 78
 4.6.10. MIME Media Type 78
 4.6.11. Language Identifier 78
 4.6.12. DateTime . 79
 5. Formal Syntax . 79
 6. Examples . 105
 6.1. AS-MS Dialog Interaction Examples 105
 6.1.1. Starting an IVR Dialog 105
 6.1.2. IVR Dialog Fails to Start 106
 6.1.3. Preparing and Starting an IVR Dialog 107
 6.1.4. Terminating a Dialog 108
 6.2. IVR Dialog Examples 108
 6.2.1. Playing Announcements 109
 6.2.2. Prompt and Collect 109
 6.2.3. Prompt and Record 111
 6.2.4. Runtime Controls 112
 6.2.5. Subscriptions and Notifications 113
 6.2.6. Dialog Repetition until DTMF Collection Complete . . 113
 6.3. Other Dialog Languages 114
 6.4. Foreign Namespace Attributes and Elements 115
 7. Security Considerations 116
 8. IANA Considerations . 119
 8.1. Control Package Registration 119
 8.2. URN Sub-Namespace Registration 120
 8.3. XML Schema Registration 120
 8.4. MIME Media Type Registration for
 application/msc-ivr+xml 120
 8.5. IVR Prompt Variable Type Registration Information 121
 9. Using VoiceXML as a Dialog Language 122
 9.1. Preparing a VoiceXML Dialog 122
 9.2. Starting a VoiceXML Dialog 123
 9.2.1. Session Protocol Information 124
 9.2.2. Session Media Stream Information 125
 9.2.3. Session Parameter Information 127
 9.3. Terminating a VoiceXML Dialog 128
 9.4. Exiting a VoiceXML Dialog 128
 9.5. Call Transfer . 129
 10. Contributors . 130
 11. Acknowledgments . 130
 12. References . 130
 12.1. Normative References 130
 12.2. Informative References 132

McGlashan, et al. Standards Track [Page 4]

RFC 6231 IVR Control Package May 2011

1. Introduction

 The Media Control Channel Framework [RFC6230] provides a generic
 approach for establishment and reporting capabilities of remotely
 initiated commands. The Channel Framework -- an equivalent term for
 the Media Control Channel Framework -- utilizes many functions
 provided by the Session Initiation Protocol (SIP) [RFC3261] for the
 rendezvous and establishment of a reliable channel for control
 interactions. The Control Framework also introduces the concept of a
 Control Package. A Control Package is an explicit usage of the
 Control Framework for a particular interaction set. This document
 defines a Control Package for Interactive Voice Response (IVR)
 dialogs on media connections and conferences. The term ’dialog’ in
 this document refers to an IVR dialog and is completely unrelated to
 the notion of a SIP dialog. The term ’IVR’ is used in its inclusive
 sense, allowing media other than voice for dialog interaction.

 The package defines dialog management request elements for preparing,
 starting, and terminating dialog interactions, as well as associated
 responses and notifications. Dialog interactions are specified using
 a dialog language where the language specifies a well-defined syntax
 and semantics for permitted operations (play a prompt, record input
 from the user, etc.). This package defines a lightweight IVR dialog
 language (supporting prompt playback, runtime controls, DTMF
 collection, and media recording) and allows other dialog languages to
 be used. These dialog languages are specified inside dialog
 management elements for preparing and starting dialog interactions.
 The package also defines elements for auditing package capabilities
 and IVR dialogs.

 This package has been designed to satisfy IVR requirements documented
 in "Media Server Control Protocol Requirements" [RFC5167] -- more
 specifically, REQ-MCP-28, REQ-MCP-29, and REQ-MCP-30. It achieves
 this by building upon two major approaches to IVR dialog design.
 These approaches address a wide range of IVR use cases and are used
 in many applications that are extensively deployed today.

 First, the package is designed to provide the major IVR functionality
 of SIP media server languages such as netann [RFC4240], Media Server
 Control Markup Language (MSCML) [RFC5022], and Media Server Markup
 Language (MSML) [RFC5707], which themselves build upon more
 traditional non-SIP languages ([H.248.9], [RFC2897]). A key
 differentiator is that this package provides IVR functionality using
 the Channel Framework.

 Second, its design is aligned with key concepts of the web model as
 defined in W3C Voice Browser languages. The key dialog management
 mechanism is closely aligned with Call Control XML (CCXML) [CCXML10].

McGlashan, et al. Standards Track [Page 5]

RFC 6231 IVR Control Package May 2011

 The dialog functionality defined in this package can be largely seen
 as a subset of VoiceXML ([VXML20], [VXML21]): where possible, basic
 prompting, DTMF collection, and media recording features are
 incorporated, but not any advanced VoiceXML constructs (such as
 <form>, its interpretation algorithm, or a dynamic data model). As
 W3C develops VoiceXML 3.0 [VXML30], we expect to see further
 alignment, especially in providing a set of basic independent
 primitive elements (such as prompt, collect, record, and runtime
 controls) that can be reused in different dialog languages.

 By reusing and building upon design patterns from these approaches to
 IVR languages, this package is intended to provide a foundation that
 is familiar to current IVR developers and sufficient for most IVR
 applications, as well as a path to other languages that address more
 advanced applications.

 This Control Package defines a lightweight IVR dialog language. The
 scope of this dialog language is the following IVR functionality:

 o playing one or more media resources as a prompt to the user

 o runtime controls (including VCR controls like speed and volume)

 o collecting DTMF input from the user according to a grammar

 o recording user media input

 Out of scope for this dialog language are more advanced functions
 including ASR (Automatic Speech Recognition), TTS (Text-to-Speech),
 fax, automatic prompt recovery (’media fallback’), and media
 transformation. Such functionality can be addressed by other dialog
 languages (such as VoiceXML) used with this package, extensions to
 this package (addition of foreign elements or attributes from another
 namespace), or other Control Packages.

 The functionality of this package is defined by messages, containing
 XML [XML] elements, transported using the Media Control Channel
 Framework. The XML elements can be divided into three types: dialog
 management elements; a dialog element that defines a lightweight IVR
 dialog language used with dialog management elements; and finally,
 elements for auditing package capabilities as well as dialogs managed
 by the package.

 Dialog management elements are designed to manage the general
 lifecycle of a dialog. Elements are provided for preparing a dialog,
 starting the dialog on a conference or connection, and terminating
 execution of a dialog. Each of these elements is contained in a
 Media Control Channel Framework CONTROL message sent to the media

McGlashan, et al. Standards Track [Page 6]

RFC 6231 IVR Control Package May 2011

 server. When the appropriate action has been executed, the media
 server sends a REPORT message (or a 200 response to the CONTROL
 message if it can execute in time) with a response element indicating
 whether or not the operation was successful (e.g., if the dialog
 cannot be started, then the error is reported in this response).
 Once a dialog has been successfully started, the media server can
 send further event notifications in a framework CONTROL message.
 This package defines two event notifications: a DTMF event indicating
 the DTMF activity, and a dialogexit event indicating that the dialog
 has exited. If the dialog has executed successfully, the dialogexit
 event includes information collected during the dialog. If an error
 occurs during execution (e.g., a media resource failed to play, no
 recording resource available, etc.), then error information is
 reported in the dialogexit event. Once a dialogexit event is sent,
 the dialog lifecycle is terminated.

 The dialog management elements for preparing and starting a dialog
 specify the dialog using a dialog language. A dialog language has
 well-defined syntax and semantics for defined dialog operations.
 Typically, dialog languages are written in XML where the root element
 has a designated XML namespace and, when used as standalone
 documents, have an associated MIME media type. For example, VoiceXML
 is an XML dialog language with the root element <vxml> with the
 designated namespace ’http://www.w3.org/2001/vxml’ and standalone
 documents are associated with the MIME media type ’application/
 voicexml+xml’ [RFC4267].

 This Control Package defines its own lightweight IVR dialog language.
 The language has a root element (<dialog>) with the same designated
 namespace as used for other elements defined in this package (see
 Section 8.2). The root element contains child elements for playing
 prompts to the user, specifying runtime controls, collecting DTMF
 input from the user, and recording media input from the user. The
 child elements can co-occur so as to provide ’play announcement’,
 ’prompt and collect’, as well as ’prompt and record’ functionality.

 The dialog management elements for preparing and starting a dialog
 can specify the dialog language either by including inline a fragment
 with the root element or by referencing an external dialog document.
 The dialog language defined in this package is specified inline.
 Other dialog languages, such as VoiceXML, can be used by referencing
 an external dialog document.

 The document is organized as follows. Section 3 describes how this
 Control Package fulfills the requirements for a Media Control Channel
 Framework Control Package. Section 4 describes the syntax and
 semantics of defined elements, including dialog management
 (Section 4.2), the IVR dialog element (Section 4.3), and audit

McGlashan, et al. Standards Track [Page 7]

RFC 6231 IVR Control Package May 2011

 elements (Section 4.4). Section 5 describes an XML schema for these
 elements and provides extensibility by allowing attributes and
 elements from other namespaces. Section 6 provides examples of
 package usage. Section 7 describes important security considerations
 for use of this Control Package. Section 8 provides information on
 IANA registration of this Control Package, including its name, XML
 namespace, and MIME media type. It also establishes a registry for
 prompt variables. Finally, Section 9 provides additional information
 on using VoiceXML when supported as an external dialog language.

2. Conventions and Terminology

 In this document, BCP 14 [RFC2119] defines the key words "MUST",
 "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL". In
 addition, BCP 15 indicates requirement levels for compliant
 implementations.

 The following additional terms are defined for use in this document:

 Dialog: A dialog performs media interaction with a user following
 the concept of an IVR (Interactive Voice Response) dialog (this
 sense of ’dialog’ is completely unrelated to a SIP dialog). A
 dialog is specified as inline XML or via a URI reference to an
 external dialog document. Traditional IVR dialogs typically
 feature capabilities such as playing audio prompts, collecting
 DTMF input, and recording audio input from the user. More
 inclusive definitions include support for other media types,
 runtime controls, synthesized speech, recording and playback of
 video, recognition of spoken input, and mixed initiative
 conversations.

 Application Server: A SIP [RFC3261] application server (AS) hosts
 and executes services such as interactive media and conferencing
 in an operator’s network. An AS influences and impacts the SIP
 session, in particular by terminating SIP sessions on a media
 server, which is under its control.

 Media Server: A media server (MS) processes media streams on behalf
 of an AS by offering functionality such as interactive media,
 conferencing, and transcoding to the end user. Interactive media
 functionality is realized by way of dialogs that are initiated by
 the application server.

McGlashan, et al. Standards Track [Page 8]

RFC 6231 IVR Control Package May 2011

3. Control Package Definition

 This section fulfills the mandatory requirement for information that
 MUST be specified during the definition of a Control Framework
 Package, as detailed in Section 7 of [RFC6230].

3.1. Control Package Name

 The Control Framework requires a Control Package to specify and
 register a unique name.

 The name of this Control Package is "msc-ivr/1.0" (Media Server
 Control - Interactive Voice Response - version 1.0). Its IANA
 registration is specified in Section 8.1.

 Since this is the initial ("1.0") version of the Control Package,
 there are no backwards-compatibility issues to address.

3.2. Framework Message Usage

 The Control Framework requires a Control Package to explicitly detail
 the CONTROL messages that can be used as well as provide an
 indication of directionality between entities. This will include
 which role type is allowed to initiate a request type.

 This package specifies Control and response messages in terms of XML
 elements defined in Section 4, where the message bodies have the MIME
 media type defined in Section 8.4. These elements describe requests,
 responses, and notifications and all are contained within a root
 <mscivr> element (Section 4.1).

 In this package, the MS operates as a Control Server in receiving
 requests from, and sending responses to, the AS (operating as Control
 Client). Dialog management requests and responses are defined in
 Section 4.2. Audit requests and responses are defined in
 Section 4.4. Dialog management and audit responses are carried in a
 framework 200 response or REPORT message bodies. This package’s
 response codes are defined in Section 4.5.

 Note that package responses are different from framework response
 codes. Framework error response codes (see Section 7 of [RFC6230])
 are used when the request or event notification is invalid; for
 example, a request is invalid XML (400), or not understood (500).

 The MS also operates as a Control Client in sending event
 notification to the AS (Control Server). Event notifications
 (Section 4.2.5) are carried in CONTROL message bodies. The AS MUST
 respond with a Control Framework 200 response.

McGlashan, et al. Standards Track [Page 9]

RFC 6231 IVR Control Package May 2011

3.3. Common XML Support

 The Control Framework requires a Control Package definition to
 specify if the attributes for media dialog or conference references
 are required.

 This package requires that the XML schema in Section A.1 of [RFC6230]
 MUST be supported for media dialogs and conferences.

 The package uses "connectionid" and "conferenceid" attributes for
 various element definitions (Section 4). The XML schema (Section 5)
 imports the definitions of these attributes from the framework
 schema.

3.4. CONTROL Message Body

 The Control Framework requires a Control Package to define the
 control body that can be contained within a CONTROL command request
 and to indicate the location of detailed syntax definitions and
 semantics for the appropriate body types.

 When operating as Control Server, the MS receives Control message
 bodies with the MIME media type defined in Section 8.4 and containing
 an <mscivr> element (Section 4.1) with either a dialog management or
 audit request child element.

 The following dialog management request elements are carried in
 CONTROL message bodies to the MS: <dialogprepare> (Section 4.2.1),
 <dialogstart> (Section 4.2.2), and <dialogterminate> (Section 4.2.3)
 elements.

 The <audit> request element (Section 4.4.1) is also carried in
 CONTROL message bodies.

 When operating as Control Client, the MS sends CONTROL messages with
 the MIME media type defined in Section 8.4 and a body containing an
 <mscivr> element (Section 4.1) with a notification <event> child
 element (Section 4.2.5).

3.5. REPORT Message Body

 The Control Framework requires a Control Package definition to define
 the REPORT body that can be contained within a REPORT command
 request, or that no report package body is required. This section
 indicates the location of detailed syntax definitions and semantics
 for the appropriate body types.

McGlashan, et al. Standards Track [Page 10]

RFC 6231 IVR Control Package May 2011

 When operating as Control Server, the MS sends REPORT bodies with the
 MIME media type defined in Section 8.4 and containing a <mscivr>
 element (Section 4.1) with a response child element. The response
 element for dialog management requests is a <response> element
 (Section 4.2.4). The response element for an audit request is an
 <auditresponse> element (Section 4.4.2).

3.6. Audit

 The Control Framework encourages Control Packages to specify whether
 auditing is available, how it is triggered, as well as the query/
 response formats.

 This Control Package supports auditing of package capabilities and
 dialogs on the MS. An audit request is carried in a CONTROL message
 (see Section 3.4) and an audit response in a REPORT message (or a 200
 response to the CONTROL if it can execute the audit in time) (see
 Section 3.5).

 The syntax and semantics of audit request and response elements are
 defined in Section 4.4.

3.7. Examples

 The Control Framework recommends Control Packages to provide a range
 of message flows that represent common flows using the package and
 this framework document.

 This Control Package provides examples of such message flows in
 Section 6.

4. Element Definitions

 This section defines the XML elements for this package. The elements
 are defined in the XML namespace specified in Section 8.2.

 The root element is <mscivr> (Section 4.1). All other XML elements
 (requests, responses, and notification elements) are contained within
 it. Child elements describe dialog management (Section 4.2) and
 audit (Section 4.4) functionality. The IVR dialog element (contained
 within dialog management elements) is defined in Section 4.3.
 Response status codes are defined in Section 4.5 and type definitions
 in Section 4.6.

 Implementation of this Control Package MUST address the Security
 Considerations described in Section 7.

McGlashan, et al. Standards Track [Page 11]

RFC 6231 IVR Control Package May 2011

 Implementation of this Control Package MUST adhere to the syntax and
 semantics of XML elements defined in this section and the schema
 (Section 5). Since XML schema is unable to support some types of
 syntactic constraints (such as attribute and element co-occurrence),
 some elements in this package specify additional syntactic
 constraints in their textual definition. If there is a difference in
 constraints between the XML schema and the textual description of
 elements in this section, the textual definition takes priority.

 The XML schema supports extensibility by allowing attributes and
 elements from other namespaces. Implementations MAY support
 additional capabilities by means of attributes and elements from
 other (foreign) namespaces. Attributes and elements from foreign
 namespaces are not described in this section.

 Some elements in this Control Package contain attributes whose value
 is a URI. These elements include: <dialogprepare> (Section 4.2.1),
 <dialogstart> (Section 4.2.2), <media> (Section 4.3.1.5), <grammar>
 (Section 4.3.1.3.1), and <record> (Section 4.3.1.4). The MS MUST
 support both HTTP [RFC2616] and HTTPS [RFC2818] protocol schemes for
 fetching and uploading resources, and the MS MAY support other
 schemes. The implementation SHOULD support storage of authentication
 information as part of its configuration, including security
 certificates for use with HTTPS. If the implementation wants to
 support user authentication, user certifications and passwords can
 also be stored as part of its configuration or the implementation can
 extend the schema (adding, for example, an http-password attribute in
 its own namespace) and then map user authentication information onto
 the appropriate headers following the HTTP authentication model
 [RFC2616].

 Some elements in this Control Package contain attributes whose value
 is descriptive text primarily for diagnostic use. The implementation
 can indicate the language used in the descriptive text by means of a
 ’desclang’ attribute ([RFC2277], [RFC5646]). The desclang attribute
 can appear on the root element as well as selected subordinate
 elements (see Section 4.1). The desclang attribute value on the root
 element applies to all desclang attributes in subordinate elements
 unless the subordinate element has an explicit desclang attribute
 that overrides it.

 Usage examples are provided in Section 6.

4.1. <mscivr>

 The <mscivr> element has the following attributes (in addition to
 standard XML namespace attributes such as xmlns):

McGlashan, et al. Standards Track [Page 12]

RFC 6231 IVR Control Package May 2011

 version: a string specifying the mscivr package version. The value
 is fixed as ’1.0’ for this version of the package. The attribute
 is mandatory.

 desclang: specifies the language used in descriptive text attributes
 of subordinate elements (unless the subordinate element provides a
 desclang attribute that overrides the value for its descriptive
 text attributes). The descriptive text attributes on subordinate
 elements include: the reason attribute on <response>
 (Section 4.2.4), <dialogexit> (Section 4.2.5.1), and
 <auditresponse> (Section 4.4.2); desc attribute on <variabletype>
 and <format> (Section 4.4.2.2.5.1). A valid value is a language
 identifier (Section 4.6.11). The attribute is optional. The
 default value is i-default (BCP 47 [RFC5646]).

 The <mscivr> element has the following defined child elements, only
 one of which can occur:

 1. dialog management elements defined in Section 4.2:

 <dialogprepare> prepare a dialog. See Section 4.2.1.

 <dialogstart> start a dialog. See Section 4.2.2.

 <dialogterminate> terminate a dialog. See Section 4.2.3.

 <response> response to a dialog request. See Section 4.2.4.

 <event> dialog or subscription notification. See Section 4.2.5.

 2. audit elements defined in Section 4.4:

 <audit> audit package capabilities and managed dialogs. See
 Section 4.4.1.

 <auditresponse> response to an audit request. See
 Section 4.4.2.

 For example, a request to the MS to start an IVR dialog playing a
 prompt:

McGlashan, et al. Standards Track [Page 13]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="ssd3r3:sds345b">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/welcome.wav"/>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

 and a response from the MS that the dialog started successfully:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" dialogid="d1"/>
 </mscivr>

 and finally a notification from the MS indicating that the dialog
 exited upon completion of playing the prompt:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr"
 desclang="en">
 <event dialogid="d1">
 <dialogexit status="1" reason="successful completion of the dialog">
 <promptinfo termmode="completed"/>
 </dialogexit>
 </event>
 </mscivr>

 The language of the descriptive text in the reason attribute of
 <dialogexit> is explicitly indicated by the desclang attribute of the
 <mscivr> root element.

4.2. Dialog Management Elements

 This section defines the dialog management XML elements for this
 Control Package. These elements are divided into requests,
 responses, and notifications.

 Request elements are sent to the MS to request a specific dialog
 operation to be executed. The following request elements are
 defined:

 <dialogprepare>: prepare a dialog for later execution

 <dialogstart>: start a (prepared) dialog on a connection or
 conference

 <dialogterminate>: terminate a dialog

McGlashan, et al. Standards Track [Page 14]

RFC 6231 IVR Control Package May 2011

 Responses from the MS describe the status of the requested operation.
 Responses are specified in a <response> element (Section 4.2.4) that
 includes a mandatory attribute describing the status in terms of a
 numeric code. Response status codes are defined in Section 4.5. The
 MS MUST respond to a request message with a response message. If the
 MS is not able to process the request and carry out the dialog
 operation, the request has failed and the MS MUST indicate the class
 of failure using an appropriate 4xx response code. Unless an error
 response code is specified for a class of error within this section,
 implementations follow Section 4.5 in determining the appropriate
 status code for the response.

 Notifications are sent from the MS to provide updates on the status
 of a dialog or operations defined within the dialog. Notifications
 are specified in an <event> element (Section 4.2.5).

McGlashan, et al. Standards Track [Page 15]

RFC 6231 IVR Control Package May 2011

 +---------+
 | IDLE |
 +---------+
 | |
 | |
 <dialogprepare>/| |<dialogstart>/
 | |
 +---------+ | | +---------+
 +-----<--| |<--------+ +------------>| |+------>-+
+-<----	PREPARING		STARTING		
			----------->		---->--+
	+---------+ / +---------+				
		/			
		/200 response / /200 response			
		/			
		/			
		/			
V V v /<dialogstart>/ v					
	+---------+ / +---------+				
			--------+ +----		
		PREPARED	---------+		STARTED
				+--->	
			--------+	<dialogterminate>/	
	+---------+		200 response +---------+		
	/dialogexit notification				
	(timeout)				
			<dialogterminate>/		
			200 response		
			+	/dialogexit	
			/dialogexit	notification	
			notification		
	vv				
	/ERROR response +-----------+				
+---------------------->		<----------+ /ERROR response			
 +------------------------>|TERMINATED |<---------------------------+ |
 <dialogterminate>/ | |<-----------------------------+
 410 response +-----------+ <dialogterminate>/410 response

 Figure 1: Dialog Lifecycle

 The MS implementation MUST adhere to the dialog lifecycle shown in
 Figure 1, where each dialog has the following states:

McGlashan, et al. Standards Track [Page 16]

RFC 6231 IVR Control Package May 2011

 IDLE: the dialog is uninitialized.

 PREPARING: the dialog is being prepared. The dialog is assigned a
 valid dialog identifier (see below). If an error occurs, the
 dialog transitions to the TERMINATED state and the MS MUST send a
 response indicating the error. If the dialog is terminated before
 preparation is complete, the dialog transitions to the TERMINATED
 state and the MS MUST send a 410 response (Section 4.5) for the
 prepare request.

 PREPARED: the dialog has been successfully prepared and the MS MUST
 send a 200 response indicating the prepare operation was
 successful. If the dialog is terminated, then the MS MUST send a
 200 response, the dialog transitions to the TERMINATED state and
 the MS MUST send a dialogexit notification event (see
 Section 4.2.5.1). If the duration the dialog remains in the
 PREPARED state exceeds the maximum preparation duration, the
 dialog transitions to the TERMINATED state and the MS MUST send a
 dialogexit notification with the appropriate error status code
 (see Section 4.2.5.1). A maximum preparation duration of 300s is
 RECOMMENDED.

 STARTING: the dialog is being started. If the dialog has not
 already been prepared, it is first prepared and assigned a valid
 dialog identifier (see below). If an error occurs the dialog
 transitions to the TERMINATED state and the MS MUST send a
 response indicating the error. If the dialog is terminated, the
 dialog transitions to the TERMINATED state and the MS MUST send a
 410 response (Section 4.5) for the start request.

 STARTED: the dialog has been successfully started and is now active.
 The MS MUST send a 200 response indicating the start operation was
 successful. If any dialog events occur that were subscribed to,
 the MS MUST send a notifications when the dialog event occurs.
 When the dialog exits (due to normal termination, an error, or a
 terminate request), the MS MUST send a dialogexit notification
 event (see Section 4.2.5.1) and the dialog transitions to the
 TERMINATED state.

 TERMINATED: the dialog is terminated and its dialog identifier is no
 longer valid. Dialog notifications MUST NOT be sent for this
 dialog.

 Each dialog has a valid identifier until it transitions to a
 TERMINATED state. The dialog identifier is assigned by the MS unless
 the <dialogprepare> or <dialogstart> request already specifies a

McGlashan, et al. Standards Track [Page 17]

RFC 6231 IVR Control Package May 2011

 identifier (dialogid) that is not associated with any other dialog on
 the MS. Once a dialog is in a TERMINATED state, its dialog
 identifier is no longer valid and can be reused for another dialog.

 The identifier is used to reference the dialog in subsequent
 requests, responses, and notifications. In a <dialogstart> request,
 the dialog identifier can be specified in the prepareddialogid
 attribute indicating the prepared dialog to start. In
 <dialogterminate> and <audit> requests, the dialog identifier is
 specified in the dialogid attribute, indicating which dialog is to be
 terminated or audited, respectively. If these requests specify a
 dialog identifier already associated with another dialog on the MS,
 the MS sends a response with a 405 status code (see Section 4.5) and
 the same dialogid as in the request. The MS MUST specify a dialog
 identifier in notifications associated with the dialog. The MS MUST
 specify a dialog identifier in responses unless it is a response to a
 syntactically invalid request.

 For a given dialog, the <dialogprepare> or <dialogstart> request
 elements specify the dialog content to execute either by including
 inline a <dialog> element (the dialog language defined in this
 package; see Section 4.3) or by referencing an external dialog
 document (a dialog language defined outside this package). When
 referencing an external dialog document, the request element contains
 a URI reference to the remote document (specifying the dialog
 definition) and, optionally, a type attribute indicating the MIME
 media type associated with the dialog document. Consequently, the
 dialog language associated with a dialog on the MS is identified
 either inline by a <dialog> child element or by a src attribute
 referencing a document containing the dialog language. The MS MUST
 support inline the IVR dialog language defined in Section 4.3. The
 MS MAY support other dialog languages by reference.

4.2.1. <dialogprepare>

 The <dialogprepare> request is sent to the MS to request preparation
 of a dialog. Dialog preparation consists of (a) retrieving an
 external dialog document and/or external resources referenced within
 an inline <dialog> element and (b) validating the dialog document
 syntactically and semantically.

 A prepared dialog is executed when the MS receives a <dialogstart>
 request referencing the prepared dialog identifier (see
 Section 4.2.2).

 The <dialogprepare> element has the following attributes:

McGlashan, et al. Standards Track [Page 18]

RFC 6231 IVR Control Package May 2011

 src: specifies the location of an external dialog document to
 prepare. A valid value is a URI (see Section 4.6.9). The MS MUST
 support both HTTP [RFC2616] and HTTPS [RFC2818] schemes and the MS
 MAY support other schemes. If the URI scheme is unsupported, the
 MS sends a <response> with a 420 status code (Section 4.5). If
 the document cannot be retrieved within the timeout interval, the
 MS sends a <response> with a 409 status code. If the document
 contains a type of dialog language that the MS does not support,
 the MS sends a <response> with a 421 status code. The attribute
 is optional. There is no default value.

 type: specifies the type of the external dialog document indicated
 in the ’src’ attribute. A valid value is a MIME media type (see
 Section 4.6.10). If the URI scheme used in the src attribute
 defines a mechanism for establishing the authoritative MIME media
 type of the media resource, the value returned by that mechanism
 takes precedence over this attribute. The attribute is optional.
 There is no default value.

 maxage: Used to set the max-age value of the ’Cache-Control’ header
 in conjunction with an external dialog document fetched using
 HTTP, as per [RFC2616]. A valid value is a non-negative integer
 (see Section 4.6.4). The attribute is optional. There is no
 default value.

 maxstale: Used to set the max-stale value of the ’Cache-Control’
 header in conjunction with an external dialog document fetched
 using HTTP, as per [RFC2616]. A valid value is a non-negative
 integer (see Section 4.6.4). The attribute is optional. There is
 no default value.

 fetchtimeout: the maximum timeout interval to wait when fetching an
 external dialog document. A valid value is a Time Designation
 (see Section 4.6.7). The attribute is optional. The default
 value is 30s.

 dialogid: string indicating a unique name for the dialog. If a
 dialog with the same name already exists on the MS, the MS sends a
 <response> with a 405 status code (Section 4.5). If this
 attribute is not specified, the MS MUST create a unique name for
 the dialog (see Section 4.2 for dialog identifier assignment).
 The attribute is optional. There is no default value.

 The <dialogprepare> element has the following sequence of child
 elements:

 <dialog> an IVR dialog (Section 4.3) to prepare. The element is
 optional.

McGlashan, et al. Standards Track [Page 19]

RFC 6231 IVR Control Package May 2011

 <params>: specifies input parameters (Section 4.2.6) for dialog
 languages defined outside this specification. The element is
 optional. If a parameter is not supported by the MS for the
 external dialog language, the MS sends a <response> with a 427
 status code (Section 4.5).

 The dialog to prepare can be specified either inline with a <dialog>
 child element or externally (for dialog languages defined outside
 this specification) using the src attribute. It is a syntax error if
 both an inline <dialog> element and a src attribute are specified and
 the MS sends a <response> with a 400 status code (see Section 4.5).
 The type, maxage, maxstale, and fetchtimeout attributes are only
 relevant when a dialog is specified as an external document.

 For example, a <dialogprepare> request to prepare an inline IVR
 dialog with a single prompt:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogprepare>
 <dialog>
 <prompt>
 <media loc="http://www.example.com/welcome.wav"/>
 </prompt>
 </dialog>
 </dialogprepare>
 </mscivr>

 In this example, a request with a specified dialogid to prepare a
 VoiceXML dialog document located externally:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogprepare dialogid="d2" type="application/voicexml+xml"
 src="http://www.example.com/mydialog.vxml"
 fetchtimeout="15s"/>
 </mscivr>

 Since MS support for dialog languages other than the IVR dialog
 language defined in this package is optional, if the MS does not
 support the dialog language, it would send a response with the status
 code 421 (Section 4.5). Further information on using VoiceXML can be
 found in Section 9.

4.2.2. <dialogstart>

 The <dialogstart> element is sent to the MS to start a dialog. If
 the dialog has not been prepared, the dialog is prepared (retrieving
 external document and/or external resources referenced within
 <dialog> element and the dialog document validated syntactically and

McGlashan, et al. Standards Track [Page 20]

RFC 6231 IVR Control Package May 2011

 semantically). Media processors (e.g., DTMF and prompt queue) are
 activated and associated with the specified connection or conference.

 The <dialogstart> element has the following attributes:

 src: specifies the location of an external dialog document to start.
 A valid value is a URI (see Section 4.6.9). The MS MUST support
 both HTTP [RFC2616] and HTTPS [RFC2818] schemes and the MS MAY
 support other schemes. If the URI scheme is unsupported, the MS
 sends a <response> with a 420 status code (Section 4.5). If the
 document cannot be retrieved with the timeout interval, the MS
 sends a <response> with a 409 status code. If the document
 contains a type of dialog language that the MS does not support,
 the MS sends a <response> with a 421 status code. The attribute
 is optional. There is no default value.

 type: specifies the type of the external dialog document indicated
 in the ’src’ attribute. A valid value is a MIME media type (see
 Section 4.6.10). If the URI scheme used in the src attribute
 defines a mechanism for establishing the authoritative MIME media
 type of the media resource, the value returned by that mechanism
 takes precedence over this attribute. The attribute is optional.
 There is no default value.

 maxage: Used to set the max-age value of the ’Cache-Control’ header
 in conjunction with an external dialog document fetched using
 HTTP, as per [RFC2616]. A valid value is a non-negative integer
 (see Section 4.6.4). The attribute is optional. There is no
 default value.

 maxstale: Used to set the max-stale value of the ’Cache-Control’
 header in conjunction with an external dialog document fetched
 using HTTP, as per [RFC2616]. A valid value is a non-negative
 integer (see Section 4.6.4). The attribute is optional. There is
 no default value.

 fetchtimeout: the maximum timeout interval to wait when fetching an
 external dialog document. A valid value is a Time Designation
 (see Section 4.6.7). The attribute is optional. The default
 value is 30s.

 dialogid: string indicating a unique name for the dialog. If a
 dialog with the same name already exists on the MS, the MS sends a
 <response> with a 405 status code (Section 4.5). If neither the
 dialogid attribute nor the prepareddialogid attribute is
 specified, the MS MUST create a unique name for the dialog (see
 Section 4.2 for dialog identifier assignment). The attribute is
 optional. There is no default value.

McGlashan, et al. Standards Track [Page 21]

RFC 6231 IVR Control Package May 2011

 prepareddialogid: string identifying a dialog previously prepared
 using a dialogprepare (Section 4.2.1) request. If neither the
 dialogid attribute nor the prepareddialogid attribute is
 specified, the MS MUST create a unique name for the dialog (see
 Section 4.2 for dialog identifier assignment). The attribute is
 optional. There is no default value.

 connectionid: string identifying the SIP dialog connection on which
 this dialog is to be started (see Appendix A.1 of [RFC6230]). The
 attribute is optional. There is no default value.

 conferenceid: string identifying the conference on which this dialog
 is to be started (see Appendix A.1 of [RFC6230]). The attribute
 is optional. There is no default value.

 Exactly one of the connectionid or conferenceid attributes MUST be
 specified. If both the connectionid and conferenceid attributes are
 specified or neither is specified, it is a syntax error and the MS
 sends a <response> with a 400 status code (Section 4.5).

 It is an error if the connection or conference referenced by a
 specific connectionid or conferenceid attribute is not available on
 the MS at the time the <dialogstart> request is executed. If an
 invalid connectionid is specified, the MS sends a <response> with a
 407 status code (Section 4.5). If an invalid conferenceid is
 specified, the MS sends a <response> with a 408 status code.

 The <dialogstart> element has the following sequence of child
 elements:

 <dialog>: specifies an IVR dialog (Section 4.3) to execute. The
 element is optional.

 <subscribe>: specifies subscriptions to dialog events
 (Section 4.2.2.1). The element is optional.

 <params>: specifies input parameters (Section 4.2.6) for dialog
 languages defined outside this specification. The element is
 optional. If a parameter is not supported by the MS for the
 external dialog language, the MS sends a <response> with a 427
 status code (Section 4.5).

 <stream>: determines the media stream(s) associated with the
 connection or conference on which the dialog is executed
 (Section 4.2.2.2). The <stream> element is optional. Multiple
 <stream> elements can be specified.

McGlashan, et al. Standards Track [Page 22]

RFC 6231 IVR Control Package May 2011

 The dialog to start can be specified either (a) inline with a
 <dialog> child element, (b) externally using the src attribute (for
 dialog languages defined outside this specification), or (c) by
 referencing a previously prepared dialog using the prepareddialogid
 attribute. If exactly one of the src attribute, the
 prepareddialogid, or a <dialog> child element is not specified, it is
 a syntax error and the MS sends a <response> with a 400 status code
 (Section 4.5). If the prepareddialogid and dialogid attributes are
 specified, it is also a syntax error and the MS sends a <response>
 with a 400 status code. The type, maxage, maxstale, and fetchtimeout
 attributes are only relevant when a dialog is specified as an
 external document.

 The <stream> element provides explicit control over which media
 streams on the connection or conference are used during dialog
 execution. For example, if a connection supports both audio and
 video streams, a <stream> element could be used to indicate that only
 the audio stream is used in receive mode. In cases where there are
 multiple media streams of the same type for a dialog, the AS MUST use
 <stream> elements to explicitly specify the configuration. If no
 <stream> elements are specified, then the default media configuration
 is that defined for the connection or conference.

 If a <stream> element is in conflict (a) with another <stream>
 element, (b) with specified connection or conference media
 capabilities, or (c) with a Session Description Protocol (SDP) label
 value as part of the connectionid (see Appendix A.1 of [RFC6230]),
 then the MS sends a <response> with a 411 status code (Section 4.5).
 If the media stream configuration is not supported by the MS, then
 the MS sends a <response> with a 428 status code (Section 4.5).

 The MS MAY support multiple, simultaneous dialogs being started on
 the same connection or conference. For example, the same connection
 can receive different media streams (e.g., audio and video) from
 different dialogs, or receive (and implicitly mix where appropriate)
 the same type of media streams from different dialogs. If the MS
 does not support starting another dialog on the same connection or
 conference, it sends a <response> with a 432 status code
 (Section 4.5) when it receives the second (or subsequent) dialog
 request.

 For example, a request to start an ivr dialog on a connection
 subscribing to DTMF notifications:

McGlashan, et al. Standards Track [Page 23]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="connection1">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/getpin.wav"/>
 </prompt>
 <collect maxdigits="2"/>
 </dialog>
 <subscribe>
 <dtmfsub matchmode="all"/>
 </subscribe>
 </dialogstart>
 </mscivr>

 In this example, the dialog is started on a conference where the
 conference only receives an audio media stream from the dialog:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart conferenceid="conference1">
 <dialog>
 <record maxtime="384000s"/>
 </dialog>
 <stream media="audio" direction="recvonly"/>
 </dialogstart>
 </mscivr>

4.2.2.1. <subscribe>

 The <subscribe> element allows the AS to subscribe to, and be
 notified of, specific events that occur during execution of the
 dialog. Notifications of dialog events are delivered using the
 <event> element (see Section 4.2.5).

 The <subscribe> element has no attributes.

 The <subscribe> element has the following sequence of child elements
 (0 or more occurrences):

 <dtmfsub>: Subscription to DTMF input during the dialog
 (Section 4.2.2.1.1). The element is optional.

 If a request has a <subscribe> with no child elements, the MS treats
 the request as if no <subscribe> element were specified.

 The MS MUST support <dtmfsub> subscription for the IVR dialog
 language defined in this specification (Section 4.3). It MAY support
 other dialog subscriptions (specified using attributes and child
 elements from a foreign namespace). If the MS does not support a

McGlashan, et al. Standards Track [Page 24]

RFC 6231 IVR Control Package May 2011

 subscription specified in a foreign namespace, the MS sends a
 response with a 431 status code (see Section 4.5).

4.2.2.1.1. <dtmfsub>

 The <dtmfsub> element has the following attributes:

 matchmode: controls which DTMF input is subscribed to. Valid values
 are "all" - notify all DTMF key presses received during the
 dialog; "collect" - notify only DTMF input matched by the collect
 operation (Section 4.3.1.3); and "control" - notify only DTMF
 input matched by the runtime control operation (Section 4.3.1.2).
 The attribute is optional. The default value is "all".

 The <dtmfsub> element has no child elements.

 DTMF notifications are delivered in the <dtmfnotify> element
 (Section 4.2.5.2).

 For example, the AS wishes to subscribe to DTMF key press matching a
 runtime control:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart dialogid="d3" connectionid="connection1">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/getpin.wav"/>
 </prompt>
 <control ffkey="2" rwkey="3"/>
 </dialog>
 <subscribe>
 <dtmfsub matchmode="control"/>
 </subscribe>
 </dialogstart>
 </mscivr>

 Each time a ’2’ or ’3’ DTMF input is received, the MS sends a
 notification event:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="d3">
 <dtmfnotify matchmode="collect" dtmf="2"
 timestamp="2008-05-12T12:13:14Z"/>
 </event>
 </mscivr>

McGlashan, et al. Standards Track [Page 25]

RFC 6231 IVR Control Package May 2011

4.2.2.2. <stream>

 The <stream> element has the following attributes:

 media: a string indicating the type of media associated with the
 stream. A valid value is a MIME type-name as defined in Section
 4.2 of [RFC4288]. The following values MUST be used for common
 types of media: "audio" for audio media, and "video" for video
 media. See [IANA] for registered MIME type names. The attribute
 is mandatory.

 label: a string indicating the SDP label associated with a media
 stream [RFC4574]. The attribute is optional.

 direction: a string indicating the direction of the media flow
 relative to the endpoint conference or connection. Defined values
 are "sendrecv" (the endpoint can send media to, and receive media
 from, the dialog), "sendonly" (the endpoint can only send media to
 the dialog), "recvonly" (the endpoint can only receive media from
 the dialog), and "inactive" (stream is not to be used). The
 default value is "sendrecv". The attribute is optional.

 The <stream> element has the following sequence of child elements:

 <region>: an element to specify the area within a mixer video layout
 where a media stream is displayed (Section 4.2.2.2.1). The
 element is optional.

 <priority>: an element to configure priority associated with the
 stream in the conference mix (Section 4.2.2.2.2). The element is
 optional.

 If conferenceid is not specified or if the "media" attribute does not
 have the value of "video", then the MS ignores the <region> and
 <priority> elements.

 For example, assume a User Agent connection with multiple audio and
 video streams associated with the user and a separate web camera. In
 this case, the dialog could be started to record only the audio and
 video streams associated with the user:

McGlashan, et al. Standards Track [Page 26]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="connection1">
 <dialog>
 <record maxtime="384000s"/>
 </dialog>
 <stream media="audio" label="camaudio" direction="inactive"/>
 <stream media="video" label="camvideo" direction="inactive"/>
 <stream media="audio" label="useraudio" direction="sendonly"/>
 <stream media="video" label="uservideo" direction="sendonly"/>
 </dialogstart>
 </mscivr>

 Using the <region> element, the dialog can be started on a conference
 mixer so that the video output from the dialog is directed to a
 specific area within a video layout. For example:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart conferenceid="conference1">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/presentation.3gp"/>
 </prompt>
 </dialog>
 <stream media="video" direction="recvonly">
 <region>1</region>
 </stream>
 </dialogstart>
 </mscivr>

4.2.2.2.1. <region>

 The <region> element is used to specify a named area within a
 presentation layout where a video media stream is displayed. The MS
 could, for example, play video media into an area of a video layout
 where the layout and its named regions are specified using the Mixer
 Control Package [MIXER-CP].

 The <region> element has no attributes and its content model
 specifies the name of the region.

 If the region name is invalid, then the MS reports a 416 status code
 (Section 4.5) in the response to the request element containing the
 <region> element.

4.2.2.2.2. <priority>

 The <priority> element is used to explicitly specify the priority of
 the dialog for presentation in a conference mix.

McGlashan, et al. Standards Track [Page 27]

RFC 6231 IVR Control Package May 2011

 The <priority> element has no attributes and its content model
 specifies a positive integer (see Section 4.6.5). The lower the
 value, the higher the priority.

4.2.3. <dialogterminate>

 A dialog can be terminated by sending a <dialogterminate> request
 element to the MS.

 The <dialogterminate> element has the following attributes:

 dialogid: string identifying the dialog to terminate. If the
 specified dialog identifier is invalid, the MS sends a response
 with a 405 status code (Section 4.5). The attribute is mandatory.

 immediate: indicates whether or not a dialog in the STARTED state is
 to be terminated immediately (in other states, termination is
 always immediate). A valid value is a boolean (see
 Section 4.6.1). A value of true indicates that the dialog is
 terminated immediately and the MS MUST send a dialogexit
 notification (Section 4.2.5.1) without report information. A
 value of false indicates that the dialog terminates after the
 current iteration and the MS MUST send a dialogexit notification
 with report information. The attribute is optional. The default
 value is false.

 The MS MUST reply to the <dialogterminate> request with a <response>
 element (Section 4.2.4), reporting whether or not the dialog was
 terminated successfully.

 For example, immediately terminating a STARTED dialog with dialogid
 "d4":

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogterminate dialogid="d4" immediate="true"/>
 </mscivr>

 If the dialog is terminated successfully, then the response to the
 dialogterminate request would be:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" dialogid="d4"/>
 </mscivr>

4.2.4. <response>

 Responses to dialog management requests are specified with a
 <response> element.

McGlashan, et al. Standards Track [Page 28]

RFC 6231 IVR Control Package May 2011

 The <response> element has following attributes:

 status: numeric code indicating the response status. Valid values
 are defined in Section 4.5. The attribute is mandatory.

 reason: string specifying a reason for the response status. The
 attribute is optional. There is no default value.

 desclang: specifies the language used in the value of the reason
 attribute. A valid value is a language identifier
 (Section 4.6.11). The attribute is optional. If not specified,
 the value of the desclang attribute on <mscivr> (Section 4.1)
 applies.

 dialogid: string identifying the dialog. If the request specifies a
 dialogid, then that value is used. Otherwise, with
 <dialogprepare> and <dialogstart> requests, the dialogid generated
 by the MS is used. If there is no available dialogid because the
 request is syntactically invalid (e.g., a <dialogterminate>
 request with no dialogid attribute specified), then the value is
 the empty string. The attribute is mandatory.

 connectionid: string identifying the SIP dialog connection
 associated with the dialog (see Appendix A.1 of [RFC6230]). The
 attribute is optional. There is no default value.

 conferenceid: string identifying the conference associated with the
 dialog (see Appendix A.1 of [RFC6230]). The attribute is
 optional. There is no default value.

 For example, a response when a dialog was prepared successfully:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" dialogid="d5"/>
 </mscivr>

 The response if dialog preparation failed due to an unsupported
 dialog language:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="421" dialogid="d5"
 reason="Unsupported dialog language: application/voicexml+xml"/>
 </mscivr>

 In this example, a <dialogterminate> request does not specify a
 dialogid:

McGlashan, et al. Standards Track [Page 29]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogterminate/>
 </mscivr>

 The response status indicates a 400 (Syntax error) status code and
 the dialogid attribute has an empty string value:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="400" dialogid=" "
 reason="Attribute required: dialogid"/>
 </mscivr>

4.2.5. <event>

 When a dialog generates a notification event, the MS sends the event
 using an <event> element.

 The <event> element has the following attributes:

 dialogid: string identifying the dialog that generated the event.
 The attribute is mandatory.

 The <event> element has the following child elements, only one of
 which can occur:

 <dialogexit>: indicates that the dialog has exited
 (Section 4.2.5.1).

 <dtmfnotify>: indicates that a DTMF key press occurred
 (Section 4.2.5.2).

4.2.5.1. <dialogexit>

 The <dialogexit> event indicates that a prepared or active dialog has
 exited because it is complete, it has been terminated, or an error
 occurred during execution (for example, a media resource cannot be
 played). This event MUST be sent by the MS when the dialog exits.

 The <dialogexit> element has the following attributes:

 status: a status code indicating the status of the dialog when it
 exits. A valid value is a non-negative integer (see
 Section 4.6.4). The MS MUST support the following values:

 0 indicates the dialog has been terminated by a <dialogterminate>
 request.

 1 indicates successful completion of the dialog.

McGlashan, et al. Standards Track [Page 30]

RFC 6231 IVR Control Package May 2011

 2 indicates the dialog terminated because the connection or
 conference associated with the dialog has terminated.

 3 indicates the dialog terminated due to exceeding its maximum
 duration.

 4 indicates the dialog terminated due to an execution error.

 All other valid but undefined values are reserved for future use,
 where new status codes are assigned using the Standards Action
 process defined in [RFC5226]. The AS MUST treat any status code
 it does not recognize as being equivalent to 4 (dialog execution
 error). The attribute is mandatory.

 reason: a textual description that the MS SHOULD use to provide a
 reason for the status code, e.g., details about an error. A valid
 value is a string (see Section 4.6.6). The attribute is optional.
 There is no default value.

 desclang: specifies the language used in the value of the reason
 attribute. A valid value is a language identifier
 (Section 4.6.11). The attribute is optional. If not specified,
 the value of the desclang attribute on <mscivr> (Section 4.1)
 applies.

 The <dialogexit> element has the following sequence of child
 elements:

 <promptinfo>: report information (Section 4.3.2.1) about the prompt
 execution in an IVR <dialog>. The element is optional.

 <controlinfo>: reports information (Section 4.3.2.2) about the
 control execution in an IVR <dialog>. The element is optional.

 <collectinfo>: reports information (Section 4.3.2.3) about the
 collect execution in an IVR <dialog>. The element is optional.

 <recordinfo>: reports information (Section 4.3.2.4) about the record
 execution in an IVR <dialog>. The element is optional.

 <params>: reports exit parameters (Section 4.2.6) for a dialog
 language defined outside this specification. The element is
 optional.

 For example, when an active <dialog> exits normally, the MS sends a
 dialogexit <event> reporting information:

McGlashan, et al. Standards Track [Page 31]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="d6">
 <dialogexit status="1">
 <collectinfo dtmf="1234" termmode="match"/>
 </dialogexit>
 </event>
 </mscivr>

4.2.5.2. <dtmfnotify>

 The <dtmfnotify> element provides a notification of DTMF input
 received during the active dialog as requested by a <dtmfsub>
 subscription (Section 4.2.2.1).

 The <dtmfnotify> element has the following attributes:

 matchmode: indicates the matching mode specified in the subscription
 request. Valid values are as follows:

 "all" - all DTMF key presses notified individually;

 "collect" - only DTMF input matched by the collect operation
 notified; and

 "control" - only DTMF input matched by the control operation
 notified.

 The attribute is optional. The default value is "all".

 dtmf: DTMF key presses received according to the matchmode. A valid
 value is a DTMF string (see Section 4.6.3) with no space between
 characters. The attribute is mandatory.

 timestamp: indicates the time (on the MS) at which the last key
 press occurred according to the matchmode. A valid value is a
 dateTime expression (Section 4.6.12). The attribute is mandatory.

 For example, a notification of DTMF input matched during the collect
 operation:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="d3">
 <dtmfnotify matchmode="collect" dtmf="3123"
 timestamp="2008-05-12T12:13:14Z"/>
 </event>
 </mscivr>

McGlashan, et al. Standards Track [Page 32]

RFC 6231 IVR Control Package May 2011

4.2.6. <params>

 The <params> element is a container for <param> elements
 (Section 4.2.6.1).

 The <params> element has no attributes, but the following child
 elements are defined (0 or more):

 <param>: specifies a parameter name and value (Section 4.2.6.1).

 For example, usage with a dialog language defined outside this
 specification to send additional parameters into the dialog:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart type="application/x-dialog"
 src="nfs://nas01/dialog4" connectionid="c1">
 <params>
 <param name="mode">playannouncement</param>
 <param name="prompt1">nfs://nas01/media1.3gp</param>
 <param name="prompt2">nfs://nas01/media2.3gp</param>
 </params>
 </dialogstart>
 </mscivr>

4.2.6.1. <param>

 The <param> element describes a parameter name and value.

 The <param> element has the following attributes:

 name: a string indicating the name of the parameter. The attribute
 is mandatory.

 type: specifies a type indicating how the inline value of the
 parameter is to be interpreted. A valid value is a MIME media
 type (see Section 4.6.10). The attribute is optional. The
 default value is "text/plain".

 encoding: specifies a content-transfer-encoding schema applied to
 the inline value of the parameter on top of the MIME media type
 specified with the type attribute. A valid value is a content-
 transfer-encoding schema as defined by the "mechanism" token in
 Section 6.1 of [RFC2045]. The attribute is optional. There is no
 default value.

 The <param> element content model is the value of the parameter.
 Note that a value that contains XML characters (e.g., "<") needs to
 be escaped following standard XML conventions.

McGlashan, et al. Standards Track [Page 33]

RFC 6231 IVR Control Package May 2011

 For example, usage with a dialog language defined outside this
 specification to receive parameters from the dialog when it exits:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="d6">
 <dialogexit status="1">
 <params>
 <param name="mode">recording</param>
 <param name="recording1" type="audio/x-wav" encoding="base64">
 <![CDATA[
 R0lGODlhZABqALMAAFrMYr/BvlKOVJKOg2xZUKmenMfDw8tgWJpV
]]>
 </param>
 </params>
 </dialogexit>
 </event>
 </mscivr>

4.3. IVR Dialog Elements

 This section describes the IVR dialog language defined as part of
 this specification. The MS MUST support this dialog language.

 The <dialog> element is an execution container for operations of
 playing prompts (Section 4.3.1.1), runtime controls
 (Section 4.3.1.2), collecting DTMF (Section 4.3.1.3), and recording
 user input (Section 4.3.1.4). Results of the dialog execution
 (Section 4.3.2) are reported in a dialogexit notification event.

 Using these elements, three common dialog models are supported:

 playannouncements: only a <prompt> element is specified in the
 container. The prompt media resources are played in sequence.

 promptandcollect: a <collect> element is specified and, optionally,
 a <prompt> element. If a <prompt> element is specified and
 bargein is enabled, playing of the prompt is terminated when
 bargein occurs, and DTMF collection is initiated; otherwise, the
 prompt is played to completion before DTMF collection is
 initiated. If no prompt element is specified, DTMF collection is
 initiated immediately.

 promptandrecord: a <record> element is specified and, optionally, a
 <prompt> element. If a <prompt> element is specified and bargein
 is enabled, playing of the prompt is terminated when bargein
 occurs, and recording is initiated; otherwise, the prompt is
 played to completion before recording is initiated. If no prompt
 element is specified, recording is initiated immediately.

McGlashan, et al. Standards Track [Page 34]

RFC 6231 IVR Control Package May 2011

 In addition, this dialog language supports runtime (’VCR’) controls
 enabling a user to control prompt playback using DTMF.

 Each of the core elements -- <prompt>, <control>, <collect>, and
 <record> -- are specified so that their execution and reporting is
 largely self-contained. This facilitates their reuse in other dialog
 container elements. Note that DTMF and bargein behavior affects
 multiple elements and is addressed in the relevant element
 definitions.

 Execution results are reported in the <dialogexit> notification event
 with child elements defined in Section 4.3.2. If the dialog
 terminated normally (i.e., not due to an error or to a
 <dialogterminate> request), then the MS MUST report the results for
 the operations specified in the dialog:

 <prompt>: <promptinfo> (see Section 4.3.2.1) with at least the
 termmode attribute specified.

 <control>: <controlinfo> (see Section 4.3.2.2) if any runtime
 controls are matched.

 <collect>: <collectinfo> (see Section 4.3.2.3) with the dtmf and
 termmode attributes specified.

 <record>: <recordinfo> (see Section 4.3.2.4) with at least the
 termmode attribute and one <mediainfo> element specified.

 The media format requirements for IVR dialogs are undefined. This
 package is agnostic to the media types and codecs for media resources
 and recording that need to be supported by an implementation. For
 example, an MS implementation might only support audio and in
 particular the ’audio/basic’ codec for media playback and recording.
 However, when executing a dialog, if an MS encounters a media type or
 codec that it cannot process, the MS MUST stop further processing and
 report the error using the dialogexit notification.

4.3.1. <dialog>

 An IVR dialog to play prompts to the user, allow runtime controls,
 collect DTMF, or record input. The dialog is specified using a
 <dialog> element.

 A <dialog> element has the following attributes:

McGlashan, et al. Standards Track [Page 35]

RFC 6231 IVR Control Package May 2011

 repeatCount: number of times the dialog is to be executed. A valid
 value is a non-negative integer (see Section 4.6.4). A value of 0
 indicates that the dialog is repeated until halted by other means.
 The attribute is optional. The default value is 1.

 repeatDur: maximum duration for dialog execution. A valid value is
 a time designation (see Section 4.6.7). If no value is specified,
 then there is no limit on the duration of the dialog. The
 attribute is optional. There is no default value.

 repeatUntilComplete: indicates whether the MS terminates dialog
 execution when an input operation is completed successfully. A
 valid value is a boolean (see Section 4.6.1). A value of true
 indicates that dialog execution is terminated when an input
 operation associated with its child elements is completed
 successfully (see execution model below for precise conditions).
 A value of false indicates that dialog execution is terminated by
 other means. The attribute is optional. The default value is
 false.

 The repeatDur attribute takes priority over the repeatCount attribute
 in determining maximum duration of the dialog. See ’repeatCount’ and
 ’repeatDur’ in the Synchronized Multimedia Integration Language
 (SMIL) [W3C.REC-SMIL2-20051213] for further information. In the
 situation where a dialog is repeated more than once, only the results
 of operations in the last dialog iteration are reported.

 The <dialog> element has the following sequence of child elements (at
 least one, any order):

 <prompt>: defines media resources to play in sequence (see
 Section 4.3.1.1). The element is optional.

 <control>: defines how DTMF is used for runtime controls (see
 Section 4.3.1.2). The element is optional.

 <collect>: defines how DTMF is collected (see Section 4.3.1.3). The
 element is optional.

 <record>: defines how recording takes place (see Section 4.3.1.4).
 The element is optional.

 Although the behavior when both <collect> and <record> elements are
 specified in a request is not defined in this Control Package, the MS
 MAY support this configuration. If the MS does not support this
 configuration, the MS sends a <response> with a 433 status code.

McGlashan, et al. Standards Track [Page 36]

RFC 6231 IVR Control Package May 2011

 The MS has the following execution model for the IVR dialog after
 initialization (initialization errors are reported by the MS in the
 response):

 1. If an error occurs during execution, then the MS terminates the
 dialog and reports the error in the <dialogexit> event by setting
 the status attribute (see Section 4.3.2). Details about the
 error are specified in the reason attribute.

 2. The MS initializes a counter to 0.

 3. The MS starts a duration timer for the value of the repeatDur
 attribute. If the timer expires before the dialog is complete,
 then the MS terminates the dialog and sends a dialogexit whose
 status attribute is set to 3 (see Section 4.2.5.1). The MS MAY
 report information in the dialogexit gathered in the last
 execution cycle (if any).

 4. The MS initiates a dialog execution cycle. Each cycle executes
 the operations associated with the child elements of the dialog.
 If a <prompt> element is specified, then execute the element’s
 prompt playing operation and activate any controls (if the
 <control> element is specified). If no <prompt> is specified or
 when a specified <prompt> terminates, then start the collect
 operation or the record operation if the <collect> or <record>
 elements, respectively, are specified. If subscriptions are
 specified for the dialog, then the MS sends a notification event
 when the specified event occurs. If execution of a child element
 results in an error, the MS terminates dialog execution (and
 stops other child element operations) and the MS sends a
 dialogexit status event, reporting any information gathered.

 5. If the dialog execution cycle completes successfully, then the MS
 increments the counter by one. The MS terminates dialog
 execution if either of the following conditions is true:

 * the value of the repeatCount attribute is greater than zero,
 and the counter is equal to the value of the repeatCount
 attribute.

 * the value of the repeatUntilComplete attribute is true and one
 of the following conditions is true:

 + <collect> reports termination status of ’match’ or
 ’stopped’.

 + <record> reports termination status of ’stopped’, ’dtmf’,
 ’maxtime’, or ’finalsilence’.

McGlashan, et al. Standards Track [Page 37]

RFC 6231 IVR Control Package May 2011

 When the MS terminates dialog execution, it sends a dialogexit
 (with a status of 1) reporting operation information collected in
 the last dialog execution cycle only. Otherwise, another dialog
 execution cycle is initiated.

4.3.1.1. <prompt>

 The <prompt> element specifies a sequence of media resources to play
 back in document order.

 A <prompt> element has the following attributes:

 xml:base: A string declaring the base URI from which relative URIs
 in child elements are resolved prior to fetching. A valid value
 is a URI (see Section 4.6.9). The attribute is optional. There
 is no default value.

 bargein: Indicates whether user input stops prompt playback unless
 the input is associated with a specified runtime <control>
 operation (input matching control operations never interrupts
 prompt playback). A valid value is a boolean (see Section 4.6.1).
 A value of true indicates that bargein is permitted and prompt
 playback is stopped. A value of false indicates that bargein is
 not permitted: user input does not terminate prompt playback. The
 attribute is optional. The default value is true.

 The <prompt> element has the following child elements (at least one,
 any order, multiple occurrences of elements permitted):

 <media>: specifies a media resource (see Section 4.3.1.5) to play.
 The element is optional.

 <variable>: specifies a variable media announcement (see
 Section 4.3.1.1.1) to play. The element is optional.

 <dtmf>: generates one or more DTMF tones (see Section 4.3.1.1.2) to
 play. The element is optional.

 <par>: specifies media resources to play in parallel (see
 Section 4.3.1.1.3). The element is optional.

 If the MS does not support the configuration required for prompt
 playback to the output media streams and a more specific error code
 is not defined for its child elements, the MS sends a <response> with
 a 429 status code (Section 4.5). The MS MAY support transcoding
 between the media resource format and the output stream format.

McGlashan, et al. Standards Track [Page 38]

RFC 6231 IVR Control Package May 2011

 The MS has the following execution model for prompt playing after
 initialization:

 1. The MS initiates prompt playback playing its child elements
 (<media>, <variable>, <dtmf>, and <par>) one after another in
 document order.

 2. If any error (including fetching and rendering errors) occurs
 during prompt execution, then the MS terminates playback and
 reports its error status to the dialog container (see
 Section 4.3) with a <promptinfo> (see Section 4.3.2.1) where the
 termmode attribute is set to stopped and any additional
 information is set.

 3. If DTMF input is received and the value of the bargein attribute
 is true, then the MS terminates prompt playback and reports its
 execution status to the dialog container (see Section 4.3) with a
 <promptinfo> (see Section 4.3.2.1) where the termmode attribute
 is set to bargein and any additional information is set.

 4. If prompt playback is stopped by the dialog container, then the
 MS reports its execution status to the dialog container (see
 Section 4.3) with a <promptinfo> (see Section 4.3.2.1) where the
 termmode attribute is set to stopped and any additional
 information is set.

 5. If prompt playback completes successfully, then the MS reports
 its execution status to the dialog container (see Section 4.3)
 with a <promptinfo> (see Section 4.3.2.1) where the termmode
 attribute is set to completed and any additional information is
 set.

4.3.1.1.1. <variable>

 The <variable> element specifies variable announcements using
 predefined media resources. Each variable has at least a type (e.g.,
 date) and a value (e.g., 2008-02-25). The value is rendered
 according to the prompt variable type (e.g., 2008-02-25 is rendered
 as the date 25th February 2008). The precise mechanism for
 generating variable announcements (including the location of
 associated media resources) is implementation specific.

 A <variable> element has the following attributes:

 type: specifies the type of prompt variable to render. This
 specification defines three values -- date (Section 4.3.1.1.1.1),
 time (Section 4.3.1.1.1.2), and digits (Section 4.3.1.1.1.3). All
 other valid but undefined values are reserved for future use,

McGlashan, et al. Standards Track [Page 39]

RFC 6231 IVR Control Package May 2011

 where new values are assigned as described in Section 8.5. A
 valid value is a string (see Section 4.6.6). The attribute is
 mandatory.

 value: specifies a string to be rendered according to the prompt
 variable type. A valid value is a string (see Section 4.6.6).
 The attribute is mandatory.

 format: specifies format information that the prompt variable type
 uses to render the value attribute. A valid value is a string
 (see Section 4.6.6). The attribute is optional. There is no
 default value.

 gender: specifies the gender that the prompt variable type uses to
 render the value attribute. Valid values are "male" or "female".
 The attribute is optional. There is no default value.

 xml:lang: specifies the language that the prompt variable type uses
 to render the value attribute. A valid value is a language
 identifier (see Section 4.6.11). The attribute is optional.
 There is no default value.

 The <variable> element has no children.

 This specification is agnostic to the type and codec of media
 resources into which variables are rendered as well as the rendering
 mechanism itself. For example, an MS implementation supporting audio
 rendering could map the <variable> into one or more audio media
 resources.

 This package is agnostic to which <variable> types are supported by
 an implementation. If a <variable> element configuration specified
 in a request is not supported by the MS, the MS sends a <response>
 with a 425 status code (Section 4.5).

4.3.1.1.1.1. Date Type

 The date variable type provides a mechanism for dynamically rendering
 a date prompt.

 The <variable> type attribute MUST have the value "date".

 The <variable> format attribute MUST be one of the following values
 and comply with its rendering of the value attribute:

 mdy indicating that the <variable> value attribute is to be rendered
 as sequence composed of month, then day, then year.

McGlashan, et al. Standards Track [Page 40]

RFC 6231 IVR Control Package May 2011

 ymd indicating that the <variable> value attribute is to be rendered
 as sequence composed of year, then month, then day.

 dym indicating that the <variable> value attribute is to be rendered
 as sequence composed of day, then year, then month.

 dm indicating that the <variable> value attribute is to be rendered
 as sequence composed of day then month.

 The <variable> value attribute MUST comply with a lexical
 representation of date where

 yyyy ’-’ mm ’-’ dd

 as defined in Section 3.2.9 of [XMLSchema:Part2].

 For example,

 <variable type="date" format="dmy" value="2010-11-25"
 xml:lang="en" gender="male"/>

 describes a variable date prompt where the date can be rendered in
 audio as "twenty-fifth of November two thousand and ten" using a list
 of <media> resources:

 <media loc="nfs://voicebase/en/male/25th.wav"/>
 <media loc="nfs://voicebase/en/male/of.wav"/>
 <media loc="nfs://voicebase/en/male/november.wav"/>
 <media loc="nfs://voicebase/en/male/2000.wav"/>
 <media loc="nfs://voicebase/en/male/and.wav"/>
 <media loc="nfs://voicebase/en/male/10.wav"/>

4.3.1.1.1.2. Time Type

 The time variable type provides a mechanism for dynamically rendering
 a time prompt.

 The <variable> type attribute MUST have the value "time".

 The <variable> format attribute MUST be one of the following values
 and comply with its rendering of the value attribute:

 t12 indicating that the <variable> value attribute is to be rendered
 as a time in traditional 12-hour format using am or pm (for
 example, "twenty-five minutes past 2 pm" for "14:25").

McGlashan, et al. Standards Track [Page 41]

RFC 6231 IVR Control Package May 2011

 t24 indicating that the <variable> value attribute is to be rendered
 as a time in 24-hour format (for example, "fourteen twenty-five"
 for "14:25").

 The <variable> value attribute MUST comply with a lexical
 representation of time where

 hh ’:’ mm (’:’ ss)?

 as defined in Section 3.2.8 of [XMLSchema:Part2].

4.3.1.1.1.3. Digits Type

 The digits variable type provides a mechanism for dynamically
 rendering a digit sequence.

 The <variable> type attribute MUST have the value "digits".

 The <variable> format attribute MUST be one of the following values
 and comply with its rendering of the value attribute:

 gen indicating that the <variable> value attribute is to be rendered
 as a general digit string (for example, "one two three" for
 "123").

 crn indicating that the <variable> value attribute is to be rendered
 as a cardinal number (for example, "one hundred and twenty-
 three" for "123").

 ord indicating that the <variable> value attribute is to be rendered
 as an ordinal number (for example, "one hundred and twenty-
 third" for "123").

 The <variable> value attribute MUST comply with the lexical
 representation

 d+

 i.e., one or more digits.

4.3.1.1.2. <dtmf>

 The <dtmf> element specifies a sequence of DTMF tones for output.

 DTMF tones could be generated using <media> resources where the
 output is transported as RTP audio packets. However, <media>
 resources are not sufficient for cases where DTMF tones are to be
 transported as DTMF RTP [RFC4733] or in event packages.

McGlashan, et al. Standards Track [Page 42]

RFC 6231 IVR Control Package May 2011

 A <dtmf> element has the following attributes:

 digits: specifies the DTMF sequence to output. A valid value is a
 DTMF string (see Section 4.6.3). The attribute is mandatory.

 level: used to define the power level for which the DTMF tones will
 be generated. Values are expressed in dBm0. A valid value is an
 integer in the range of 0 to -96 (dBm0). Larger negative values
 express lower power levels. Note that values lower than -55 dBm0
 will be rejected by most receivers (TR-TSY-000181, ITU-T Q.24A).
 The attribute is optional. The default value is -6 (dBm0).

 duration: specifies the duration for which each DTMF tone is
 generated. A valid value is a time designation (see
 Section 4.6.7). The MS MAY round the value if it only supports
 discrete durations. The attribute is optional. The default value
 is 100 ms.

 interval: specifies the duration of a silence interval following
 each generated DTMF tone. A valid value is a time designation
 (see Section 4.6.7). The MS MAY round the value if it only
 supports discrete durations. The attribute is optional. The
 default value is 100 ms.

 The <dtmf> element has no children.

 If a <dtmf> element configuration is not supported, the MS sends a
 <response> with a 426 status code (Section 4.5).

4.3.1.1.3. <par>

 The <par> element allows media resources to be played in parallel.
 Each of its child elements specifies a media resource (or a sequence
 of media resources using the <seq> element). When playback of the
 <par> element is initiated, the MS begins playback of all its child
 elements at the same time. This element is modeled after the <par>
 element in SMIL [W3C.REC-SMIL2-20051213].

 The <par> element has the following attributes:

 endsync: indicates when playback of the element is complete. Valid
 values are "first" (indicates that the element is complete when
 any child element reports that it is complete) and "last"
 (indicates it is complete when every child elements are complete).
 The attribute is optional. The default value is "last".

 If the value is "first", then playback of other child elements is
 stopped when one child element reports it is complete.

McGlashan, et al. Standards Track [Page 43]

RFC 6231 IVR Control Package May 2011

 The <par> element has the following child elements (at least one, any
 order, multiple occurrences of each element permitted):

 <seq>: specifies a sequence of media resources to play in parallel
 with other <par> child elements (see Section 4.3.1.1.3.1). The
 element is optional.

 <media>: specifies a media resource (see Section 4.3.1.5) to play.
 The MS is responsible for assigning the appropriate media
 stream(s) when more than one is available. The element is
 optional.

 <variable>: specifies a variable media announcement (see
 Section 4.3.1.1.1) to play. The element is optional.

 <dtmf>: generates one or more DTMF tones (see Section 4.3.1.1.2) to
 play. The element is optional.

 It is RECOMMENDED that a <par> element contains only one <media>
 element of the same media type (i.e., same type-name as defined in
 Section 4.6.10). If a <par> element configuration is not supported,
 the MS sends a <response> with a 435 status code (Section 4.5).

 Runtime <control>s (Section 4.3.1.2) apply to each child element
 playing in parallel. For example, pause and resume controls cause
 all child elements to be paused and resumed, respectively.

 If the <par> element is stopped by the prompt container (e.g.,
 bargein or dialog termination), then playback of all child elements
 is stopped. The playback duration (Section 4.3.2.1) reported for the
 <par> element is the duration of parallel playback, not the
 cumulative duration of each child element played in parallel.

 For example, a request to playback audio and video media in parallel:

McGlashan, et al. Standards Track [Page 44]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="c1">
 <dialog>
 <prompt>
 <par>
 <media type="audio/x-wav"
 loc="http://www.example.com/media/comments.wav"/>
 <media type="video/3gpp;codecs=’s263’"
 loc="http://www.example.com/media/camera.3gp"/>
 </par>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

 When the <prompt> element is executed, it begins playback of its
 child element in document-order sequence. In this case, there is
 only one child element, a <par> element itself containing audio and
 video <media> child elements. Consequently, playback of both audio
 and video media resources is initiated at the same time. Since the
 endsync attribute is not specified, the default value "last" applies.
 The <par> element playback is complete when the media resource with
 the longest duration is complete.

4.3.1.1.3.1. <seq>

 The <seq> element specifies media resources to be played back in
 sequence. This allows a sequence of media resources to be played at
 the same time as other children of a <par> element are played in
 parallel, for example, a sequence of audio resources while a video
 resource is played in parallel. This element is modeled after the
 <seq> element in SMIL [W3C.REC-SMIL2-20051213].

 The <seq> element has no attributes.

 The <seq> element has the following child elements (at least one, any
 order, multiple occurrences of each element permitted):

 <media>: specifies a media resource (see Section 4.3.1.5) to play.
 The element is optional.

 <variable>: specifies a variable media announcement (see
 Section 4.3.1.1.1) to play. The element is optional.

 <dtmf>: generates one or more DTMF tones (see Section 4.3.1.1.2) to
 play. The element is optional.

McGlashan, et al. Standards Track [Page 45]

RFC 6231 IVR Control Package May 2011

 Playback of a <seq> element is complete when all child elements in
 the sequence are complete. If the <seq> element is stopped by the
 <par> container, then playback of the current child element is
 stopped (remaining child elements in the sequence are not played).

 For example, a request to play a sequence of audio resources in
 parallel with a video media:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="c1">
 <dialog>
 <prompt>
 <par endsync="first">
 <seq>
 <media type="audio/x-wav"
 loc="http://www.example.com/media/date.wav"/>
 <media type="audio/x-wav"
 loc="http://www.example.com/media/intro.wav"/>
 <media type="audio/x-wav"
 loc="http://www.example.com/media/main.wav"/>
 <media type="audio/x-wav"
 loc="http://www.example.com/media/end.wav"/>
 </seq>
 <media type="video/3gpp;codecs=’s263’"
 loc="rtsp://www.example.com/media/camera.3gp"/>
 </par>
 </prompt>
 </dialog>
 </dialogstart>
 </mscivr>

 When the <prompt> element is executed, it begins playback of the
 <par> element containing a <seq> element and a video <media> element.
 The <seq> element itself contains a sequence of audio <media>
 elements. Consequently, playback of the video media resource is
 initiated at the same time as playback of the sequence of the audio
 media resources is initiated. Each audio resource is played back
 after the previous one completes. Since the endsync attribute is set
 to "first", the <par> element playback is complete when either all
 the audio resources in <seq> have been played to completion or the
 video <media> is complete, whichever occurs first.

4.3.1.2. <control>

 The <control> element defines how DTMF input is mapped to runtime
 controls, including prompt playback controls.

McGlashan, et al. Standards Track [Page 46]

RFC 6231 IVR Control Package May 2011

 DTMF input matching these controls MUST NOT cause prompt playback to
 be interrupted (i.e., no prompt bargein), but causes the appropriate
 operation to be applied, for example, speeding up prompt playback.

 DTMF input matching these controls has priority over <collect> input
 for the duration of prompt playback. If an incoming DTMF character
 matches a specified runtime control, then the DTMF character is
 consumed: it is not added to the digit buffer and so is not available
 to the <collect> operation. Once prompt playback is complete,
 runtime controls are no longer active.

 The <control> element has the following attributes:

 gotostartkey: maps a DTMF key to skip directly to the start of the
 prompt. A valid value is a DTMF character (see Section 4.6.2).
 The attribute is optional. There is no default value.

 gotoendkey: maps a DTMF key to skip directly to the end of the
 prompt. A valid value is a DTMF character (see Section 4.6.2).
 The attribute is optional. There is no default value.

 skipinterval: indicates how far an MS skips backwards or forwards
 through prompt playback when the rewind (rwkey) of fast forward
 key (ffkey) is pressed. A valid value is a Time Designation (see
 Section 4.6.7). The attribute is optional. The default value is
 6s.

 ffkey: maps a DTMF key to a fast forward operation equal to the
 value of ’skipinterval’. A valid value is a DTMF character (see
 Section 4.6.2). The attribute is optional. There is no default
 value.

 rwkey: maps a DTMF key to a rewind operation equal to the value of
 ’skipinterval’. A valid value is a DTMF character (see
 Section 4.6.2). The attribute is optional. There is no default
 value.

 pauseinterval: indicates how long an MS pauses prompt playback when
 the pausekey is pressed. A valid value is a Time Designation (see
 Section 4.6.7). The attribute is optional. The default value is
 10s.

 pausekey: maps a DTMF key to a pause operation equal to the value of
 ’pauseinterval’. A valid value is a DTMF character (see
 Section 4.6.2). The attribute is optional. There is no default
 value.

McGlashan, et al. Standards Track [Page 47]

RFC 6231 IVR Control Package May 2011

 resumekey: maps a DTMF key to a resume operation. A valid value is
 a DTMF character (see Section 4.6.2). The attribute is optional.
 There is no default value.

 volumeinterval: indicates the increase or decrease in playback
 volume (relative to the current volume) when the volupkey or
 voldnkey is pressed. A valid value is a percentage (see
 Section 4.6.8). The attribute is optional. The default value is
 10%.

 volupkey: maps a DTMF key to a volume increase operation equal to
 the value of ’volumeinterval’. A valid value is a DTMF character
 (see Section 4.6.2). The attribute is optional. There is no
 default value.

 voldnkey: maps a DTMF key to a volume decrease operation equal to
 the value of ’volumeinterval’. A valid value is a DTMF character
 (see Section 4.6.2). The attribute is optional. There is no
 default value.

 speedinterval: indicates the increase or decrease in playback speed
 (relative to the current speed) when the speedupkey or speeddnkey
 is pressed. A valid value is a percentage (see Section 4.6.8).
 The attribute is optional. The default value is 10%.

 speedupkey: maps a DTMF key to a speed increase operation equal to
 the value of the speedinterval attribute. A valid value is a DTMF
 character (see Section 4.6.2). The attribute is optional. There
 is no default value.

 speeddnkey: maps a DTMF key to a speed decrease operation equal to
 the value of the speedinterval attribute. A valid value is a DTMF
 character (see Section 4.6.2). The attribute is optional. There
 is no default value.

 external: allows one or more DTMF keys to be declared as external
 controls (for example, video camera controls); the MS can send
 notifications when a matching key is activated using <dtmfnotify>
 (Section 4.2.5.2). A valid value is a DTMF string (see
 Section 4.6.3). The attribute is optional. There is no default
 value.

 If the same DTMF is specified in more than one DTMF key control
 attribute -- except the pausekey and resumekey attributes -- the MS
 sends a <response> with a 413 status code (Section 4.5).

 The MS has the following execution model for runtime control after
 initialization:

McGlashan, et al. Standards Track [Page 48]

RFC 6231 IVR Control Package May 2011

 1. If an error occurs during execution, then the MS terminates
 runtime control and the error is reported to the dialog
 container. The MS MAY report controls executed successfully
 before the error in <controlinfo> (see Section 4.3.2.2).

 2. Runtime controls are active only during prompt playback (if no
 <prompt> element is specified, then runtime controls are
 ignored). If DTMF input matches any specified keys (for example,
 the ffkey), then the MS applies the appropriate operation
 immediately. If a seek operation (ffkey, rwkey) attempts to go
 beyond the beginning or end of the prompt queue, then the MS
 automatically truncates it to the prompt queue beginning or end,
 respectively. If a volume operation (voldnkey, volupkey)
 attempts to go beyond the minimum or maximum volume supported by
 the platform, then the MS automatically limits the operation to
 minimum or maximum supported volume, respectively. If a speed
 operation (speeddnkey, speedupkey) attempts to go beyond the
 minimum or maximum playback speed supported by the platform, then
 the MS automatically limits the operation to minimum or maximum
 supported speed, respectively. If the pause operation attempts
 to pause output when it is already paused, then the operation is
 ignored. If the resume operation attempts to resume when the
 prompts are not paused, then the operation is ignored. If a
 seek, volume, or speed operation is applied when output is
 paused, then the MS also resumes output automatically.

 3. If DTMF control subscription has been specified for the dialog,
 then each DTMF match of a control operation is reported in a
 <dtmfnotify> notification event (Section 4.2.5.2).

 4. When the dialog exits, all control matches are reported in a
 <controlinfo> element (Section 4.3.2.2).

4.3.1.3. <collect>

 The <collect> element defines how DTMF input is collected.

 The <collect> element has the following attributes:

 cleardigitbuffer: indicates whether the digit buffer is to be
 cleared. A valid value is a boolean (see Section 4.6.1). A value
 of true indicates that the digit buffer is to be cleared. A value
 of false indicates that the digit buffer is not to be cleared.
 The attribute is optional. The default value is true.

 timeout: indicates the maximum time to wait for user input to begin.
 A valid value is a Time Designation (see Section 4.6.7). The
 attribute is optional. The default value is 5s.

McGlashan, et al. Standards Track [Page 49]

RFC 6231 IVR Control Package May 2011

 interdigittimeout: indicates the maximum time to wait for another
 DTMF when the collected input is incomplete with respect to the
 grammar. A valid value is a Time Designation (see Section 4.6.7).
 The attribute is optional. The default value is 2s.

 termtimeout: indicates the maximum time to wait for the termchar
 character when the collected input is complete with respect to the
 grammar. A valid value is a Time Designation (see Section 4.6.7).
 The attribute is optional. The default value is 0s (no delay).

 escapekey: specifies a DTMF key that indicates collected grammar
 matches are discarded and the DTMF collection is to be re-
 initiated. A valid value is a DTMF character (see Section 4.6.2).
 The attribute is optional. There is no default value.

 termchar: specifies a DTMF character for terminating DTMF input
 collection using the internal grammar. It is ignored when a
 custom grammar is specified. A valid value is a DTMF character
 (see Section 4.6.2). To disable termination by a conventional
 DTMF character, set the parameter to an unconventional character
 like ’A’. The attribute is optional. The default value is ’#’.

 maxdigits: The maximum number of digits to collect using an internal
 digits (0-9 only) grammar. It is ignored when a custom grammar is
 specified. A valid value is a positive integer (see
 Section 4.6.5). The attribute is optional. The default value is
 5.

 The following matching priority is defined for incoming DTMF:
 termchar attribute, escapekey attribute, and then as part of a
 grammar. For example, if "1" is defined as the escapekey attribute
 and as part of a grammar, then its interpretation as an escapekey
 takes priority.

 The <collect> element has the following child element:

 <grammar>: indicates a custom grammar format (see
 Section 4.3.1.3.1). The element is optional.

 The custom grammar takes priority over the internal grammar. If a
 <grammar> element is specified, the MS MUST use it for DTMF
 collection.

 The MS has the following execution model for DTMF collection after
 initialization:

 1. The DTMF collection buffer MUST NOT receive DTMF input matching
 <control> operations (see Section 4.3.1.2).

McGlashan, et al. Standards Track [Page 50]

RFC 6231 IVR Control Package May 2011

 2. If an error occurs during execution, then the MS terminates
 collection and reports the error to the dialog container (see
 Section 4.3). The MS MAY report DTMF collected before the error
 in <collectinfo> (see Section 4.3.2.3).

 3. The MS clears the digit buffer if the value of the
 cleardigitbuffer attribute is true.

 4. The MS activates an initial timer with the duration of the value
 of the timeout attribute. If the initial timer expires before
 any DTMF input is received, then collection execution terminates,
 the <collectinfo> (see Section 4.3.2.3) has the termmode
 attribute set to noinput and the execution status is reported to
 the dialog container.

 5. When the first DTMF collect input is received, the initial timer
 is canceled and DTMF collection begins. Each DTMF input is
 collected unless it matches the value of the escapekey attribute
 or the termchar attribute when the internal grammar is used.
 Collected input is matched against the grammar to determine if it
 is valid and, if valid, whether collection is complete. Valid
 DTMF patterns are either a simple digit string where the maximum
 length is determined by the maxdigits attribute and that can be
 optionally terminated by the character in the termchar attribute,
 or a custom DTMF grammar specified with the <grammar> element.

 6. After escapekey input, or a valid input that does not complete
 the grammar, the MS activates a timer for the value of the
 interdigittimeout attribute or the termtimeout attribute. The MS
 only uses the termtimeout value when the grammar does not allow
 any additional input; otherwise, the MS uses the
 interdigittimeout.

 7. If DTMF collect input matches the value of the escapekey
 attribute, then the MS re-initializes DTMF collection: i.e., the
 MS discards collected DTMFs already matched against the grammar,
 and the MS attempts to match incoming DTMF (including any pending
 in the digit buffer) as described in Step 5 above.

 8. If the collect input is not valid with respect to the grammar or
 an interdigittimeout timer expires, the MS terminates collection
 execution and reports execution status to the dialog container
 with a <collectinfo> (see Section 4.3.2.3) where the termmode
 attribute is set to nomatch.

 9. If the collect input completes the grammar or if a termtimeout
 timer expires, then the MS terminates collection execution and
 reports execution status to the dialog container with

McGlashan, et al. Standards Track [Page 51]

RFC 6231 IVR Control Package May 2011

 <collectinfo> (see Section 4.3.2.3) where the termmode attribute
 is set to match.

4.3.1.3.1. <grammar>

 The <grammar> element allows a custom grammar, inline or external, to
 be specified. Custom grammars permit the full range of DTMF
 characters including ’*’ and ’#’ to be specified for DTMF pattern
 matching.

 The <grammar> element has the following attributes:

 src: specifies the location of an external grammar document. A
 valid value is a URI (see Section 4.6.9). The MS MUST support
 both HTTP [RFC2616] and HTTPS [RFC2818] schemes and the MS MAY
 support other schemes. If the URI scheme is unsupported, the MS
 sends a <response> with a 420 status code (Section 4.5). If the
 resource cannot be retrieved within the timeout interval, the MS
 sends a <response> with a 409 status code. If the grammar format
 is not supported, the MS sends a <response> with a 424 status
 code. The attribute is optional. There is no default value.

 type: identifies the preferred type of the grammar document
 identified by the src attribute. A valid value is a MIME media
 type (see Section 4.6.10). If the URI scheme used in the src
 attribute defines a mechanism for establishing the authoritative
 MIME media type of the media resource, the value returned by that
 mechanism takes precedence over this attribute. The attribute is
 optional. There is no default value.

 fetchtimeout: the maximum interval to wait when fetching a grammar
 resource. A valid value is a Time Designation (see
 Section 4.6.7). The attribute is optional. The default value is
 30s.

 The <grammar> element allows inline grammars to be specified. XML
 grammar formats MUST use a namespace other than the one used in this
 specification. Non-XML grammar formats MAY use a CDATA section.

 The MS MUST support the Speech Recognition Grammar Specification
 [SRGS] XML grammar format ("application/srgs+xml") and MS MAY support
 the Key Press Markup Language (KPML) [RFC4730] or other grammar
 formats. If the grammar format is not supported by the MS, then the
 MS sends a <response> with a 424 status code (Section 4.5).

 For example, the following fragment shows DTMF collection with an
 inline SRGS grammar:

McGlashan, et al. Standards Track [Page 52]

RFC 6231 IVR Control Package May 2011

 <collect cleardigitbuffer="false" timeout="20s"
 interdigittimeout="1s">
 <grammar>
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 version="1.0" mode="dtmf">
 <rule id="digit">
 <one-of>
 <item>0</item>
 <item>1</item>
 <item>2</item>
 <item>3</item>
 <item>4</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 <item>9</item>
 </one-of>
 </rule>

 <rule id="pin" scope="public">
 <one-of>
 <item>
 <item repeat="4">
 <ruleref uri="#digit"/>
 </item>#</item>
 <item>* 9</item>
 </one-of>
 </rule>

 </grammar>
 </grammar>
 </collect>

 The same grammar could also be referenced externally (and take
 advantage of HTTP caching):

 <collect cleardigitbuffer="false" timeout="20s">
 <grammar type="application/srgs+xml"
 src="http://example.org/pin.grxml"/>
 </collect>

4.3.1.4. <record>

 The <record> element specifies how media input is recorded.

 The <record> element has the following attributes:

McGlashan, et al. Standards Track [Page 53]

RFC 6231 IVR Control Package May 2011

 timeout: indicates the time to wait for user input to begin. A
 valid value is a Time Designation (see Section 4.6.7). The
 attribute is optional. The default value is 5s.

 vadinitial: controls whether Voice Activity Detection (VAD) is used
 to initiate the recording operation. A valid value is a boolean
 (see Section 4.6.1). A value of true indicates the MS MUST
 initiate recording if the VAD detects voice on the configured
 inbound audio streams. A value of false indicates that the MS
 MUST NOT initiate recording using VAD. The attribute is optional.
 The default value is false.

 vadfinal: controls whether VAD is used to terminate the recording
 operation. A valid value is a boolean (see Section 4.6.1). A
 value of true indicates the MS MUST terminate recording if the VAD
 detects a period of silence (whose duration is specified by the
 finalsilence attribute) on configured inbound audio streams. A
 value of false indicates that the MS MUST NOT terminate recording
 using VAD. The attribute is optional. The default value is
 false.

 dtmfterm: indicates whether the recording operation is terminated by
 DTMF input. A valid value is a boolean (see Section 4.6.1). A
 value of true indicates that recording is terminated by DTMF
 input. A value of false indicates that recording is not
 terminated by DTMF input. The attribute is optional. The default
 value is true.

 maxtime: indicates the maximum duration of the recording. A valid
 value is a Time Designation (see Section 4.6.7). The attribute is
 optional. The default value is 15s.

 beep: indicates whether a ’beep’ is to be played immediately prior
 to initiation of the recording operation. A valid value is a
 boolean (see Section 4.6.1). The attribute is optional. The
 default value is false.

 finalsilence: indicates the interval of silence that indicates the
 end of voice input. This interval is not part of the recording
 itself. This parameter is ignored if the vadfinal attribute has
 the value false. A valid value is a Time Designation (see
 Section 4.6.7). The attribute is optional. The default value is
 5s.

 append: indicates whether recorded data is appended or not to a
 recording location if a resource already exists. A valid value is
 a boolean (see Section 4.6.1). A value of true indicates that
 recorded data is appended to the existing resource at a recording

McGlashan, et al. Standards Track [Page 54]

RFC 6231 IVR Control Package May 2011

 location. A value of false indicates that recorded data is to
 overwrite the existing resource. The attribute is optional. The
 default value is false.

 When a recording location is specified using the HTTP or HTTPS
 protocol, the recording operation SHOULD be performed using the
 HTTP GET and PUT methods, unless the HTTP server provides a
 special interface for recording uploads and appends (e.g., using
 POST). When the append attribute has the value false, the
 recording data is uploaded to the specified location using HTTP
 PUT and replaces any data at that location on the HTTP origin
 server. When append has the value true, the existing data (if
 any) is first downloaded from the specified location using HTTP
 GET, then the recording data is appended to the existing recording
 (note that this might require codec conversion and modification to
 the existing data), then the combined recording is uploaded to the
 specified location using HTTP PUT. HTTP errors are handled as
 described in [RFC2616].

 When the recording location is specified using protocols other
 than HTTP or HTTPS, the mapping of the append operation onto the
 upload protocol scheme is implementation specific.

 If either the vadinitial or vadfinal attribute is set to true and the
 MS does not support VAD, the MS sends a <response> with a 434 status
 code (Section 4.5).

 The <record> element has the following child element (0 or more
 occurrences):

 <media>: specifies the location and type of the media resource for
 uploading recorded data (see Section 4.3.1.5). The MS MUST
 support both HTTP [RFC2616] and HTTPS [RFC2818] schemes for
 uploading recorded data and the MS MAY support other schemes. The
 MS uploads recorded data to this resource as soon as possible
 after recording is complete. The element is optional.

 If multiple <media> elements are specified, then media input is to be
 recorded in parallel to multiple resource locations.

 If no <media> child element is specified, the MS MUST record media
 input but the recording location and the recording format are
 implementation specific (e.g., the MS records audio in the WAV format
 to a local disk accessible by HTTP). The recording location and
 format are reported in <recordinfo> (Section 4.3.2.4) when the dialog
 terminates. The recording MUST be available from this location until
 the connection or conference associated with the dialog on the MS
 terminates.

McGlashan, et al. Standards Track [Page 55]

RFC 6231 IVR Control Package May 2011

 If the MS does not support the configuration required for recording
 from the input media streams to one or more <media> elements and a
 more specific error code is not defined for its child elements, the
 MS sends a <response> with a 423 status code (Section 4.5).

 Note that an MS MAY support uploading recorded data to recording
 locations at the same time the recording operation takes place. Such
 implementations need to be aware of the requirements of certain
 recording formats (e.g., WAV) for metadata at the beginning of the
 uploaded file, that the finalsilence interval is not part of the
 recording and how these requirements interact with the URI scheme.

 The MS has the following execution model for recording after
 initialization:

 1. If an error occurs during execution (e.g., authentication or
 communication error when trying to upload to a recording
 location), then the MS terminates record execution and reports
 the error to the dialog container (see Section 4.3). The MS MAY
 report data recorded before the error in <recordinfo> (see
 Section 4.3.2.4).

 2. If DTMF input (not matching a <control> operation) is received
 during prompt playback and the prompt bargein attribute is set to
 true, then the MS activates the record execution. Otherwise, the
 MS activates it after the completion of prompt playback.

 3. If a beep attribute with the value of true is specified, then the
 MS plays a beep tone.

 4. The MS activates a timer with the duration of the value of the
 timeout attribute. If the timer expires before the recording
 operation begins, then the MS terminates the recording execution
 and reports the status to dialog container with <recordinfo> (see
 Section 4.3.2.4) where the termmode attribute is set to noinput.

 5. Initiation of the recording operation depends on the value of the
 vadinitial attribute. If vadinitial has the value false, then
 the recording operation is initiated immediately. Otherwise, the
 recording operation is initiated when voice activity is detected.

 6. When the recording operation is initiated, a timer is started for
 the value of the maxtime attribute (maximum duration of the
 recording). If the timer expires before the recording operation
 is complete, then the MS terminates recording execution and
 reports the execution status to the dialog container with
 <recordinfo> (see Section 4.3.2.4) where the termmode attribute
 set to maxtime.

McGlashan, et al. Standards Track [Page 56]

RFC 6231 IVR Control Package May 2011

 7. During the record operation input, media streams are recording to
 a location and format specified in one or more <media> child
 elements. If no <media> child element is specified, the MS
 records input to an implementation-specific location and format.

 8. If the dtmfterm attribute has the value true and DTMF input is
 detected during the record operation, then the MS terminates
 recording and its status is reported to the dialog container with
 a <recordinfo> (see Section 4.3.2.4) where the termmode attribute
 is set to dtmf.

 9. If vadfinal attribute has the value true, then the MS terminates
 the recording operation when a period of silence, with the
 duration specified by the value of the finalsilence attribute, is
 detected. This period of silence is not part of the final
 recording. The status is reported to the dialog container with a
 <recordinfo> (see Section 4.3.2.4) where the termmode attribute
 is set to finalsilence.

 For example, a request to record audio and video input to separate
 locations:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="c1">
 <dialog>
 <record maxtime="30s" vadinitial="false" vadfinal="false">
 <media type="audio/x-wav"
 loc="http://www.example.com/upload/audio.wav"/>
 <media type="video/3gpp;codecs=’s263’"
 loc="http://www.example.com/upload/video.3gp"/>
 </record>
 </dialog>
 </dialogstart>
 </mscivr>

 When the <record> element is executed, it immediately begins
 recording of the audio and video (since vadinitial is false) where
 the destination locations are specified in the <media> child
 elements. Recording is completed when the duration reaches 30s or
 the connection is terminated.

4.3.1.5. <media>

 The <media> element specifies a media resource to playback from (see
 Section 4.3.1.1) or record to (see Section 4.3.1.4). In the playback
 case, the resource is retrieved and in the recording case, recording
 data is uploaded to the resource location.

McGlashan, et al. Standards Track [Page 57]

RFC 6231 IVR Control Package May 2011

 A <media> element has the following attributes:

 loc: specifies the location of the media resource. A valid value is
 a URI (see Section 4.6.9). The MS MUST support both HTTP
 [RFC2616] and HTTPS [RFC2818] schemes and the MS MAY support other
 schemes. If the URI scheme is not supported by the MS, the MS
 sends a <response> with a 420 status code (Section 4.5). If the
 resource is to be retrieved but the MS cannot retrieve it within
 the timeout interval, the MS sends a <response> with a 409 status
 code. If the format of the media resource is not supported, the
 MS sends a <response> with a 429 status code. The attribute is
 mandatory.

 type: specifies the type of the media resource indicated in the loc
 attribute. A valid value is a MIME media type (see
 Section 4.6.10) that, depending on its definition, can include
 additional parameters (e.g., [RFC4281]). If the URI scheme used
 in the loc attribute defines a mechanism for establishing the
 authoratitive MIME media type of the media resource, the value
 returned by that mechanism takes precedence over this attribute.
 If additional media parameters are specified, the MS MUST use them
 to determine media processing. For example, [RFC4281] defines a
 ’codec’ parameter for media types like video/3gpp that would
 determine which media streams are played or recorded. The
 attribute is optional. There is no default value.

 fetchtimeout: the maximum interval to wait when fetching a media
 resource. A valid value is a Time Designation (see
 Section 4.6.7). The attribute is optional. The default value is
 30s.

 soundLevel: playback soundLevel (volume) for the media resource. A
 valid value is a percentage (see Section 4.6.8). The value
 indicates increase or decrease relative to the original recorded
 volume of the media. A value of 100% (the default) plays the
 media at its recorded volume, a value of 200% will play the media
 twice recorded volume, 50% at half its recorded volume, a value of
 0% will play the media silently, and so on. See ’soundLevel’ in
 SMIL [W3C.REC-SMIL2-20051213] for further information. The
 attribute is optional. The default value is 100%.

 clipBegin: offset from start of media resource to begin playback. A
 valid value is a Time Designation (see Section 4.6.7). The offset
 is measured in normal media playback time from the beginning of
 the media resource. If the clipBegin offset is after the end of
 media (or the clipEnd offset), no media is played. See
 ’clipBegin’ in SMIL [W3C.REC-SMIL2-20051213] for further
 information. The attribute is optional. The default value is 0s.

McGlashan, et al. Standards Track [Page 58]

RFC 6231 IVR Control Package May 2011

 clipEnd: offset from start of media resource to end playback. A
 valid value is a Time Designation (see Section 4.6.7). The offset
 is measured in normal media playback time from the beginning of
 the media resource. If the clipEnd offset is after the end of
 media, then the media is played to the end. If clipBegin is after
 clipEnd, then no media is played. See ’clipEnd’ in SMIL
 [W3C.REC-SMIL2-20051213] for further information. The attribute
 is optional. There is no default value.

 The fetchtimeout, soundLevel, clipBegin, and clipEnd attributes are
 only relevant in the playback use case. The MS ignores these
 attributes when using the <media> for recording.

 The <media> element has no children.

4.3.2. Exit Information

 When the dialog exits, information about the specified operations is
 reported in a <dialogexit> notification event (Section 4.2.5.1).

4.3.2.1. <promptinfo>

 The <promptinfo> element reports the information about prompt
 execution. It has the following attributes:

 duration: indicates the duration of prompt playback in milliseconds.
 A valid value is a non-negative integer (see Section 4.6.4). The
 attribute is optional. There is no default value.

 termmode: indicates how playback was terminated. Valid values are
 ’stopped’, ’completed’, or ’bargein’. The attribute is mandatory.

 The <promptinfo> element has no child elements.

4.3.2.2. <controlinfo>

 The <controlinfo> element reports information about control
 execution.

 The <controlinfo> element has no attributes and has 0 or more
 <controlmatch> child elements each describing an individual runtime
 control match.

4.3.2.2.1. <controlmatch>

 The <controlmatch> element has the following attributes:

McGlashan, et al. Standards Track [Page 59]

RFC 6231 IVR Control Package May 2011

 dtmf: DTMF input triggering the runtime control. A valid value is a
 DTMF string (see Section 4.6.3) with no space between characters.
 The attribute is mandatory.

 timestamp: indicates the time (on the MS) at which the control was
 triggered. A valid value is a dateTime expression
 (Section 4.6.12). The attribute is mandatory.

 The <controlmatch> element has no child elements.

4.3.2.3. <collectinfo>

 The <collectinfo> element reports the information about collect
 execution.

 The <collectinfo> element has the following attributes:

 dtmf: DTMF input collected from the user. A valid value is a DTMF
 string (see Section 4.6.3) with no space between characters. The
 attribute is optional. There is no default value.

 termmode: indicates how collection was terminated. Valid values are
 ’stopped’, ’match’, ’noinput’, or ’nomatch’. The attribute is
 mandatory.

 The <collectinfo> element has no child elements.

4.3.2.4. <recordinfo>

 The <recordinfo> element reports information about record execution
 (Section 4.3.1.4).

 The <recordinfo> element has the following attributes:

 termmode: indicates how recording was terminated. Valid values are
 ’stopped’, ’noinput’, ’dtmf’, ’maxtime’, and ’finalsilence’. The
 attribute is mandatory.

 duration: indicates the duration of the recording in milliseconds.
 A valid value is a non-negative integer (see Section 4.6.4). The
 attribute is optional. There is no default value.

 The <recordinfo> element has the following child element (0 or more
 occurrences):

 <mediainfo>: indicates information about a recorded media resource
 (see Section 4.3.2.4.1). The element is optional.

McGlashan, et al. Standards Track [Page 60]

RFC 6231 IVR Control Package May 2011

 When the record operation is successful, the MS MUST specify a
 <mediainfo> element for each recording location. For example, if the
 <record> element contained three <media> child elements, then the
 <recordinfo> would contain three <mediainfo> child elements.

4.3.2.4.1. <mediainfo>

 The <mediainfo> element reports information about a recorded media
 resource.

 The <mediainfo> element has the following attributes:

 loc: indicates the location of the media resource. A valid value is
 a URI (see Section 4.6.9). The attribute is mandatory.

 type: indicates the format of the media resource. A valid value is
 a MIME media type (see Section 4.6.10). The attribute is
 mandatory.

 size: indicates the size of the media resource in bytes. A valid
 value is a non-negative integer (see Section 4.6.4). The
 attribute is optional. There is no default value.

4.4. Audit Elements

 The audit elements defined in this section allow the MS to be audited
 for package capabilities as well as dialogs managed by the package.
 Auditing is particularly important for two use cases. First, it
 enables discovery of package capabilities supported on an MS before
 an AS starts a dialog on connection or conference. The AS can then
 use this information to create request elements using supported
 capabilities and, in the case of codecs, to negotiate an appropriate
 SDP for a User Agent’s connection. Second, auditing enables
 discovery of the existence and status of dialogs currently managed by
 the package on the MS. This could be used when one AS takes over
 management of the dialogs if the AS that initiated the dialogs fails
 or is no longer available (see Security Considerations described in
 Section 7).

4.4.1. <audit>

 The <audit> request element is sent to the MS to request information
 about the capabilities of, and dialogs currently managed with, this
 Control Package. Capabilities include supported dialog languages,
 grammar formats, record and media types, as well as codecs. Dialog
 information includes the status of managed dialogs as well as codecs.

 The <audit> element has the following attributes:

McGlashan, et al. Standards Track [Page 61]

RFC 6231 IVR Control Package May 2011

 capabilities: indicates whether package capabilities are to be
 audited. A valid value is a boolean (see Section 4.6.1). A value
 of true indicates that capability information is to be reported.
 A value of false indicates that capability information is not to
 be reported. The attribute is optional. The default value is
 true.

 dialogs: indicates whether dialogs currently managed by the package
 are to be audited. A valid value is a boolean (see
 Section 4.6.1). A value of true indicates that dialog information
 is to be reported. A value of false indicates that dialog
 information is not to be reported. The attribute is optional.
 The default value is true.

 dialogid: string identifying a specific dialog to audit. The MS
 sends a response with a 406 status code (Section 4.5) if the
 specified dialog identifier is invalid. The attribute is
 optional. There is no default value.

 If the dialogs attribute has the value true and dialogid attribute is
 specified, then only audit information about the specified dialog is
 reported. If the dialogs attribute has the value false, then no
 dialog audit information is reported even if a dialogid attribute is
 specified.

 The <audit> element has no child elements.

 When the MS receives an <audit> request, it MUST reply with an
 <auditresponse> element (Section 4.4.2), which includes a mandatory
 attribute describing the status in terms of a numeric code. Response
 status codes are defined in Section 4.5. If the request is
 successful, the <auditresponse> contains (depending on attribute
 values) a <capabilities> element (Section 4.4.2.2) reporting package
 capabilities and a <dialogs> element (Section 4.4.2.3) reporting
 managed dialog information. If the MS is not able to process the
 request and carry out the audit operation, the audit request has
 failed and the MS MUST indicate the class of failure using an
 appropriate 4xx response code. Unless an error response code is
 specified for a class of error within this section, implementations
 follow Section 4.5 in determining the appropriate status code for the
 response.

 For example, a request to audit capabilities and dialogs managed by
 the package:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <audit/>
 </mscivr>

McGlashan, et al. Standards Track [Page 62]

RFC 6231 IVR Control Package May 2011

 In this example, only capabilities are to be audited:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <audit dialogs="false"/>
 </mscivr>

 With this example, only a specific dialog is to be audited:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <audit capabilities="false" dialogid="d4"/>
 </mscivr>

4.4.2. <auditresponse>

 The <auditresponse> element describes a response to an <audit>
 request.

 The <auditresponse> element has the following attributes:

 status: numeric code indicating the audit response status. The
 attribute is mandatory. Valid values are defined in Section 4.5.

 reason: string specifying a reason for the status. The attribute is
 optional.

 desclang: specifies the language used in the value of the reason
 attribute. A valid value is a language identifier
 (Section 4.6.11). The attribute is optional. If not specified,
 the value of the desclang attribute on <mscivr> (Section 4.1)
 applies.

 The <auditresponse> element has the following sequence of child
 elements:

 <capabilities> element (Section 4.4.2.2) describing capabilities of
 the package. The element is optional.

 <dialogs> element (Section 4.4.2.3) describing information about
 managed dialogs. The element is optional.

 For example, a successful response to an <audit> request requesting
 capabilities and dialogs information:

McGlashan, et al. Standards Track [Page 63]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <auditresponse status="200">
 <capabilities>
 <dialoglanguages>
 <mimetype>application/voicexml+xml</mimetype>
 </dialoglanguages>
 <grammartypes/>
 <recordtypes>
 <mimetype>audio/x-wav</mimetype>
 <mimetype>video/3gpp</mimetype>
 </recordtypes>
 <prompttypes>
 <mimetype>audio/x-wav</mimetype>
 <mimetype>video/3gpp</mimetype>
 </prompttypes>
 <variables>
 <variabletype type="date" desc="value formatted as YYYYMMDD">
 <format desc="month year day">mdy</format>
 <format desc="year month day">ymd</format>
 <format desc="day month year">dmy</format>
 <format desc="day month">dm</format>
 </variabletype>
 </variables>
 <maxpreparedduration>600s</maxpreparedduration>
 <maxrecordduration>1800s</maxrecordduration>
 <codecs>
 <codec name="video">
 <subtype>H263</subtype>
 </codec>
 <codec name="video">
 <subtype>H264</subtype>
 </codec>
 <codec name="audio">
 <subtype>PCMU</subtype>
 </codec>
 <codec name="audio">
 <subtype>PCMA</subtype>
 </codec>
 <codec name="audio">
 <subtype>telephone-event</subtype>
 </codec>
 </codecs>
 </capabilities>
 <dialogs>
 <dialogaudit dialogid="4532" state="preparing"/>
 <dialogaudit dialogid="4599" state="prepared"/>
 <dialogaudit dialogid="1234" state="started" conferenceid="conf1">
 <codecs>

McGlashan, et al. Standards Track [Page 64]

RFC 6231 IVR Control Package May 2011

 <codec name="audio">
 <subtype>PCMA</subtype>
 </codec>
 <codec name="audio">
 <subtype>telephone-event</subtype>
 </codec>
 </codecs>
 </dialogaudit>
 </dialogs>
 </auditresponse>
 </mscivr>

4.4.2.1. <codecs>

 The <codecs> provides audit information about codecs.

 The <codecs> element has no attributes.

 The <codecs> element has the following sequence of child elements (0
 or more occurrences):

 <codec>: audit information for a codec (Section 4.4.2.1.1). The
 element is optional.

 For example, a fragment describing two codecs:

 <codecs>
 <codec name="audio">
 <subtype>PCMA</subtype>
 </codec>
 <codec name="audio">
 <subtype>telephone-event</subtype>
 </codec>
 </codecs>

4.4.2.1.1. <codec>

 The <codec> element describes a codec on the MS. The element is
 modeled on the <codec> element in the XCON conference information
 data model [XCON-DATA-MODEL] but allows addition information (e.g.,
 rate, speed, etc.) to be specified.

 The <codec> element has the following attributes:

 name: indicates the type name of the codec’s media format as defined
 in [IANA]. A valid value is a "type-name" as defined in Section
 4.2 of [RFC4288]. The attribute is mandatory.

McGlashan, et al. Standards Track [Page 65]

RFC 6231 IVR Control Package May 2011

 The <codec> element has the following sequence of child elements:

 <subtype>: element whose content model describes the subtype of the
 codec’s media format as defined in [IANA]. A valid value is a
 "subtype-name" as defined in Section 4.2 of [RFC4288]. The
 element is mandatory.

 <params>: element (Section 4.2.6) describing additional information
 about the codec. This package is agnostic to the names and values
 of the codec parameters supported by an implementation. The
 element is optional.

 For example, a fragment with a <codec> element describing the H263
 video codec:

 <codec name="video">
 <subtype>H263</subtype>
 </codec>

4.4.2.2. <capabilities>

 The <capabilities> element provides audit information about package
 capabilities.

 The <capabilities> element has no attributes.

 The <capabilities> element has the following sequence of child
 elements:

 <dialoglanguages>: element (Section 4.4.2.2.1) describing additional
 dialog languages supported by the MS. The element is mandatory.

 <grammartypes>: element (Section 4.4.2.2.2) describing supported
 <grammar> (Section 4.3.1.3.1) format types. The element is
 mandatory.

 <recordtypes>: element (Section 4.4.2.2.3) describing <media>
 (Section 4.3.1.5) format types supported for <record>
 (Section 4.3.1.4). The element is mandatory.

 <prompttypes>: element (Section 4.4.2.2.4) describing supported
 <media> (Section 4.3.1.5) format types for playback within a
 <prompt> (Section 4.3.1.1). The element is mandatory.

 <variables>: element (Section 4.4.2.2.5) describing supported types
 and formats for the <variable> element (Section 4.3.1.1.1). The
 element is mandatory.

McGlashan, et al. Standards Track [Page 66]

RFC 6231 IVR Control Package May 2011

 <maxpreparedduration>: element (Section 4.4.2.2.6) describing the
 supported maximum duration for a prepared dialog following a
 <dialogprepare> (Section 4.2.1) request. The element is
 mandatory.

 <maxrecordduration>: element (Section 4.4.2.2.7) describing the
 supported maximum duration for a recording <record>
 (Section 4.3.1.4) request. The element is mandatory.

 <codecs>: element (Section 4.4.2.1) describing codecs available to
 the package. The element is mandatory.

 For example, a fragment describing capabilities:

 <capabilities>
 <dialoglanguages>
 <mimetype>application/voicexml+xml</mimetype>
 </dialoglanguages>
 <grammartypes/>
 <recordtypes>
 <mimetype>audio/x-wav</mimetype>
 <mimetype>video/3gpp</mimetype>
 </recordtypes>
 <prompttypes>
 <mimetype>audio/x-wav</mimetype>
 <mimetype>video/3gpp</mimetype>
 </prompttypes>
 <variables/>
 <maxpreparedduration>30s</maxpreparedduration>
 <maxrecordduration>60s</maxrecordduration>
 <codecs>
 <codec name="video">
 <subtype>H263</subtype>
 </codec>
 <codec name="video">
 <subtype>H264</subtype>
 </codec>
 <codec name="audio">
 <subtype>PCMU</subtype>
 </codec>
 <codec name="audio">
 <subtype>PCMA</subtype>
 </codec>
 <codec name="audio">
 <subtype>telephone-event</subtype>
 </codec>
 </codecs>
 </capabilities>

McGlashan, et al. Standards Track [Page 67]

RFC 6231 IVR Control Package May 2011

4.4.2.2.1. <dialoglanguages>

 The <dialoglanguages> element provides information about additional
 dialog languages supported by the package. Dialog languages are
 identified by their associated MIME media types. The MS MUST NOT
 include the mandatory dialog language for this package (Section 4.3).

 The <dialoglanguages> element has no attributes.

 The <dialoglanguages> element has the following sequence of child
 elements (0 or more occurrences):

 <mimetype>: element whose content model describes a MIME media type
 (Section 4.6.10) associated with a supported dialog language. The
 element is optional.

4.4.2.2.2. <grammartypes>

 The <grammartypes> element provides information about <grammar>
 format types supported by the package. The MS MUST NOT include the
 mandatory SRGS format type, "application/srgs+xml"
 (Section 4.3.1.3.1).

 The <grammartypes> element has no attributes.

 The <grammartypes> element has the following sequence of child
 elements (0 or more occurrences):

 <mimetype>: element whose content model describes a mime type
 (Section 4.6.10). The element is optional.

4.4.2.2.3. <recordtypes>

 The <recordtypes> element provides information about media resource
 format types of <record> supported by the package (Section 4.3.1.4).

 The <recordtypes> element has no attributes.

 The <recordtypes> element has the following sequence of child
 elements (0 or more occurrences):

 <mimetype>: element whose content model describes a mime type
 (Section 4.6.10). The element is optional.

4.4.2.2.4. <prompttypes>

 The <prompttypes> element provides information about media resource
 format types of <prompt> supported by the package (Section 4.3.1.1).

McGlashan, et al. Standards Track [Page 68]

RFC 6231 IVR Control Package May 2011

 The <prompttypes> element has no attributes.

 The <prompttypes> element has the following sequence of child
 elements (0 or more occurrences):

 <mimetype>: element whose content model describes a mime type
 (Section 4.6.10). The element is optional.

4.4.2.2.5. <variables>

 The <variables> element provides information about types and formats
 for the <variable> element (Section 4.3.1.1.1) supported by the
 package.

 The <variables> element has no attributes.

 The <variables> element has the following sequence of child elements
 (0 or more occurrences):

 <variabletype>: element describing the formats support for a given
 type (Section 4.4.2.2.5.1). The element is optional.

 For example, a fragment describing support for <variable> with a
 "date" type according to the formats specified in
 Section 4.3.1.1.1.1.

 <variables>
 <variabletype type="date" desc="value formatted as YYYYMMDD">
 <format desc="month year day">mdy</format>
 <format desc="year month day">ymd</format>
 <format desc="day month year">dmy</format>
 <format desc="day month">dm</format>
 </variabletype>
 </variables>

4.4.2.2.5.1. <variabletype>

 The <variabletype> element describes the formats supported for
 <variable> supported type.

 The <variabletype> element has the following attributes:

 type: indicates a supported value associated with the type attribute
 of the <variable> element. The attribute is mandatory.

 desc: a string providing some textual description of the type and
 format. The attribute is optional.

McGlashan, et al. Standards Track [Page 69]

RFC 6231 IVR Control Package May 2011

 desclang: specifies the language used in the value of the desc
 attribute. A valid value is a language identifier
 (Section 4.6.11). The attribute is optional. If not specified,
 the value of the desclang attribute on <mscivr> (Section 4.1)
 applies.

 The <variabletype> element has the following sequence of child
 elements (0 or more occurrences):

 <format>: element with a desc attribute (optional description),
 desclang (optional language identifier for the description), and a
 content model describing a supported format in the <variable>
 format attribute. The element is optional.

4.4.2.2.6. <maxpreparedduration>

 The <maxpreparedduration> element describes the maximum duration for
 a dialog to remain in the prepared state (Section 4.2) following a
 <dialogprepare> (Section 4.2.1) request.

 The <maxpreparedduration> element has no attributes.

 The <maxpreparedduration> element has a content model describing the
 maximum prepared dialog duration as a time designation
 (Section 4.6.7).

4.4.2.2.7. <maxrecordduration>

 The <maxrecordduration> element describes the maximum recording
 duration for <record> Section 4.3.1.4) request supported by the MS.

 The <maxrecordduration> element has no attributes.

 The <maxrecordduration> element has a content model describing the
 maximum duration of recording as a time designation (Section 4.6.7).

4.4.2.3. <dialogs>

 The <dialogs> element provides audit information about dialogs.

 The <dialogs> element has no attributes.

 The <dialogs> element has the following sequence of child elements (0
 or more occurrences):

 <dialogaudit>: audit information for a dialog (Section 4.4.2.3.1).
 The element is optional.

McGlashan, et al. Standards Track [Page 70]

RFC 6231 IVR Control Package May 2011

4.4.2.3.1. <dialogaudit>

 The <dialogaudit> element has the following attributes:

 dialogid: string identifying the dialog. The attribute is
 mandatory.

 state: string indicating the state of the dialog. Valid values are
 preparing, prepared, starting, and started. The attribute is
 mandatory.

 connectionid: string identifying the SIP dialog connection
 associated with the dialog (see Appendix A.1 of [RFC6230]). The
 attribute is optional. There is no default value.

 conferenceid: string identifying the conference associated with the
 dialog (see Appendix A.1 of [RFC6230]). The attribute is
 optional. There is no default value.

 The <dialogaudit> element has the following child element:

 <codecs> element describing codecs used in the dialog. See
 Section 4.4.2.1. The element is optional.

 For example, a fragment describing a started dialog that is using
 PCMU and telephony-event audio codecs:

 <dialogaudit dialogid="1234" state="started" conferenceid="conf1">
 <codecs>
 <codec name="audio">
 <subtype>PCMU</subtype>
 </codec>
 <codec name="audio">
 <subtype>telephone-event</subtype>
 </codec>
 </codecs>
 </dialogaudit>

4.5. Response Status Codes

 This section describes the response codes in Table 1 for the status
 attribute of dialog management <response> (Section 4.2.4) and audit
 <auditresponse> (Section 4.4.2) responses. The MS MUST support the
 status response codes defined here. All other valid but undefined
 values are reserved for future use, where new status codes are
 assigned using the Standards Action process defined in [RFC5226].
 The AS MUST treat any responses it does not recognize as being
 equivalent to the x00 response code for all classes. For example, if

McGlashan, et al. Standards Track [Page 71]

RFC 6231 IVR Control Package May 2011

 an AS receives an unrecognized response code of 499, it can safely
 assume that there was something wrong with its request and treat the
 response as if it had received a 400 (Syntax error) response code.

 4xx responses are definite failure responses from a particular MS.
 The reason attribute in the response SHOULD identify the failure in
 more detail, for example, "Mandatory attribute missing: src in media
 element" for a 400 (Syntax error) response code.

 The AS SHOULD NOT retry the same request without modification (for
 example, correcting a syntax error or changing the connectionid to
 use one available on the MS). However, the same request to a
 different MS might be successful, for example, if another MS supports
 a capability required in the request.

 4xx failure responses can be grouped into three classes: failure due
 to a syntax error in the request (400); failure due to an error
 executing the request on the MS (405-419); and failure due to the
 request requiring a capability not supported by the MS (420-439).

 In cases where more than one request code could be reported for a
 failure, the MS SHOULD use the most specific error code of the
 failure class for the detected error. For example, if the MS detects
 that the dialogid in the request is invalid, then it uses a 406
 status code. However, if the MS merely detects that an execution
 error occurred, then 419 is used.

McGlashan, et al. Standards Track [Page 72]

RFC 6231 IVR Control Package May 2011

 +------+---------------+-----------------------+--------------------+
Code	Summary	Description	Informational: AS
			Possible Recovery
			Action
+------+---------------+-----------------------+--------------------+			
200	OK	request has	
		succeeded.	
400	Syntax error	request is	Change the request
		syntactically	so that it is
		invalid: it is not	syntactically
		valid with respect to	valid.
		the XML schema	
		specified in	
		Section 5 or it	
		violates a	
		co-occurrence	
		constraint for a	
		request element	
		defined in Section 4.	
405	dialogid	request uses a	Send a request for
	already	dialogid identifier	a new dialog
	exists	for a new dialog that	without specifying
		is already used by	the dialogid and
		another dialog on the	let the MS
		MS (see Section 4.2).	generate a unique
			dialogid in the
			response.
406	dialogid does	request uses a	Send an <audit>
	not exist	dialogid identifier	request
		for an dialog that	(Section 4.4.1)
		does not exist on the	requesting the
		MS (see Section 4.2).	list of dialog
			identifiers
			already used by
			the MS and then
			use one of the
			listed dialog
			identifiers.
407	connectionid	request uses a	Use another method
	does not	connectionid	to determine which
	exist	identifier for a	connections are
		connection that does	available on the
		not exist on the MS.	MS.
408	conferenceid	request uses a	Use another method
	does not	conferenceid	to determine which
	exist	identifier for a	conferences are
		conference that does	available on the
		not exist on the MS.	MS.

McGlashan, et al. Standards Track [Page 73]

RFC 6231 IVR Control Package May 2011

409	Resource	request uses a URI to	Check that the
	cannot be	reference an external	resource URI is
	retrieved	resource (e.g.,	valid, can be
		dialog, media, or	reached from the
		grammar) that cannot	MS, and that the
		be retrieved within	appropriate
		the timeout interval.	authentication is
			used.
410	Dialog	request to prepare or	
	execution	start a dialog that	
	canceled	has been terminated	
		by a	
		<dialogterminate/>	
		request (see	
		Section 4.2).	
411	Incompatible	request specifies a	Change the media
	stream	media stream	stream
	configuration	configuration that is	configuration to
		in conflict with	match the
		itself, or the	capabilities of
		connection or	the connection or
		conference	conference.
		capabilities (see	
		Section 4.2.2).	
412	Media stream	request specifies an	Check the media
	not available	operation for which a	stream capability
		media stream is not	of the connection
		available. For	or conference and
		example, playing a	use an operation
		video media resource	that only uses
		on an connection or	these
		conference without	capabilities.
		video streams.	
413	Control keys	request contains a	Use different keys
	with same	<control> element	for the different
	value	(Section 4.3.1.2)	control
		where some keys have	operations.
		the same value.	
419	Other	requested operation	
	execution	cannot be executed by	
	error	the MS.	
420	Unsupported	request specifies a	Use a URI scheme
	URI scheme	URI whose scheme is	that is supported.
		not supported by the	
		MS.	

McGlashan, et al. Standards Track [Page 74]

RFC 6231 IVR Control Package May 2011

421	Unsupported	request references an	Send an <audit>
	dialog	external dialog	request
	language	language not	(Section 4.4.1)
		supported by the MS.	requesting the MS
			capabilities and
			then use one of
			the listed dialog
			languages.
422	Unsupported	request references a	Send an <audit>
	playback	media resource for	request
	format	playback whose format	(Section 4.4.1)
		is not supported by	requesting the MS
		the MS.	capabilities and
			then use one of
			the listed
			playback media
			formats.
423	Unsupported	request references a	Send an <audit>
	record format	media resource for	request
		recording whose	(Section 4.4.1)
		format is not	requesting the MS
		supported by the MS.	capabilities and
			then use one of
			the listed record
			media formats.
424	Unsupported	request references a	Send an <audit>
	grammar	grammar whose format	request
	format	is not supported by	(Section 4.4.1)
		the MS.	requesting the MS
			capabilities and
			then use one of
			the listed grammar
			types.
425	Unsupported	request contains a	Send an <audit>
	variable	prompt <variable>	request
	configuration	element	(Section 4.4.1)
		(Section 4.3.1.1.1)	requesting the MS
		not supported by the	capabilities and
		MS.	then use one of
			the listed
			variable types.
426	Unsupported	request contains a	
	DTMF	prompt <dtmf> element	
	configuration	(Section 4.3.1.1.2)	
		not supported by the	
		MS.	

McGlashan, et al. Standards Track [Page 75]

RFC 6231 IVR Control Package May 2011

427	Unsupported	request contains a	
	parameter	<param> element	
		(Section 4.2.6.1) not	
		supported by the MS.	
428	Unsupported	request contains a	
	media stream	<stream> element	
	configuration	(Section 4.2.2.2)	
		whose configuration	
		is not supported by	
		the MS.	
429	Unsupported	request contains a	
	playback	<prompt> element	
	configuration	(Section 4.3.1.1)	
		that the MS is unable	
		to play on the	
		available output	
		media streams.	
430	Unsupported	request contains a	
	record	<record> element	
	configuration	(Section 4.3.1.4)	
		that the MS is unable	
		to record with on the	
		available input media	
		streams.	
431	Unsupported	request contains	
	foreign	attributes or	
	namespace	elements from another	
	attribute or	namespace that the MS	
	element	does not support.	
432	Unsupported	request tries to	
	multiple	start another dialog	
	dialog	on the same	
	capability	conference or	
		connection where a	
		dialog is already	
		running.	
433	Unsupported	request contains	
	collect and	<collect> and	
	record	<record> elements and	
	capability	the MS does support	
		these operations	
		simultaneously.	
434	Unsupported	request contains a	
	VAD	<record> element	
	capability	where Voice Activity	
		Detection (VAD) is	
		required, but the MS	
		does not support VAD.	

McGlashan, et al. Standards Track [Page 76]

RFC 6231 IVR Control Package May 2011

435	Unsupported	request contains a	
	parallel	prompt <par> element	
	playback	whose configuration	
		is not supported by	
		the MS.	
439	Other	request requires	
	unsupported	another capability	
	capability	not supported by the	
		MS.	
 +------+---------------+-----------------------+--------------------+

 Table 1: Status Codes

4.6. Type Definitions

 This section defines types referenced in attribute and element
 definitions.

4.6.1. Boolean

 The value space of boolean is the set {true, false, 1, 0} as defined
 in Section 3.2.2 of [XMLSchema:Part2]. In accordance with this
 definition, the concept of false can be lexically represented by the
 strings "0" and "false" and the concept of true by the strings "1"
 and "true"; implementations MUST support both styles of lexical
 representation.

4.6.2. DTMFChar

 A DTMF character. The value space is the set {0, 1, 2, 3, 4, 5, 6,
 7, 8, 9, #, *, A, B, C, D}.

4.6.3. DTMFString

 A string composed of one or more DTMFChars.

4.6.4. Non-Negative Integer

 The value space of non-negative integer is the infinite set
 {0,1,2,...} as defined in Section 3.3.20 of [XMLSchema:Part2].

 Implementation Note: It is RECOMMENDED that implementations at least
 support a maximum value of a 32-bit integer (2,147,483,647).

4.6.5. Positive Integer

 The value space of positive integer is the infinite set {1,2,...} as
 defined in Section 3.3.25 of [XMLSchema:Part2].

McGlashan, et al. Standards Track [Page 77]

RFC 6231 IVR Control Package May 2011

 Implementation Note: It is RECOMMENDED that implementations at least
 support a maximum value of a 32-bit integer (2,147,483,647).

4.6.6. String

 A string in the character encoding associated with the XML element as
 defined in Section 3.2.1 of [XMLSchema:Part2].

4.6.7. Time Designation

 A time designation consists of a non-negative real number followed by
 a time unit identifier.

 The time unit identifiers are "ms" (milliseconds) and "s" (seconds).

 Examples include: "3s", "850ms", "0.7s", ".5s", and "+1.5s".

4.6.8. Percentage

 A percentage consists of a positive integer followed by "%".

 Examples include: "100%", "500%", and "10%".

4.6.9. URI

 Uniform Resource Indicator as defined in [RFC3986].

4.6.10. MIME Media Type

 A string formatted as an IANA MIME media type [MIME.mediatypes]. The
 ABNF [RFC5234] production for the string is:

 type = type-name "/" subtype-name *(";" parameter)

 parameter = parameter-name "=" value

 where "type-name" and "subtype-name" are defined in Section 4.2 of
 [RFC4288], "parameter-name" is defined in Section 4.3 of [RFC4288],
 and "value" is defined in Section 5.1 of [RFC2045].

4.6.11. Language Identifier

 A language identifier labels information content as being of a
 particular human language variant. Following the XML specification
 for language identification [XML], a legal language identifier is
 identified by a [RFC5646] code and matched according to [RFC4647].

McGlashan, et al. Standards Track [Page 78]

RFC 6231 IVR Control Package May 2011

4.6.12. DateTime

 A string formatted according to the XML schema definition of a
 dateTime type [XMLSchema:Part2].

5. Formal Syntax

 This section defines the XML schema for IVR Control Package. The
 schema is normative.

 The schema defines datatypes, attributes, dialog management, and IVR
 dialog elements in the urn:ietf:params:xml:ns:msc-ivr namespace. In
 most elements the order of child elements is significant. The schema
 is extensible: elements allow attributes and child elements from
 other namespaces. Elements from outside this package’s namespace can
 occur after elements defined in this package.

 The schema is dependent upon the schema (framework.xsd) defined in
 Appendix A.1 of the Control Framework [RFC6230]. It is also
 dependent upon the W3C (xml.xsd) schema for definitions of XML
 attributes (e.g., xml:base).

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ietf:params:xml:ns:msc-ivr"
 elementFormDefault="qualified" blockDefault="#all"
 xmlns="urn:ietf:params:xml:ns:msc-ivr"
 xmlns:fw="urn:ietf:params:xml:ns:control:framework-attributes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 IETF MediaCtrl IVR 1.0 (20110104)

 This is the schema of the IETF MediaCtrl IVR Control
 Package.

 The schema namespace is urn:ietf:params:xml:ns:msc-ivr

 </xsd:documentation>
 </xsd:annotation>

 <!--
 ###

 SCHEMA IMPORTS

 ###
 -->

McGlashan, et al. Standards Track [Page 79]

RFC 6231 IVR Control Package May 2011

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the XML attributes for
 xml:base, xml:lang, etc

 See http://www.w3.org/2001/xml.xsd for latest version
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <xsd:import
 namespace="urn:ietf:params:xml:ns:control:framework-attributes"
 schemaLocation="framework.xsd">
 <xsd:annotation>
 <xsd:documentation>
 This import brings in the framework attributes for
 conferenceid and connectionid.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!--
 ###

 Extensible core type

 ###
 -->

 <xsd:complexType name="Tcore">
 <xsd:annotation>
 <xsd:documentation>
 This type is extended by other (non-mixed) component types to
 allow attributes from other namespaces.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!--
 ###

McGlashan, et al. Standards Track [Page 80]

RFC 6231 IVR Control Package May 2011

 TOP LEVEL ELEMENT: mscivr

 ###
 -->

 <xsd:complexType name="mscivrType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="dialogprepare" />
 <xsd:element ref="dialogstart" />
 <xsd:element ref="dialogterminate" />
 <xsd:element ref="response" />
 <xsd:element ref="event" />
 <xsd:element ref="audit" />
 <xsd:element ref="auditresponse" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="version" type="version.datatype"
 use="required" />
 <xsd:attribute name="desclang" type="xsd:language"
 default="i-default" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="mscivr" type="mscivrType" />

 <!--
 ###

 DIALOG MANAGEMENT TYPES

 ###
 -->

 <!-- dialogprepare -->

 <xsd:complexType name="dialogprepareType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dialog" minOccurs="0"
 maxOccurs="1" />

McGlashan, et al. Standards Track [Page 81]

RFC 6231 IVR Control Package May 2011

 <xsd:element ref="params" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="src" type="xsd:anyURI" />
 <xsd:attribute name="type" type="mime.datatype"/>
 <xsd:attribute name="maxage" type="xsd:nonNegativeInteger"/>
 <xsd:attribute name="maxstale" type="xsd:nonNegativeInteger"/>
 <xsd:attribute name="fetchtimeout"
 type="timedesignation.datatype" default="30s" />
 <xsd:attribute name="dialogid"
 type="dialogid.datatype" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dialogprepare" type="dialogprepareType" />

 <!-- dialogstart -->

 <xsd:complexType name="dialogstartType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dialog" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="subscribe" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="params" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="stream" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="src" type="xsd:anyURI" />
 <xsd:attribute name="type" type="mime.datatype"/>
 <xsd:attribute name="maxage" type="xsd:nonNegativeInteger"/>
 <xsd:attribute name="maxstale" type="xsd:nonNegativeInteger"/>
 <xsd:attribute name="fetchtimeout"
 type="timedesignation.datatype" default="30s" />
 <xsd:attribute name="dialogid"
 type="dialogid.datatype" />
 <xsd:attribute name="prepareddialogid"
 type="dialogid.datatype" />
 <xsd:attributeGroup ref="fw:framework-attributes" />
 </xsd:extension>

McGlashan, et al. Standards Track [Page 82]

RFC 6231 IVR Control Package May 2011

 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dialogstart" type="dialogstartType" />

 <!-- dialogterminate -->

 <xsd:complexType name="dialogterminateType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="dialogid"
 type="dialogid.datatype" use="required" />
 <xsd:attribute name="immediate"
 type="xsd:boolean" default="false" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dialogterminate" type="dialogterminateType" />

 <!-- response -->

 <xsd:complexType name="responseType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="status" type="status.datatype"
 use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:attribute name="desclang" type="xsd:language"/>
 <xsd:attribute name="dialogid"
 type="dialogid.datatype" use="required" />
 <xsd:attributeGroup ref="fw:framework-attributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="response" type="responseType" />

 <!-- event -->

McGlashan, et al. Standards Track [Page 83]

RFC 6231 IVR Control Package May 2011

 <xsd:complexType name="eventType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="dialogexit" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="dtmfnotify" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="dialogid"
 type="dialogid.datatype" use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="event" type="eventType" />

 <!-- dialogexit-->

 <xsd:complexType name="dialogexitType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="promptinfo" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="controlinfo" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="collectinfo" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="recordinfo" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="params" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="status"
 type="xsd:nonNegativeInteger" use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:attribute name="desclang" type="xsd:language"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

McGlashan, et al. Standards Track [Page 84]

RFC 6231 IVR Control Package May 2011

 <xsd:element name="dialogexit" type="dialogexitType" />

 <!-- dtmfnotify-->

 <xsd:complexType name="dtmfnotifyType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="matchmode"
 type="matchmode.datatype" default="all" />
 <xsd:attribute name="dtmf" type="dtmfstring.datatype"
 use="required" />
 <xsd:attribute name="timestamp" type="xsd:dateTime"
 use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmfnotify" type="dtmfnotifyType" />

 <!-- promptinfo -->

 <xsd:complexType name="promptinfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="duration"
 type="xsd:nonNegativeInteger" />
 <xsd:attribute name="termmode"
 type="prompt_termmode.datatype" use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="promptinfo" type="promptinfoType" />

 <!-- controlinfo -->

 <xsd:complexType name="controlinfoType">

McGlashan, et al. Standards Track [Page 85]

RFC 6231 IVR Control Package May 2011

 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="controlmatch" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="controlinfo" type="controlinfoType" />

 <!-- controlmatch -->

 <xsd:complexType name="controlmatchType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="dtmf"
 type="dtmfstring.datatype" />
 <xsd:attribute name="timestamp" type="xsd:dateTime" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="controlmatch" type="controlmatchType" />

 <!-- collectinfo -->

 <xsd:complexType name="collectinfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="dtmf"
 type="dtmfstring.datatype" />
 <xsd:attribute name="termmode"
 type="collect_termmode.datatype" use="required" />
 </xsd:extension>

McGlashan, et al. Standards Track [Page 86]

RFC 6231 IVR Control Package May 2011

 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="collectinfo" type="collectinfoType" />

 <!-- recordinfo -->

 <xsd:complexType name="recordinfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mediainfo" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="duration"
 type="xsd:nonNegativeInteger" />
 <xsd:attribute name="termmode"
 type="record_termmode.datatype" use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="recordinfo" type="recordinfoType" />

 <!-- mediainfo -->

 <xsd:complexType name="mediainfoType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="loc" type="xsd:anyURI"
 use="required" />
 <xsd:attribute name="type" type="mime.datatype"
 use="required"/>
 <xsd:attribute name="size"
 type="xsd:nonNegativeInteger" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="mediainfo" type="mediainfoType" />

McGlashan, et al. Standards Track [Page 87]

RFC 6231 IVR Control Package May 2011

 <!-- subscribe -->

 <xsd:complexType name="subscribeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dtmfsub" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="subscribe" type="subscribeType" />

 <!-- dtmfsub -->

 <xsd:complexType name="dtmfsubType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="matchmode"
 type="matchmode.datatype" default="all" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmfsub" type="dtmfsubType" />

 <!-- params -->
 <xsd:complexType name="paramsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="param" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

McGlashan, et al. Standards Track [Page 88]

RFC 6231 IVR Control Package May 2011

 </xsd:complexType>

 <xsd:element name="params" type="paramsType" />

 <!-- param -->
 <!-- doesn’t extend tCore since its content model is mixed -->
 <xsd:complexType name="paramType" mixed="true">
 <xsd:sequence/>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:attribute name="type" type="mime.datatype" default="text/plain"/>
 <xsd:attribute name="encoding" type="xsd:string"/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="param" type="paramType" />

 <!-- stream -->

 <xsd:complexType name="streamType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="region" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="priority" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="media" type="media.datatype"
 use="required" />
 <xsd:attribute name="label" type="label.datatype" />
 <xsd:attribute name="direction"
 type="direction.datatype" default="sendrecv" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="stream" type="streamType" />

<!-- region -->
<xsd:simpleType name="regionType">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>
 <xsd:element name="region" type="regionType" />

McGlashan, et al. Standards Track [Page 89]

RFC 6231 IVR Control Package May 2011

 <!-- priority -->
 <xsd:simpleType name="priorityType">
 <xsd:restriction base="xsd:positiveInteger" />
 </xsd:simpleType>

 <xsd:element name="priority" type="priorityType" />

<!-- dialog -->

 <xsd:complexType name="dialogType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="prompt" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="control" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="collect" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="record" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="repeatCount"
 type="xsd:nonNegativeInteger" default="1" />
 <xsd:attribute name="repeatDur"
 type="timedesignation.datatype" />
 <xsd:attribute name="repeatUntilComplete"
 type="xsd:boolean" default="false"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dialog" type="dialogType" />

 <!-- prompt -->

 <xsd:complexType name="promptType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element ref="media" />
 <xsd:element ref="variable" />
 <xsd:element ref="dtmf" />
 <xsd:element ref="par" />

McGlashan, et al. Standards Track [Page 90]

RFC 6231 IVR Control Package May 2011

 <xsd:any namespace="##other"
 processContents="lax" />
 </xsd:choice>
 <xsd:attribute ref="xml:base" />
 <xsd:attribute name="bargein" type="xsd:boolean"
 default="true" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="prompt" type="promptType" />

 <!-- media -->

 <xsd:complexType name="mediaType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="loc" type="xsd:anyURI"
 use="required" />
 <xsd:attribute name="type" type="mime.datatype" />
 <xsd:attribute name="fetchtimeout"
 type="timedesignation.datatype" default="30s" />
 <xsd:attribute name="soundLevel"
 type="percentage.datatype" default="100%" />
 <xsd:attribute name="clipBegin"
 type="timedesignation.datatype" default="0s" />
 <xsd:attribute name="clipEnd"
 type="timedesignation.datatype"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="media" type="mediaType" />

 <!-- variable -->

 <xsd:complexType name="variableT">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>

McGlashan, et al. Standards Track [Page 91]

RFC 6231 IVR Control Package May 2011

 <xsd:attribute name="value" type="xsd:string"
 use="required" />
 <xsd:attribute name="type" type="xsd:string"
 use="required" />
 <xsd:attribute name="format" type="xsd:string" />
 <xsd:attribute name="gender" type="gender.datatype" />
 <xsd:attribute ref="xml:lang" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="variable" type="variableT" />

 <!-- dtmf -->

 <xsd:complexType name="dtmfType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="digits"
 type="dtmfstring.datatype" use="required" />
 <xsd:attribute name="level" type="xsd:integer"
 default="-6" />
 <xsd:attribute name="duration"
 type="timedesignation.datatype" default="100ms" />
 <xsd:attribute name="interval"
 type="timedesignation.datatype" default="100ms" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dtmf" type="dtmfType" />

 <!-- par -->

 <xsd:complexType name="parType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element ref="media" />
 <xsd:element ref="variable" />
 <xsd:element ref="dtmf" />
 <xsd:element ref="seq" />
 <xsd:any namespace="##other"

McGlashan, et al. Standards Track [Page 92]

RFC 6231 IVR Control Package May 2011

 processContents="lax" />
 </xsd:choice>
 <xsd:attribute name="endsync" type="endsync.datatype"
 default="last"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="par" type="parType" />

 <!-- seq -->

 <xsd:complexType name="seqType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element ref="media" />
 <xsd:element ref="variable" />
 <xsd:element ref="dtmf" />
 <xsd:any namespace="##other"
 processContents="lax" />
 </xsd:choice>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="seq" type="seqType" />

 <!-- control -->

 <xsd:complexType name="controlType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="skipinterval"
 type="timedesignation.datatype" default="6s" />
 <xsd:attribute name="ffkey" type="dtmfchar.datatype" />
 <xsd:attribute name="rwkey" type="dtmfchar.datatype" />
 <xsd:attribute name="pauseinterval"
 type="timedesignation.datatype" default="10s" />
 <xsd:attribute name="pausekey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="resumekey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="volumeinterval"

McGlashan, et al. Standards Track [Page 93]

RFC 6231 IVR Control Package May 2011

 type="percentage.datatype" default="10%" />
 <xsd:attribute name="volupkey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="voldnkey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="speedinterval"
 type="percentage.datatype" default="10%" />
 <xsd:attribute name="speedupkey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="speeddnkey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="gotostartkey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="gotoendkey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="external"
 type="dtmfstring.datatype" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="control" type="controlType" />

 <!-- collect -->

 <xsd:complexType name="collectType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="grammar" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="cleardigitbuffer"
 type="xsd:boolean" default="true" />
 <xsd:attribute name="timeout"
 type="timedesignation.datatype" default="5s" />
 <xsd:attribute name="interdigittimeout"
 type="timedesignation.datatype" default="2s" />
 <xsd:attribute name="termtimeout"
 type="timedesignation.datatype" default="0s" />
 <xsd:attribute name="escapekey"
 type="dtmfchar.datatype" />
 <xsd:attribute name="termchar"
 type="dtmfchar.datatype" default="#" />
 <xsd:attribute name="maxdigits"

McGlashan, et al. Standards Track [Page 94]

RFC 6231 IVR Control Package May 2011

 type="xsd:positiveInteger" default="5" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="collect" type="collectType" />

 <!-- grammar -->
 <!-- doesn’t extend tCore since its content model is mixed -->
 <xsd:complexType name="grammarType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="src" type="xsd:anyURI" />
 <xsd:attribute name="type" type="mime.datatype" />
 <xsd:attribute name="fetchtimeout"
 type="timedesignation.datatype" default="30s" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="grammar" type="grammarType" />

 <!-- record -->

 <xsd:complexType name="recordType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="media" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="timeout"
 type="timedesignation.datatype" default="5s" />
 <xsd:attribute name="beep" type="xsd:boolean"
 default="false" />
 <xsd:attribute name="vadinitial"
 type="xsd:boolean" default="false" />
 <xsd:attribute name="vadfinal"
 type="xsd:boolean" default="false" />
 <xsd:attribute name="dtmfterm"
 type="xsd:boolean" default="true" />
 <xsd:attribute name="maxtime"
 type="timedesignation.datatype" default="15s" />
 <xsd:attribute name="finalsilence"
 type="timedesignation.datatype" default="5s" />

McGlashan, et al. Standards Track [Page 95]

RFC 6231 IVR Control Package May 2011

 <xsd:attribute name="append" type="xsd:boolean"
 default="false" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="record" type="recordType" />

 <!--
 ###

 AUDIT TYPES

 ###
 -->

 <!-- audit -->

 <xsd:complexType name="auditType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="capabilities"
 type="xsd:boolean" default="true" />
 <xsd:attribute name="dialogs"
 type="xsd:boolean" default="true" />
 <xsd:attribute name="dialogid"
 type="dialogid.datatype"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="audit" type="auditType" />

 <!-- auditresponse -->

 <xsd:complexType name="auditresponseType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="capabilities" minOccurs="0"
 maxOccurs="1" />
 <xsd:element ref="dialogs" minOccurs="0"
 maxOccurs="1" />

McGlashan, et al. Standards Track [Page 96]

RFC 6231 IVR Control Package May 2011

 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="status" type="status.datatype"
 use="required" />
 <xsd:attribute name="reason" type="xsd:string" />
 <xsd:attribute name="desclang" type="xsd:language"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="auditresponse" type="auditresponseType" />

 <!-- codec -->

 <xsd:complexType name="codecType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="subtype" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="params" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"
 use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="codec" type="codecType" />

 <!-- subtype -->

 <xsd:simpleType name="subtypeType">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>

 <xsd:element name="subtype" type="subtypeType" />

 <!-- codecs -->

 <xsd:complexType name="codecsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">

McGlashan, et al. Standards Track [Page 97]

RFC 6231 IVR Control Package May 2011

 <xsd:sequence>
 <xsd:element ref="codec" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="codecs" type="codecsType" />

 <!-- capabilities -->

 <xsd:complexType name="capabilitiesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dialoglanguages" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="grammartypes" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="recordtypes" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="prompttypes" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="variables" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="maxpreparedduration" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="maxrecordduration" minOccurs="1"
 maxOccurs="1" />
 <xsd:element ref="codecs" minOccurs="1"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="capabilities" type="capabilitiesType" />

 <!-- mimetype -->

 <xsd:element name="mimetype" type="mime.datatype" />

McGlashan, et al. Standards Track [Page 98]

RFC 6231 IVR Control Package May 2011

 <!-- dialoglanguages -->

 <xsd:complexType name="dialoglanguagesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mimetype" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dialoglanguages" type="dialoglanguagesType" />

 <!-- grammartypes -->

 <xsd:complexType name="grammartypesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mimetype" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="grammartypes" type="grammartypesType" />

 <!-- recordtypes -->

 <xsd:complexType name="recordtypesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mimetype" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

McGlashan, et al. Standards Track [Page 99]

RFC 6231 IVR Control Package May 2011

 </xsd:complexType>

 <xsd:element name="recordtypes" type="recordtypesType" />

 <!-- prompttypes -->

 <xsd:complexType name="prompttypesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="mimetype" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="prompttypes" type="prompttypesType" />

<!-- variables -->

 <xsd:complexType name="variablesType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="variabletype" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="variables" type="variablesType" />

 <xsd:complexType name="variabletypeType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="format" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>

McGlashan, et al. Standards Track [Page 100]

RFC 6231 IVR Control Package May 2011

 <xsd:attribute name="type" type="xsd:string" use="required" />
 <xsd:attribute name="desc" type="xsd:string"/>
 <xsd:attribute name="desclang" type="xsd:language"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="variabletype" type="variabletypeType" />

<!-- format -->
<!-- doesn’t extend tCore since its content model is mixed -->
 <xsd:complexType name="formatType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="desc" type="xsd:string" />
 <xsd:attribute name="desclang" type="xsd:language"/>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="format" type="formatType" />

<!-- maxpreparedduration -->

 <xsd:element name="maxpreparedduration"
type="timedesignation.datatype"/>

<!-- maxrecordduration -->

 <xsd:element name="maxrecordduration"
type="timedesignation.datatype"/>

 <!-- dialogs -->

 <xsd:complexType name="dialogsType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="dialogaudit" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

McGlashan, et al. Standards Track [Page 101]

RFC 6231 IVR Control Package May 2011

 </xsd:complexType>

 <xsd:element name="dialogs" type="dialogsType" />

 <!-- dialogaudit -->

 <xsd:complexType name="dialogauditType">
 <xsd:complexContent>
 <xsd:extension base="Tcore">
 <xsd:sequence>
 <xsd:element ref="codecs" minOccurs="0"
 maxOccurs="1" />
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="dialogid"
 type="dialogid.datatype" use="required" />
 <xsd:attribute name="state" type="state.datatype"
 use="required" />
 <xsd:attributeGroup ref="fw:framework-attributes" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="dialogaudit" type="dialogauditType" />

 <!--
 ##

 DATATYPES

 ##
 -->

 <xsd:simpleType name="version.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="1.0" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="mime.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>
 <xsd:simpleType name="dialogid.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>

McGlashan, et al. Standards Track [Page 102]

RFC 6231 IVR Control Package May 2011

 <xsd:simpleType name="gender.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="female" />
 <xsd:enumeration value="male" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="state.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="preparing" />
 <xsd:enumeration value="prepared" />
 <xsd:enumeration value="starting" />
 <xsd:enumeration value="started" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="status.datatype">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:pattern value="[0-9][0-9][0-9]" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="media.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>
 <xsd:simpleType name="label.datatype">
 <xsd:restriction base="xsd:string" />
 </xsd:simpleType>
 <xsd:simpleType name="direction.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="sendrecv" />
 <xsd:enumeration value="sendonly" />
 <xsd:enumeration value="recvonly" />
 <xsd:enumeration value="inactive" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="timedesignation.datatype">
 <xsd:annotation>
 <xsd:documentation>
 Time designation following Time in CSS2
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="(\+)?([0-9]*\.)?[0-9]+(ms|s)" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="dtmfchar.datatype">
 <xsd:annotation>
 <xsd:documentation>
 DTMF character [0-9#*A-D]
 </xsd:documentation>

McGlashan, et al. Standards Track [Page 103]

RFC 6231 IVR Control Package May 2011

 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9#*A-D]" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="dtmfstring.datatype">
 <xsd:annotation>
 <xsd:documentation>
 DTMF sequence [0-9#*A-D]
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9#*A-D])+" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="percentage.datatype">
 <xsd:annotation>
 <xsd:documentation>
 whole integer followed by ’%’
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9])+%" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="prompt_termmode.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="completed" />
 <xsd:enumeration value="bargein" />
 <xsd:enumeration value="stopped" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="collect_termmode.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="match" />
 <xsd:enumeration value="noinput" />
 <xsd:enumeration value="nomatch" />
 <xsd:enumeration value="stopped" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="record_termmode.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="noinput" />
 <xsd:enumeration value="dtmf" />
 <xsd:enumeration value="maxtime" />

McGlashan, et al. Standards Track [Page 104]

RFC 6231 IVR Control Package May 2011

 <xsd:enumeration value="finalsilence" />
 <xsd:enumeration value="stopped" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="matchmode.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="all" />
 <xsd:enumeration value="collect" />
 <xsd:enumeration value="control" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="endsync.datatype">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="first" />
 <xsd:enumeration value="last" />
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

6. Examples

 This section provides examples of the IVR Control Package.

6.1. AS-MS Dialog Interaction Examples

 The following example assume a Control Channel has been established
 and synced as described in the Media Control Channel Framework
 [RFC6230].

 The XML messages are in angled brackets (with the root <mscivr>
 omitted); the REPORT status is in round brackets. Other aspects of
 the protocol are omitted for readability.

6.1.1. Starting an IVR Dialog

 An IVR dialog is started successfully, and dialogexit notification
 <event> is sent from the MS to the AS when the dialog exits normally.

McGlashan, et al. Standards Track [Page 105]

RFC 6231 IVR Control Package May 2011

 Application Server (AS) Media Server (MS)
 | |
 | (1) CONTROL: <dialogstart> |
 | --> |
 | |
 | (2) 202 |
 | <--------------------------------------- |
 | |
 | |
 | (3) REPORT: <response status="200"/> |
 | (terminate) |
 | <-- |
 | |
 | (4) 200 |
 | --> |
 | |
 | (5) CONTROL: <event ... /> |
 | |
 | <-- |
 | |
 | (6) 200 |
 | --> |
 | |

6.1.2. IVR Dialog Fails to Start

 An IVR dialog fails to start due to an unknown dialog language. The
 <response> is reported in a framework 200 message.

 Application Server (AS) Media Server (MS)
 | |
 | (1) CONTROL: <dialogstart> |
 | --> |
 | |
 | (2) 200: <response status="421"/> |
 | <-- |
 | |

McGlashan, et al. Standards Track [Page 106]

RFC 6231 IVR Control Package May 2011

6.1.3. Preparing and Starting an IVR Dialog

 An IVR dialog is prepared and started successfully, and then the
 dialog exits normally.

 Application Server (AS) Media Server (MS)
 | |
 | (1) CONTROL: <dialogprepare> |
 | --> |
 | |
 | (2) 202 |
 | <--------------------------------------- |
 | |
 | (3) REPORT: <response status="200"/> |
 | (terminate) |
 | <-- |
 | |
 | (4) 200 |
 | --> |
 | |
 | (5) CONTROL: <dialogstart> |
 | --> |
 | |
 | (6) 202 |
 | <--------------------------------------- |
 | |
 | (7) REPORT: <response status="200"/> |
 | (terminate) |
 | <-- |
 | |
 | (8) 200 |
 | --> |
 | |
 | (9) CONTROL: <event .../> |
 | <-- |
 | |
 | (10) 200 |
 | --> |
 | |

McGlashan, et al. Standards Track [Page 107]

RFC 6231 IVR Control Package May 2011

6.1.4. Terminating a Dialog

 An IVR dialog is started successfully, and then terminated by the AS.
 The dialogexit event is sent to the AS when the dialog exits.

 Application Server (AS) Media Server (MS)
 | |
 | (1) CONTROL: <dialogstart> |
 | --> |
 | |
 | (2) 202 |
 | <--------------------------------------- |
 | |
 | (3) REPORT: <response status="200"/> |
 | (terminate) |
 | <-- |
 | |
 | (4) 200 |
 | --> |
 | |
 | (5) CONTROL: <dialogterminate> |
 | --> |
 | |
 | (6) 200: <response status="200"/> |
 | <-- |
 | |
 | (7) CONTROL: <event .../> |
 | <-- |
 | |
 | (8) 200 |
 | --> |
 | |

 Note that in (6) the <response> payload to the <dialogterminate/>
 request is carried on a framework 200 response since it could
 complete the requested operation before the transaction timeout.

6.2. IVR Dialog Examples

 The following examples show how <dialog> is used with
 <dialogprepare>, <dialogstart>, and <event> elements to play prompts,
 set runtime controls, collect DTMF input, and record user input.

 The examples do not specify all messages between the AS and MS.

McGlashan, et al. Standards Track [Page 108]

RFC 6231 IVR Control Package May 2011

6.2.1. Playing Announcements

 This example prepares an announcement composed of two prompts where
 the dialog repeatCount is set to 2.

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogprepare>
 <dialog repeatCount="2">
 <prompt>
 <media loc="http://www.example.com/media/Number_09.wav"/>
 <media loc="http://www.example.com/media/Number_11.wav"/>
 </prompt>
 </dialog>
 </dialogprepare>
 </mscivr>

 If the dialog is prepared successfully, a <response> is returned with
 status 200 and a dialog identifier assigned by the MS:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="200" dialogid="vxi78"/>
 </mscivr>

 The prepared dialog is then started on a conference playing the
 prompts twice:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart prepareddialogid="vxi78" conferenceid="conference11"/>
 </mscivr>

 In the case of a successful dialog, the output is provided in
 <event>; for example:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi78">
 <dialogexit status="1">
 <promptinfo termmode="completed" duration="24000"/>
 </dialogexit>
 </event>
 </mscivr>

6.2.2. Prompt and Collect

 In this example, a prompt is played and then the MS waits for 30s for
 a two digit sequence:

McGlashan, et al. Standards Track [Page 109]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS˜HUwkuh7ns">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/prompt1.wav"/>
 </prompt>
 <collect timeout="30s" maxdigits="2"/>
 </dialog>
 </dialogstart>
 </mscivr>

 If no user input is collected within 30s, then the following
 notification event would be returned:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi81">
 <dialogexit status="1" >
 <promptinfo termmode="completed" duration="4000"/>
 <collectinfo termmode="noinput"/>
 </dialogexit>
 </event>
 </mscivr>

 The collect operation can be specified without a prompt. Here the MS
 just waits for DTMF input from the user (the maxdigits attribute of
 <collect> defaults to 5):

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS˜HUwkuh7ns">
 <dialog>
 <collect/>
 </dialog>
 </dialogstart>
 </mscivr>

 If the dialog is successful, then dialogexit <event> contains the
 dtmf collected in its result parameter:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi80">
 <dialogexit status="1">
 <collectinfo dtmf="12345" termmode="match"/>
 </dialogexit>
 </event>
 </mscivr>

 And finally, in this example, one of the input parameters is invalid:

McGlashan, et al. Standards Track [Page 110]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS˜HUwkuh7ns">
 <dialog repeatCount="two">
 <prompt>
 <media loc="http://www.example.com/prompt1.wav"/>
 </prompt>
 <collect cleardigitbuffer="true"
 timeout="4s" interdigittimeout="2s"
 termtimeout="0s" maxdigits="2"/>
 </dialog>
 </dialogstart>
 </mscivr>

 The error is reported in the response:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="400" dialogid="vxi82"
 reason="repeatCount attribute value invalid: two"/>
 </mscivr>

6.2.3. Prompt and Record

 In this example, the user is prompted, then their input is recorded
 for a maximum of 30 seconds.

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS˜HUwkuh7ns">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/media/sayname.wav"/>
 </prompt>
 <record dtmfterm="false" maxtime="30s" beep="true"/>
 </dialog>
 </dialogstart>
 </mscivr>

 If successful and the recording is terminated by DTMF, the following
 is returned in a dialogexit <event>:

McGlashan, et al. Standards Track [Page 111]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi83">
 <dialogexit status="1">
 <recordinfo termmode="dtmf">
 <mediainfo type="audio/x-wav"
 loc="http://www.example.com/recording1.wav"/>
 </recordinfo>
 </dialogexit>
 </event>
 </mscivr>

6.2.4. Runtime Controls

 In this example, a prompt is played with the collect operation and
 runtime controls activated.

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS˜HUwkuh7ns">
 <dialog>
 <prompt bargein="true">
 <media loc="http://www.example.com/prompt1.wav"/>
 </prompt>
 <control ffkey="5" rwkey="6" speedupkey="3"
 speeddnkey="4"/>
 <collect maxdigits="2"/>
 </dialog>
 </dialogstart>
 </mscivr>

 Once the dialog is active, the user can press keys 3, 4, 5, and 6 to
 execute runtime controls on the prompt queue. The keys do not cause
 bargein to occur. If the user presses any other key, then the prompt
 is interrupted and DTMF collect begins. Note that runtime controls
 are not active during the collect operation.

 When the dialog is completed successfully, then both control and
 collect information is reported.

McGlashan, et al. Standards Track [Page 112]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi81">
 <dialogexit status="1">
 <promptinfo termmode="bargein"/>
 <controlinfo>
 <controlmatch dtmf="4" timestamp="2008-05-12T12:13:14Z"/>
 <controlmatch dtmf="3" timestamp="2008-05-12T12:13:15Z"/>
 <controlmatch dtmf="5" timestamp="2008-05-12T12:13:16Z"/>
 </controlinfo>
 <collectinfo termmode="match" dtmf="14"/>
 </dialogexit>
 </event>
 </mscivr>

6.2.5. Subscriptions and Notifications

 In this example, a looped dialog is started with subscription for
 notifications each time the user input matches the collect grammar:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS">
 <dialog repeatCount="0">
 <collect maxdigits="2"/>
 </dialog>
 <subscribe>
 <dtmfsub matchmode="collect"/>
 </subscribe>
 </dialogstart>
 </mscivr>

 Each time the user input the DTMF matching the grammar, the following
 notification event would be sent:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi81">
 <dtmfnotify matchmode="collect" dtmf="12"
 timestamp="2008-05-12T12:13:14Z"/>
 </event>
 </mscivr>

 If no user input was provided, or the input did not match the
 grammar, the dialog would continue to loop until terminated (or an
 error occurred).

6.2.6. Dialog Repetition until DTMF Collection Complete

 This example is a prompt and collect dialog to collect the PIN from
 the user. The repeatUntilComplete attribute in the <dialog> is set

McGlashan, et al. Standards Track [Page 113]

RFC 6231 IVR Control Package May 2011

 to true in this case so that when the grammar collection is complete,
 the MS automatically terminates the dialog repeat cycle and reports
 the results in a <dialogexit> event.

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="7HDY839:HJKSkyHS">
 <dialog repeatCount="3" repeatUntilComplete="true">
 <prompt bargein="true">
 <media loc="http://example.com/please_enter_your_pin.vox"/>
 </prompt>
 <collect maxdigits="4"/>
 </dialog>
 </dialogstart>
 </mscivr>

 If the user barges in on the prompt and <collect> receives DTMF input
 matching the grammar, the dialog cycle is considered complete and the
 MS returns the following:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="vxi81">
 <dialogexit status="1">
 <promptinfo duration="3654" termmode="bargein"/>
 <collectinfo dtmf="1234" termmode="match"/>
 </dialogexit>
 </event>
 </mscivr>

 If no user input was provided, or the input did not match the
 grammar, the dialog would loop for a maximum of 3 times.

6.3. Other Dialog Languages

 The following example requests that a VoiceXML dialog is started:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart dialogid="d2"
 connectionid="7HDY839:HJKSkyHS"
 type="application/voicexml+xml"
 src="http://www.example.com/mydialog.vxml"
 fetchtimeout="15s">
 <params>
 <param name="prompt1">nfs://nas01/media1.3gp</param>
 <param name="prompt2">nfs://nas01/media2.3gp</param>
 </params>
 </dialogstart>
 </mscivr>

McGlashan, et al. Standards Track [Page 114]

RFC 6231 IVR Control Package May 2011

 If the MS does not support this dialog language, then the response
 would have the status code 421 (Section 4.5). However, if it does
 support the VoiceXML dialog language, it would respond with a 200
 status, activate the VoiceXML dialog, and make the <params> available
 to the VoiceXML script as described in Section 9.

 When the VoiceXML dialog exits, exit namelist parameters are
 specified using <params> in the dialogexit event:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <event dialogid="d2">
 <dialogexit status="1">
 <params>
 <param name="username">peter</param>
 <param name="pin">1234</param>
 </params>
 </dialogexit>
 </event>
 </mscivr>

6.4. Foreign Namespace Attributes and Elements

 An MS can support attributes and elements from foreign namespaces
 within the <mscivr> element. For example, the MS could support a
 <listen> element (in a foreign namespace) for speech recognition by
 analogy to how <collect> supports DTMF collection.

 In the following example, a prompt and collect request is extended
 with a <listen> element:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr"
 xmlns:ex="http://www.example.com/mediactrl/extensions/1">
 <dialogstart connectionid="7HDY839:HJKSkyHS˜HUwkuh7ns">
 <dialog>
 <prompt>
 <media loc="http://www.example.com/prompt1.wav"/>
 </prompt>
 <collect timeout="30s" maxdigits="4"/>
 <ex:listen maxtimeout="30s" >
 <ex:grammar src="http://example.org/pin.grxml"/>
 </ex:listen>
 </dialog>
 </dialogstart>
 </mscivr>

 In the <mscivr> root element, the xmlns:ex attribute declares that
 "ex" is associated with the foreign namespace URI
 "http://www.example.com/mediactrl/extensions/1". The <ex:listen>,

McGlashan, et al. Standards Track [Page 115]

RFC 6231 IVR Control Package May 2011

 its attributes, and child elements are associated with this
 namespace. This <listen> could be defined so that it activates an
 SRGS grammar and listens for user input matching the grammar in a
 similar manner to DTMF collection.

 If an MS receives this request but does not support the <listen>
 element, then it would send a 431 response:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <response status="431" dialogid="d560"
 reason="unsupported foreign listen element"/>
 </mscivr>

 If the MS does support this foreign element, it would send a 200
 response and start the dialog with speech recognition. When the
 dialog exits, it provides information about the <listen> execution
 within <dialogexit>, again using elements in a foreign namespace such
 as <listeninfo> below:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr"
 xmlns:ex="http://www.example.com/mediactrl/extensions/1">
 <event dialogid="d560">
 <dialogexit status="1">
 <ex:listeninfo speech="1 2 3 4" termmode="match"/>
 </dialogexit>
 </event>
 </mscivr>

 Note that in reply the AS sends a Control Framework 200 response even
 though the notification event contains an element in a foreign
 namespace that it might not understand.

7. Security Considerations

 As this Control Package processes XML markup, implementations MUST
 address the security considerations of [RFC3023].

 Implementations of this Control Package MUST address security,
 confidentiality, and integrity of messages transported over the
 Control Channel as described in Section 12 of "Media Control Channel
 Framework" [RFC6230], including Transport Level Protection, Control
 Channel Policy Management, and Session Establishment. In addition,
 implementations MUST address security, confidentiality, and integrity
 of User Agent sessions with the MS, both in terms of SIP signaling
 and associated RTP media flow; see [RFC6230] for further details on
 this topic. Finally, implementations MUST address security,

McGlashan, et al. Standards Track [Page 116]

RFC 6231 IVR Control Package May 2011

 confidentiality, and integrity of sessions where, following a URI
 scheme, an MS uploads recordings or retrieves documents and resources
 (e.g., fetching a grammar document from a web server using HTTPS).

 Adequate transport protection and authentication are critical,
 especially when the implementation is deployed in open networks. If
 the implementation fails to correctly address these issues, it risks
 exposure to malicious attacks, including (but not limited to):

 Denial of Service: An attacker could insert a request message into
 the transport stream causing specific dialogs on the MS to be
 terminated immediately. For example, <dialogterminate
 dialogid="XXXX" immediate="true">, where the value of "XXXX" could
 be guessed or discovered by auditing active dialogs on the MS
 using an <audit> request. Likewise, an attacker could impersonate
 the MS and insert error responses into the transport stream so
 denying the AS access to package capabilities.

 Resource Exhaustion: An attacker could insert into the Control
 Channel new request messages (or modify existing ones) with, for
 instance, <dialogprepare> elements with a very long fetchtimeout
 attribute and a bogus source URL. At some point, this will
 exhaust the number of connections that the MS is able to make.

 Phishing: An attacker with access to the Control Channel could
 modify the "loc" attribute of the <media> element in a dialog to
 point to some other audio file that had different information from
 the original. This modified file could include a different phone
 number for people to call if they want more information or need to
 provide additional information (such as governmental, corporate,
 or financial information).

 Data Theft: An attacker could modify a <record> element in the
 Control Channel so as to add a new recording location:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart>
 <dialog>
 <record>
 <media type="audio/x-wav" loc="(Good URI)"/>
 <media type="audio/x-wav" loc="(Attacker’s URI)"/>
 </record>
 </dialog>
 </dialogstart>
 </mscivr>

McGlashan, et al. Standards Track [Page 117]

RFC 6231 IVR Control Package May 2011

 The recorded data would be uploaded to two locations indicated by the
 "{Good URI}" and the "{Attacker’s URI}". This allows the attacker to
 steal the recorded audio (which could include sensitive or
 confidential information) without the originator of the request
 necessarily being aware of the theft.

 The Media Control Channel Framework permits additional security
 policy management, including resource access and Control Channel
 usage, to be specified at the Control Package level beyond that
 specified for the Media Control Channel Framework (see Section 12.3
 of [RFC6230]).

 Since creation of IVR dialogs is associated with media processing
 resources (e.g., DTMF detectors, media playback and recording, etc.)
 on the MS, the security policy for this Control Package needs to
 address how such dialogs are securely managed across more than one
 Control Channel. Such a security policy is only useful for secure,
 confidential, and integrity-protected channels. The identity of
 Control Channels is determined by the channel identifier, i.e., the
 value of the cfw-id attribute in the SDP and ’Dialog-ID’ header in
 the channel protocol (see [RFC6230]). Channels are the same if they
 have the same identifier; otherwise, they are different. This
 Control Package imposes the following additional security policies:

 Responses: The MS MUST only send a response to a dialog management
 or audit request using the same Control Channel as the one used to
 send the request.

 Notifications: The MS MUST only send notification events for a
 dialog using the same Control Channel as it received the request
 creating the dialog.

 Auditing: The MS MUST only provide audit information about dialogs
 that have been created on the same Control Channel as the one upon
 the <audit> request is sent.

 Rejection: The MS SHOULD reject requests to audit or manipulate an
 existing dialog on the MS if the channel is not the same as the
 one used when the dialog was created. The MS rejects a request by
 sending a Control Framework 403 response (see Section 7.4 and
 Section 12.3 of [RFC6230]). For example, if a channel with
 identifier ’cfw1234’ has been used to send a request to create a
 particular dialog and the MS receives on channel ’cfw98969’ a
 request to audit or terminate the dialog, then the MS sends a 403
 framework response.

McGlashan, et al. Standards Track [Page 118]

RFC 6231 IVR Control Package May 2011

 There can be valid reasons why an implementation does not reject an
 audit or dialog manipulation request on a different channel from the
 one that created the dialog. For example, a system administrator
 might require a separate channel to audit dialog resources created by
 system users and to terminate dialogs consuming excessive system
 resources. Alternatively, a system monitor or resource broker might
 require a separate channel to audit dialogs managed by this package
 on an MS. However, the full implications need to be understood by
 the implementation and carefully weighted before accepting these
 reasons as valid. If the reasons are not valid in their particular
 circumstances, the MS rejects such requests.

 There can also be valid reasons for ’channel handover’ including high
 availability support or where one AS needs to take over management of
 dialogs after the AS that created them has failed. This could be
 achieved by the Control Channels using the same channel identifier,
 one after another. For example, assume a channel is created with the
 identifier ’cfw1234’ and the channel is used to create dialogs on the
 MS. This channel (and associated SIP dialog) then terminates due to
 a failure on the AS. As permitted by the Control Framework, the
 channel identifier ’cfw1234’ could then be reused so that another
 channel is created with the same identifier ’cfw1234’, allowing it to
 ’take over’ management of the dialogs on the MS. Again, the
 implementation needs to understand the full implications and
 carefully weight them before accepting these reasons as valid. If
 the reasons are not valid for their particular circumstances, the MS
 uses the appropriate SIP mechanisms to prevent session establishment
 when the same channel identifier is used in setting up another
 Control Channel (see Section 4 of [RFC6230]).

8. IANA Considerations

 IANA has registered a new Media Control Channel Framework Package, a
 new XML namespace, a new XML schema, and a new MIME type.

 IANA has further created a new registry for IVR prompt variable
 types.

8.1. Control Package Registration

 This section registers a new Media Control Channel Framework package,
 per the instructions in Section 13.1 of [RFC6230].

 Package Name: msc-ivr/1.0
 Published Specification(s): RFC 6231
 Person & email address to contact for further information:
 IETF MEDIACTRL working group (mediactrl@ietf.org),
 Scott McGlashan (smcg.stds01@mcglashan.org).

McGlashan, et al. Standards Track [Page 119]

RFC 6231 IVR Control Package May 2011

8.2. URN Sub-Namespace Registration

 This section registers a new XML namespace,
 "urn:ietf:params:xml:ns:msc-ivr", per the guidelines in RFC 3688
 [RFC3688].

 URI: urn:ietf:params:xml:ns:msc-ivr
 Registrant Contact: IETF MEDIACTRL working group (mediactrl@ietf.org),
 Scott McGlashan (smcg.stds01@mcglashan.org).
 XML:
 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Media Control Channel Framework IVR
 Package attributes</title>
 </head>
 <body>
 <h1>Namespace for Media Control Channel
 Framework IVR Package attributes</h1>
 <h2>urn:ietf:params:xml:ns:msc-ivr</h2>
 <p>See
 RFC 6231.</p>
 </body>
 </html>
 END

8.3. XML Schema Registration

 This section registers an XML schema as per the guidelines in RFC
 3688 [RFC3688].

 URI: urn:ietf:params:xml:ns:msc-ivr
 Registrant Contact: IETF MEDIACTRL working group (mediactrl@ietf.org),
 Scott McGlashan (smcg.stds01@mcglashan.org).
 Schema: The XML for this schema can be found in Section 5 of this
 document.

8.4. MIME Media Type Registration for application/msc-ivr+xml

 This section registers the application/msc-ivr+xml MIME type.

 Type name: application

 Subtype name: msc-ivr+xml

McGlashan, et al. Standards Track [Page 120]

RFC 6231 IVR Control Package May 2011

 Required parameters: (none)

 Optional parameters: charset
 Indicates the character encoding of enclosed XML. Default is
 UTF-8.

 Encoding considerations: Uses XML, which can employ 8-bit
 characters, depending on the character encoding used. See RFC
 3023 [RFC3023], Section 3.2.

 Security considerations: No known security considerations outside
 of those provided by the Media Control Channel Framework IVR
 Package.

 Interoperability considerations: This content type provides
 constructs for the Media Control Channel Framework IVR package.

 Published specification: RFC 6231

 Applications that use this media type: Implementations of
 the Media Control Channel Framework IVR package.

 Additional information:
 Magic number(s): (none)
 File extension(s): (none)
 Macintosh file type code(s): (none)

 Person & email address to contact for further information:
 Scott McGlashan <smcg.stds01@mcglashan.org>

 Intended usage: LIMITED USE

 Author/Change controller: The IETF

 Other information: None.

8.5. IVR Prompt Variable Type Registration Information

 This specification establishes an IVR Prompt Variable Type registry
 for Control Packages and initiates its population as follows. New
 entries in this registry must be published in an RFC (either as an
 IETF submission or RFC Editor submission), using the IANA policy
 [RFC5226] "RFC Required".

McGlashan, et al. Standards Track [Page 121]

RFC 6231 IVR Control Package May 2011

 Variable Type Control Package Reference
 ------------- --------------- ---------
 date msc-ivr/1.0 [RFC6231]
 time msc-ivr/1.0 [RFC6231]
 digits msc-ivr/1.0 [RFC6231]

 The following information MUST be provided in an RFC in order to
 register a new prompt variable type:

 Variable Type: The value for the <variable> type attribute
 (Section 4.3.1.1.1). The RFC MUST specify permitted values (if
 any) for the format attribute of <variable> and how the value
 attribute is rendered for different values of the format
 attribute. The RFC MUST NOT weaken but MAY strengthen the valid
 values of <variable> attributes defined in Section 4.3.1.1.1 of
 this specification.

 Reference: The RFC number in which the variable type is registered.

 Control Package: The Control Package associated with the IVR
 variable type.

 Person & address to contact for further information:

9. Using VoiceXML as a Dialog Language

 The IVR Control Package allows, but does not require, the MS to
 support other dialog languages by referencing an external dialog
 document. This section provides MS implementations that support the
 VoiceXML dialog language ([VXML20], [VXML21], [VXML30]) with
 additional details about using these dialogs in this package. This
 section is normative for an MS that supports the VoiceXML dialog
 language.

 This section covers preparing (Section 9.1), starting (Section 9.2),
 terminating (Section 9.3), and exiting (Section 9.4) VoiceXML dialogs
 as well as handling VoiceXML call transfer (Section 9.5).

9.1. Preparing a VoiceXML Dialog

 A VoiceXML dialog is prepared by sending the MS a request containing
 a <dialogprepare> element (Section 4.2.1). The type attribute is set
 to "application/voicexml+xml" and the src attribute to the URI of the
 VoiceXML document that is to be prepared by the MS. For example:

McGlashan, et al. Standards Track [Page 122]

RFC 6231 IVR Control Package May 2011

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogprepare type="application/voicexml+xml"
 src="http://www.example.com/mydialog.vxml"
 fetchtimeout="15s"/>
 </mscivr>

 The VoiceXML dialog environment uses the <dialogprepare> request as
 an opportunity to fetch and validate the initial document indicated
 by the src attribute along with any resources referenced in the
 VoiceXML document marked as prefetchable. The maxage and maxstale
 attributes, if specified, control how the initial VoiceXML document
 is fetched using HTTP (see [RFC2616]). Note that the fetchtimeout
 attribute is not defined in VoiceXML for an initial document, but the
 MS MUST support this attribute in its VoiceXML environment.

 If a <params> child element of <dialogprepare> is specified, then the
 MS MUST map the parameter information into a VoiceXML session
 variable object as described in Section 9.2.3.

 The success or failure of the VoiceXML document preparation is
 reported in the MS response. For example, if the VoiceXML document
 cannot be retrieved, then a 409 error response is returned. If the
 document is syntactically invalid according to VoiceXML, then a 400
 response is returned. If successful, the response includes a
 dialogid attribute whose value the AS can use in <dialogstart>
 element to start the prepared dialog.

9.2. Starting a VoiceXML Dialog

 A VoiceXML dialog is started by sending the MS a request containing a
 <dialogstart> element (Section 4.2.2). If a VoiceXML dialog has
 already been prepared using <dialogprepare>, then the MS starts the
 dialog indicated by the prepareddialogid attribute. Otherwise, a new
 VoiceXML dialog can be started by setting the type attribute to
 "application/voicexml+xml" and the src attribute to the URI of the
 VoiceXML document. For example:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="ssd3r3:sds345b"
 type="application/voicexml+xml"
 src="http://www.example.com/mydialog.vxml"
 fetchtimeout="15s"/>
 </mscivr>

 The maxage and maxstale attributes, if specified, control how the
 initial VoiceXML document is fetched using HTTP (see [RFC2616]).
 Note that the fetchtimeout attribute is not defined in VoiceXML for
 an initial document, but the MS MUST support this attribute in its

McGlashan, et al. Standards Track [Page 123]

RFC 6231 IVR Control Package May 2011

 VoiceXML environment. Note also that support for <dtmfsub>
 subscriptions (Section 4.2.2.1.1) and their associated dialog
 notification events is not defined in VoiceXML. If such a
 subscription is specified in a <dialogstart> request, then the MS
 sends a 439 error response (see Section 4.5).

 The success or failure of starting a VoiceXML dialog is reported in
 the MS response as described in Section 4.2.2.

 When the MS starts a VoiceXML dialog, the MS MUST map session
 information into a VoiceXML session variable object. There are 3
 types of session information: protocol information (Section 9.2.1),
 media stream information (Section 9.2.2), and parameter information
 (Section 9.2.3).

9.2.1. Session Protocol Information

 If the connectionid attribute is specified, the MS assigns protocol
 information from the SIP dialog associated with the connection to the
 following session variables in VoiceXML:

 session.connection.local.uri Evaluates to the SIP URI specified in
 the ’To:’ header of the initial INVITE.

 session.connection.remote.uri Evaluates to the SIP URI specified in
 the ’From:’ header of the initial INVITE.

 session.connection.originator Evaluates to the value of
 session.connection.remote (MS receives inbound connections but
 does not create outbound connections).

 session.connection.protocol.name Evaluates to "sip". Note that this
 is intended to reflect the use of SIP in general, and does not
 distinguish between whether the connection accesses the MS via SIP
 or SIP Secure (SIPS) procedures.

 session.connection.protocol.version Evaluates to "2.0".

 session.connection.redirect This array is populated by information
 contained in the ’History-Info’ header [RFC4244] in the initial
 INVITE or is otherwise undefined. Each entry (hi-entry) in the
 ’History-Info’ header is mapped, in the order it appeared in the
 ’History-Info’ header, into an element of the
 session.connection.redirect array. Properties of each element of
 the array are determined as follows:

 uri Set to the hi-targeted-to-uri value of the History-Info
 entry

McGlashan, et al. Standards Track [Page 124]

RFC 6231 IVR Control Package May 2011

 pi Set to ’true’ if hi-targeted-to-uri contains a
 ’Privacy=history’ parameter, or if the INVITE ’Privacy’
 header includes ’history’; ’false’ otherwise

 si Set to the value of the ’si’ parameter if it exists;
 undefined otherwise

 reason Set verbatim to the value of the ’Reason’ parameter of hi-
 targeted-to-uri

 session.connection.aai Evaluates to the value of a SIP header with
 the name "aai" if present; undefined otherwise.

 session.connection.protocol.sip.requesturi This is an associative
 array where the array keys and values are formed from the URI
 parameters on the SIP Request-URI of the initial INVITE. The
 array key is the URI parameter name. The corresponding array
 value is obtained by evaluating the URI parameter value as a
 string. In addition, the array’s toString() function returns the
 full SIP Request-URI.

 session.connection.protocol.sip.headers This is an associative array
 where each key in the array is the non-compact name of a SIP
 header in the initial INVITE converted to lowercase (note the case
 conversion does not apply to the header value). If multiple
 header fields of the same field name are present, the values are
 combined into a single comma-separated value. Implementations
 MUST at a minimum include the ’Call-ID’ header and MAY include
 other headers. For example,
 session.connection.protocol.sip.headers["call-id"] evaluates to
 the Call-ID of the SIP dialog.

 If a conferenceid attribute is specified, then the MS populates the
 following session variables in VoiceXML:

 session.conference.name Evaluates to the value of the conferenceid
 attribute.

9.2.2. Session Media Stream Information

 The media streams of the connection or conference to use for the
 dialog are described in Section 4.2.2, including use of <stream>
 elements (Section 4.2.2.2) if specified. The MS maps media stream
 information into the VoiceXML session variable
 session.connection.protocol.sip.media for a connection, and
 session.conference.media for a conference. In both variables, the
 value of the variable is an array where each array element is an
 object with the following properties:

McGlashan, et al. Standards Track [Page 125]

RFC 6231 IVR Control Package May 2011

 type This required property indicates the type of the media
 associated with the stream (see Section 4.2.2.2 <stream> type
 attribute definition).

 direction This required property indicates the directionality of the
 media relative to the endpoint of the dialog (see Section 4.2.2.2
 <stream> direction attribute definition).

 format This property is optional. If defined, the value of the
 property is an array. Each array element is an object that
 specifies information about one format of the media stream. The
 object contains at least one property called name whose value is
 the subtype name of the media format [RFC4855]. Other properties
 may be defined with string values; these correspond to required
 and, if defined, optional parameters of the format.

 As a consequence of this definition, when a connectionid is specified
 there is an array entry in session.connection.protocol.sip.media for
 each media stream used by the VoiceXML dialog. For an example,
 consider a connection with bidirectional G.711 mu-law audio sampled
 at 8kHz where the dialog is started with

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="ssd3r3:sds345b"
 type="application/voicexml+xml"
 src="http://www.example.com/mydialog.vxml"
 fetchtimeout="15s">
 <stream media="audio" direction="recvonly"/>
 </dialogstart>
 </mscivr>

 In this case, session.connection.protocol.sip.media[0].type evaluates
 to "audio", session.connection.protocol.sip.media[0].direction
 evaluates to "recvonly" (i.e., the endpoint only receives media from
 the dialog -- the endpoint does not send media to the dialog),
 session.connection.protocol.sip.media[0].format[0].name evaluates to
 "PCMU", and session.connection.protocol.sip.media[0].format[0].rate
 evaluates to "8000".

 Note that the session variable is updated if the connection or
 conference media session characteristics for the VoiceXML dialog
 change (e.g., due to a SIP re-INVITE).

McGlashan, et al. Standards Track [Page 126]

RFC 6231 IVR Control Package May 2011

9.2.3. Session Parameter Information

 Parameter information is specified in the <params> child element of
 <dialogprepare> and <dialogstart> elements, where each parameter is
 specified using a <param> element. The MS maps parameter information
 into VoiceXML session variables as follows:

 session.values This is an associative array mapped to the <params>
 element. It is undefined if no <params> element is specified. If
 a <params> element is specified in both <dialogprepare> and
 <dialogstart> elements for the same dialog, then the array is
 first initialized with the <params> specified in the
 <dialogprepare> element and then updated with the <params>
 specified in the <dialogstart> element; in cases of conflict, the
 <dialogstart> parameter value take priority. Array keys and
 values are formed from <param> children of the <params> element.
 Each array key is the value of the name attribute of a <param>
 element. If the same name is used in more than one <param>
 element, then the array key is associated with the last <param> in
 document order. The corresponding value for each key is an object
 with two required properties: a "type" property evaluating to the
 value of the type attribute, and a "content" property evaluating
 to the content of the <param>. In addition, this object’s
 toString() function returns the value of the "content" property as
 a string.

 For example, a VoiceXML dialog started with one parameter:

 <mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
 <dialogstart connectionid="ssd3r3:sds345b"
 type="application/voicexml+xml"
 src="http://www.example.com/mydialog.vxml"
 fetchtimeout="15s">
 <params>
 <param name="mode">playannouncement</param>
 </params>
 </dialogstart>
 </mscivr>

 In this case, session.values would be defined with one item in the
 array where session.values[’mode’].type evaluates to "text/plain"
 (the default value), session.values[’mode’].content evaluates to
 "playannouncement", and session.values[’mode’].toString() also
 evaluates to "playannouncement".

 The MS sends an error response (see Section 4.2.2) if a <param> is
 not supported by the MS (e.g., the parameter type is not supported).

McGlashan, et al. Standards Track [Page 127]

RFC 6231 IVR Control Package May 2011

9.3. Terminating a VoiceXML Dialog

 When the MS receives a request with a <dialogterminate> element
 (Section 4.2.3), the MS throws a ’connection.disconnect.hangup’ event
 into the specified VoiceXML dialog. Note that if the immediate
 attribute has the value true, then the MS MUST NOT return <params>
 information when the VoiceXML dialog exits (even if the VoiceXML
 dialog provides such information) -- see Section 9.4.

 If the connection or conference associated with the VoiceXML dialog
 terminates, then the MS throws a ’connection.disconnect.hangup’ event
 into the specified VoiceXML dialog.

9.4. Exiting a VoiceXML Dialog

 The MS sends a <dialogexit> notification event (Section 4.2.5.1) when
 the VoiceXML dialog is complete, has been terminated, or exits due to
 an error. The <dialogexit> status attribute specifies the status of
 the VoiceXML dialog when it exits and its <params> child element
 specifies information, if any, returned from the VoiceXML dialog.

 A VoiceXML dialog exits when it processes a <disconnect> element, an
 <exit> element, or an implicit exit according to the VoiceXML form
 interpretation algorithm (FIA). If the VoiceXML dialog executes a
 <disconnect> and then subsequently executes an <exit> with namelist
 information, the namelist information from the <exit> element is
 discarded.

 The MS reports namelist variables in the <params> element of the
 <dialogexit>. Each <param> reports on a namelist variable. The MS
 set the <param> name attribute to the name of the VoiceXML variable.
 The MS sets the <param> type attribute according to the type of the
 VoiceXML variable. The MS sets the <param> type to ’text/plain’ when
 the VoiceXML variable is a simple ECMAScript value. If the VoiceXML
 variable is a recording, the MS sets the <param> type to the MIME
 media type of the recording and encodes the recorded content as CDATA
 in the <param> (see Section 4.2.6.1 for an example). If the VoiceXML
 variable is a complex ECMAScript value (e.g., object, array, etc.),
 the MS sets the <param> type to ’application/json’ and converts the
 variable value to its JSON value equivalent [RFC4627]. The behavior
 resulting from specifying an ECMAScript object with circular
 references is not defined.

 If the expr attribute is specified on the VoiceXML <exit> element
 instead of the namelist attribute, the MS creates a <param> element
 with the reserved name ’__exit’. If the value is an ECMAScript
 literal, the <param> type is ’text/plain’ and the content is the
 literal value. If the value is a variable, the <param> type and

McGlashan, et al. Standards Track [Page 128]

RFC 6231 IVR Control Package May 2011

 content are set in the same way as a namelist variable; for example,
 an expr attribute referencing a variable with a simple ECMAScript
 value has the type ’text/plain’ and the content is set to the
 ECMAScript value. To allow the AS to differentiate between a
 <dialogexit> notification event resulting from a VoiceXML
 <disconnect> from one resulting from an <exit>, the MS creates a
 <param> with the reserved name ’__reason’, the type ’text/plain’, and
 a value of "disconnect" (without brackets) to reflect the use of
 VoiceXML’s <disconnect> element, and the value of "exit" (without
 brackets) to an explicit <exit> in the VoiceXML dialog. If the
 VoiceXML session terminates for other reasons (such as encountering
 an error), this parameter MAY be omitted or take on platform-specific
 values prefixed with an underscore.

 Table 2 provides some examples of VoiceXML <exit> usage and the
 corresponding <params> element in the <dialogexit> notification
 event. It assumes the following VoiceXML variable names and values:
 userAuthorized=true, pin=1234, and errors=0. The <param> type
 attributes (’text/plain’) are omitted for clarity.

 +------------------------+--+
 | <exit> Usage | <params> Result |
 +------------------------+--+
<exit>	<params> <param
	name="__reason">exit</param> </params>
<exit expr="5">	<params> <param
	name="__reason">exit</param> <param
	name="__exit">5</param> </params>
<exit expr="’done’">	<params> <param
	name="__reason">exit</param> <param
	name="__exit">’done’</param> </params>
<exit	<params> <param
expr="userAuthorized">	name="__reason">exit</param> <param
	name="__exit">true</param> </params>
<exit namelist="pin	<params> <param
errors">	name="__reason">exit</param> <param
	name="pin">1234</param> <param
	name="errors">0</param> </params>
 +------------------------+--+

 Table 2: VoiceXML <exit> Mapping Examples

9.5. Call Transfer

 While VoiceXML is at its core a dialog language, it also provides
 optional call transfer capability. It is NOT RECOMMENDED to use
 VoiceXML’s call transfer capability in networks involving application
 servers. Rather, the AS itself can provide call routing

McGlashan, et al. Standards Track [Page 129]

RFC 6231 IVR Control Package May 2011

 functionality by taking signaling actions based on the data returned
 to it, either through VoiceXML’s own data submission mechanisms or
 through the mechanism described in Section 9.4. If the MS encounters
 a VoiceXML dialog requesting call transfer capability, the MS SHOULD
 raise an error event in the VoiceXML dialog execution context: an
 error.unsupported.transfer.blind event if blind transfer is
 requested, error.unsupported.transfer.bridge if bridge transfer is
 requested, or error.unsupported.transfer.consultation if consultation
 transfer is requested.

10. Contributors

 Asher Shiratzky provided valuable support and contributions to the
 early versions of this document.

 The authors would like to thank the IVR design team consisting of
 Roni Even, Lorenzo Miniero, Adnan Saleem, Diego Besprosvan, Mary
 Barnes, and Steve Buko, who provided valuable feedback, input, and
 text to this document.

11. Acknowledgments

 The authors would like to thank Adnan Saleem, Gene Shtirmer, Dave
 Burke, Dan York, Steve Buko, Jean-Francois Bertrand, Henry Lum, and
 Lorenzo Miniero for expert reviews of this work.

 Ben Campbell carried out the RAI expert review on this specification
 and provided a great deal of invaluable input. Donald Eastlake
 carried out a thorough security review.

12. References

12.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

McGlashan, et al. Standards Track [Page 130]

RFC 6231 IVR Control Package May 2011

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC4574] Levin, O. and G. Camarillo, "The Session Description
 Protocol (SDP) Label Attribute", RFC 4574, August 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4647] Phillips, A. and M. Davis, "Matching of Language Tags",
 BCP 47, RFC 4647, September 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC6230] Boulton, C., Melanchuk, T., and S. McGlashan, "Media
 Control Channel Framework", RFC 6230, May 2011.

 [SRGS] Hunt, A. and S. McGlashan, "Speech Recognition Grammar
 Specification Version 1.0", W3C Recommendation,
 March 2004.

 [VXML20] McGlashan, S., Burnett, D., Carter, J., Danielsen, P.,
 Ferrans, J., Hunt, A., Lucas, B., Porter, B., Rehor, K.,
 and S. Tryphonas, "Voice Extensible Markup Language
 (VoiceXML) Version 2.0", W3C Recommendation, March 2004.

McGlashan, et al. Standards Track [Page 131]

RFC 6231 IVR Control Package May 2011

 [VXML21] Oshry, M., Auburn, RJ., Baggia, P., Bodell, M., Burke, D.,
 Burnett, D., Candell, E., Carter, J., McGlashan, S., Lee,
 A., Porter, B., and K. Rehor, "Voice Extensible Markup
 Language (VoiceXML) Version 2.1", W3C Recommendation,
 June 2007.

 [W3C.REC-SMIL2-20051213]
 Jansen, J., Layaida, N., Michel, T., Grassel, G.,
 Koivisto, A., Bulterman, D., Mullender, S., and D. Zucker,
 "Synchronized Multimedia Integration Language (SMIL 2.1)",
 World Wide Web Consortium Recommendation REC-SMIL2-
 20051213, December 2005,
 <http://www.w3.org/TR/2005/REC-SMIL2-20051213>.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C M., Maler, E.,
 and F. Yergeau, "Extensible Markup Language (XML) 1.0
 (Third Edition)", W3C Recommendation, February 2004.

 [XMLSchema:Part2]
 Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", W3C Recommendation, October 2004.

12.2. Informative References

 [CCXML10] Auburn, R J., "Voice Browser Call Control: CCXML Version
 1.0", W3C Candidate Recommendation (work in progress),
 April 2010.

 [H.248.9] "Gateway control protocol: Advanced media server
 packages", ITU-T Recommendation H.248.9.

 [IANA] IANA, "RTP Payload Types", available
 from http://www.iana.org.

 [MIME.mediatypes]
 IANA, "MIME Media Types", available
 from http://www.iana.org.

 [MIXER-CP]
 McGlashan, S., Melanchuk, T., and C. Boulton, "A Mixer
 Control Package for the Media Control Channel Framework",
 Work in Progress, January 2011.

 [RFC2897] Cromwell, D., "Proposal for an MGCP Advanced Audio
 Package", RFC 2897, August 2000.

McGlashan, et al. Standards Track [Page 132]

RFC 6231 IVR Control Package May 2011

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC4240] Burger, E., Van Dyke, J., and A. Spitzer, "Basic Network
 Media Services with SIP", RFC 4240, December 2005.

 [RFC4244] Barnes, M., "An Extension to the Session Initiation
 Protocol (SIP) for Request History Information", RFC 4244,
 November 2005.

 [RFC4267] Froumentin, M., "The W3C Speech Interface Framework Media
 Types: application/voicexml+xml, application/ssml+xml,
 application/srgs, application/srgs+xml, application/
 ccxml+xml, and application/pls+xml", RFC 4267,
 November 2005.

 [RFC4281] Gellens, R., Singer, D., and P. Frojdh, "The Codecs
 Parameter for "Bucket" Media Types", RFC 4281,
 November 2005.

 [RFC4730] Burger, E. and M. Dolly, "A Session Initiation Protocol
 (SIP) Event Package for Key Press Stimulus (KPML)",
 RFC 4730, November 2006.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 December 2006.

 [RFC4855] Casner, S., "Media Type Registration of RTP Payload
 Formats", RFC 4855, February 2007.

 [RFC5022] Van Dyke, J., Burger, E., and A. Spitzer, "Media Server
 Control Markup Language (MSCML) and Protocol", RFC 5022,
 September 2007.

 [RFC5167] Dolly, M. and R. Even, "Media Server Control Protocol
 Requirements", RFC 5167, March 2008.

 [RFC5707] Saleem, A., Xin, Y., and G. Sharratt, "Media Server Markup
 Language (MSML)", RFC 5707, February 2010.

 [VXML30] McGlashan, S., Burnett, D., Akolkar, R., Auburn, RJ.,
 Baggia, P., Barnett, J., Bodell, M., Carter, J., Oshry,
 M., Rehor, K., Young, M., and R. Hosn, "Voice Extensible
 Markup Language (VoiceXML) Version 3.0", W3C Working
 Draft, August 2010.

McGlashan, et al. Standards Track [Page 133]

RFC 6231 IVR Control Package May 2011

 [XCON-DATA-MODEL]
 Novo, O., Camarillo, G., Morgan, D., and J. Urpalainen,
 "Conference Information Data Model for Centralized
 Conferencing (XCON)", Work in Progress, April 2011.

Authors’ Addresses

 Scott McGlashan
 Hewlett-Packard

 EMail: smcg.stds01@mcglashan.org

 Tim Melanchuk
 Rainwillow

 EMail: timm@rainwillow.com

 Chris Boulton
 NS-Technologies

 EMail: chris@ns-technologies.com

McGlashan, et al. Standards Track [Page 134]

