
Solvers for solid mechanics - Recent progress

Mika Malinen, D.Sc. (Tech.)

Aalto University
Department of Mathematics and Systems Analysis

and
CSC – IT Center for Science (on leave)

April 15, 2021

Mika Malinen Solvers for solid mechanics



About contents

The most notable “recent” developments (introduced in Elmer release
8.4., Dec 2018, or later)

User-defined materials (UMAT) interface for nonlinear elasticity
solver, together with documentation

A nonlinear version of shell solver

Support for solving strongly coupled FSI problems in frequency
domain

Ongoing work

A tight coupling of 3D elasticity and 2D shell equations

red = the special subjects of this presentation

Mika Malinen Solvers for solid mechanics



I Overview of solvers for solid mechanics

Volumetric discretizations of 2-D/3-D solids

Linear elasticity (the module StressSolve)

Basic material laws, with possible anisotropy
Modal and stability analysis
Harmonic analysis (complex-valued fields)
Mesh adaptivity

Nonlinear elasticity (ElasticSolve)

Finite deformations
Neo-Hookean and St Venant-Kirchhoff materials in-built
Note: A St Venant-Kirchhoff material intended for large
displacements and small extensional strains
A special formulation for an incompressible material
Anisotropy for a St Venant-Kirchhoff material
User-defined materials (UMAT) interface to handle more general
classes of solids (beyond elasticity)

Mika Malinen Solvers for solid mechanics



I Overview of solvers for solid mechanics

Models obtained via dimensional reduction

1-D beams (BeamSolver3D)

Shear-deformable (Timoshenko’s theory) and allows torsional stiffness
A beam can be embedded freely in the 3-dimensional space
A linearly elastic material
A recent addition (May, 2019)

2-D Reissner-Mindlin model for linearly elastic plates (SMITC)

2-D shell equations (ShellSolver)

Mika Malinen Solvers for solid mechanics



I Overview of solvers for solid mechanics

2-D shell equations (ShellSolver)

finite deformations (a linear model as a special case)
a St Venant-Kirchhoff material only
an extensible director assumed
in some aspects a research version (non-standard developments)
to replace the (undocumented) facet shell solver
(FacetShellSolver)

Mika Malinen Solvers for solid mechanics



Nonlinear shell analysis: A cantilever benchmark

A cantilever is subject to a shear force at an end

Mika Malinen Solvers for solid mechanics



Nonlinear shell analysis: A cantilever benchmark

Mika Malinen Solvers for solid mechanics



Nonlinear shell analysis: A pinched cylinder benchmark

A straight cylindrical shell is subject to a pinching force and has
rigid end diaphragms allowing axial slip

Mika Malinen Solvers for solid mechanics



Nonlinear shell analysis: A pinched cylinder benchmark

Mika Malinen Solvers for solid mechanics



Nonlinear shell analysis: An open hemisphere benchmark

An open hemispherical shell is subject to inward and outward
pinching forces

Mika Malinen Solvers for solid mechanics



Nonlinear shell analysis: An open hemisphere benchmark

Mika Malinen Solvers for solid mechanics



I Overview of solvers for solid mechanics

Additional utilities

Pointwise springs and masses (SpringAssembly)

an additional assembly procedure to add springs and masses
allows the assembly although the mesh files do not specify point
elements
a recent addition (Apr, 2020)

To sum up:

Basic models available, limitations on available material models and
postprocessing

Higher-order discretizations may not be an option

Pure solid mechanics has not really been on focus

Mika Malinen Solvers for solid mechanics



II User-defined material models

A typical question

“I need to apply a special nonlinear material model. Does Elmer support
such a simulation?”

A typical answer

“In principle yes, but you need to program the material law ...”

A local enhancement suffices:

Only a special subroutine has to be written

The code of the solver need not be touched

Mika Malinen Solvers for solid mechanics



II User-defined material models

Some historical comments:

Our UMAT development was initiated in a project

The project goal was to enable interfacing with material models
written for ABAQUS

The interface was published later under open source

A thesis (M.Sc.) also utilized the UMAT interface:
http://URN.fi/URN:NBN:fi:tty-201810032372

Mika Malinen Solvers for solid mechanics



II User-defined material models

In practice

UMAT is a Fortran subroutine with a fixed calling convention

ABAQUS gives its own documentation

Different software work differently:

Some adaptation on the Elmer side was needed

For example, Elmer expresses the equilibrium equations in terms of
the first Piola-Kirchhoff stress, while UMAT describes the material
response in terms of the Cauchy stress

Use modern Fortran when working with Elmer

Mika Malinen Solvers for solid mechanics



II User-defined material models

Limitations:

Not all arguments of the UMAT subroutine are supported

The implementation shouldn’t rely on utility subroutines that are
available only within Abaqus

At the moment just stationary cases, but no technical hindrance to
enable transient cases

An adaptive load incrementation is not supported within Elmer

That is, some simulation controls doesn’t have a meaning within
Elmer

Mika Malinen Solvers for solid mechanics



II User-defined material models

How to start

UMAT subroutine can be compiled independently of the solver of
Elmer

elmerf90 command coming with the installed Elmer can be used
for compilation

A ready template for writing UMAT is a part of the Elmer source
code:

../fem/src/modules/UMATLib.F90

It also contains some examples of basic material models

See also example cases given as tests

.../fem/tests/UMAT *

Mika Malinen Solvers for solid mechanics



II User-defined material models

The file containing UMAT implementation can be named freely, so
one may compile for example

elmerf90 MyUMATLib.F90 -o MyUMATLib

Several material models can also be contained in a single file

Use the keyword UMAT Subroutine in a material section to specify
the file and to pick the subroutine desired

Material X

UMAT Subroutine = "MyUMATLib" "my umat"

...

You may also want to specify a path, for example

UMAT Subroutine = "./MyUMATLib" "my umat"

Mika Malinen Solvers for solid mechanics



II User-defined material models

Special keywords:

Number of Material Constants

Material Constants: Ordering and consistent use are at the
responsibility of the user

Number of State Variables

Output State Variables: set True in order to obtain stresses
(UmatStress), energy variables (UmatEnergy), and additional state
variables (UmatState) as fields associated with integration points

Initialize State Variables: an optional extra call to obtain
the state variables in the initial state

Name

Mika Malinen Solvers for solid mechanics



II User-defined material models

Some remarks:

Calculate Stresses and Calculate Strains create stresses and
strains as nodal fields

Calculate Strains produces the standard material strain

However, UMAT can define the Cauchy stress to be a function of
any strain measure which may be computed in terms of the
deformation gradient (switches now to an inexact Newton method)

With UMAT the in-built convergence criterion is always "residual"

An incompressible material is not yet supported (via a mixed
formulation with an additional pressure variable)

Mika Malinen Solvers for solid mechanics



II User-defined material models

The best place to find details is the template UMATLib.F90 and its
comment lines

Specifies a constitutive law

σm(p, t) = σ̄(Ê(F )(p, t),q(p, t)).

Here Ê(F ) is the strain field, F is the deformation gradient, and is
q = (q1, . . . , qN ) a N -tuple of state variables

The stress response function is a composition

F 7→ σ̄(·,q) ◦ Ê(F ),

so we can differentiate as

U 7→ Dσ̄(Ê(F ),q)[DÊ(F )[U ]]

The user must specify the derivative Dσ̄(Ê(F ),q)

If not possible in a closed form, an approximation may suffice

Mika Malinen Solvers for solid mechanics



II User-defined material models

For some additional details see also Elmer Models Manual

Mika Malinen Solvers for solid mechanics



III Coupling procedures

In principle two ways to couple different models:

a loose numerical coupling (the default strategy in Elmer)

a tight numerical coupling: all unknowns updated/solved
simultaneously

An implementation of a tight numerical coupling may not be an easy
task:

However, it may be the only practical way to handle a very strong
physical coupling

Gradual developments to enable tight coupling procedures

An example here: the coupling of a 2-D shell and a 3-D solid

Mika Malinen Solvers for solid mechanics



A graphical abstract: the coupling of solids and shells

Mika Malinen Solvers for solid mechanics



III Coupling procedures

Essential ingredients for enabling a tight coupling:

An ability to construct a monolithic matrix from constituent blocks,
for example to create:[

K D
H A

] [
U
V

]
=

[
F
G

]
where K and A are the stiffness matrices of 3D solid and shell parts

Special keyword constructs/procedures so that existing solvers can
be utilized to assemble the diagonal blocks

Special assembly subroutines for creating coupling blocks (here D
and H)

Mika Malinen Solvers for solid mechanics



III Coupling procedures

Remarks:

After a monolithic system has been created, its solution can be
sought by applying a Krylov method

The block matrix construct within Elmer is generic ⇒ should work
similarly in different cases

On the other hand, D and H don’t exist as matrices when using a
loose coupling ⇒ specific code needed

Block preconditioning to combine the strengths of loose and tight
numerical coupling

Mika Malinen Solvers for solid mechanics



III Coupling procedures

For details on writing a sif file for a tightly coupled model see Chapter 14
of ElmerSolver Manual, “Block-matrix construct to build tightly coupled
solvers”

Two solver sections needed as usual

The first solver section to assemble the (1,1)-block and to control
the solution of the fully coupled system

The second solver section is subsidiary, integrating the (2,2)-block

The keyword Structure-Structure Coupling activates the
integration of interaction blocks

Mika Malinen Solvers for solid mechanics



III Coupling procedures

Special keywords:

Linear System Block Mode: a main switch to create the linear
system by using block construct

Block Solvers(2): pointers to solvers which define constituent
blocks

Pre Solvers(1): activates the execution of a subsidiary solver in
the assembly

Block Monolithic: to create the coupled system as a single object

Shell Solver Index: to inform that the coupling with the shell
solver is wanted

Mika Malinen Solvers for solid mechanics



III Coupling procedures: Verification

Static and eigenanalysis problems have been considered in
verification

The results have been compared with the results of alternate models
of the same problem (for example a pure shell model or solid model)

Seems to work

Resources: See test cases ../fem/tests/Shell with Solid * in
the code repository

Mika Malinen Solvers for solid mechanics



III Coupling procedures: Verification

A cylindrical shell problem with bending-dominated asymptotic behaviour,
see .../tests/Shell with Solid Eigenanalysis/Readme.txt

Shell and Solid Shell

EigenSolve: 1: 4.441527E+04 EigenSolve: 1: 4.291169E+04
EigenSolve: 2: 1.302856E+06 EigenSolve: 2: 1.255816E+06
EigenSolve: 3: 4.885759E+06 EigenSolve: 3: 4.836657E+06
EigenSolve: 4: 7.316037E+06 EigenSolve: 4: 7.036570E+06
EigenSolve: 5: 1.032933E+07 EigenSolve: 5: 1.039543E+07
EigenSolve: 6: 1.169052E+07 EigenSolve: 6: 1.118662E+07
EigenSolve: 7: 2.382371E+07 EigenSolve: 7: 2.296068E+07
EigenSolve: 8: 2.429051E+07 EigenSolve: 8: 2.428822E+07
EigenSolve: 9: 2.473271E+07 EigenSolve: 9: 2.503445E+07
EigenSolve: 10: 2.594538E+07 EigenSolve: 10: 2.591956E+07

Mika Malinen Solvers for solid mechanics



III Coupling procedures: Verification

The sixth mode as given by the coupled model and the pure shell model
(the 2-norm of the displacement vector)

Mika Malinen Solvers for solid mechanics



III Coupling procedures: Future work

Some geometric constraints on the mesh

Enabling parallelism

Non-smooth shell mid-surfaces can in general be troublesome and
then switching to a drilling rotation formulation seems to have a
relative merit

The construction of coupling blocks is not yet fully general for the
drilling rotation formulation

Mika Malinen Solvers for solid mechanics



IV Concluding remarks

In future divergence-conforming (and curl-conforming) basis
functions could be utilized to create non-standard formulations

Thanks for your attention!

Questions or comments?

Mika Malinen Solvers for solid mechanics


