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DIAG264 

 

Diag264 © 2021 by Rob Clarke is licensed under CC BY-NC-ND 4.0 

IMPORTANT MESSAGE 

 

Dear Diag264 users, 

I hope you enjoy Diag264 and find it useful. Diag264 is now licensed under a Creative 

Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, otherwise 

known as CC BY-NC-ND 4.0. This means it is free to download and distribute the unmodified 

Diag264 software for personal use, but it must include a link to the Diag264 website, and the 

license (Attribution). It is not permitted to modify and then distribute the software 

(NoDerivatives), and neither is it permitted to resell the software in any form (NonCommercial).  

The reason I've done this is to enable me to continue to provide free support to users from code 

I know. Over the 10 years since I first released Diag264, I get 2 or 3 mails per month to the 

Diag264 email address asking for help with fixing the issues and interpreting the results, which 

I'm always willing to do within the constraints of my free time, plus it helps me improve future 

releases. 

Until now I've never had any license restrictions, which has meant a number of resellers have 

started selling it on Ebay or via their own web-shops. Some have asked permission beforehand, 

but most didn't. In late 2020 I spent some days trying to help someone with their C16 before 

we figured out that he was using a version of Diag264 that had been modified and broken in 

the process. While looking into this I then found another reseller had appeared on Ebay claiming 

the work as his own and having removed my name. Hopefully you can all understand how 

frustrating this is. 

If you want the software, you can download it and burn it to an EPROM/PROM yourself or, if 

you don't have access to an EPROM burner, I will sell you pre-programmed for cost of postage 

and the cost of the EPROM only. Please send me a message you would like this. 

I will allow resale of the dongles and loop backs, as long as the attribution conditions are met 

as described above. 

If you did purchase this software from another seller, I would encourage you to let me know the 

details by emailing me at diag264@inchocks.co.uk, as it’s against the terms of the license and 

discourages me from further development and support of Diag264. 

Regards, Rob 

 

  

https://www.inchocks.co.uk/commodore/Diag264/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:diag264@inchocks.co.uk
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INTRODUCTION 

DOWNLOAD HERE! 

This document describes operation of the Diag264 diagnostic tool and harness. It can be used to assist in 

the identification of faults with RAM, ROM, I/O & CPU ports, and TED registers. It has been tested on a 

wide range of 264 series (aka TED) machines, including some non-standard configurations and PAL and 

NTSC machines. This includes the C116, Commodore 16, C232 and Plus/4, and even a V364! 

CREDITS 

It was developed primarily on a Windows 7 PC using TextPad, 64Tass, YAPE and VICE. Thank you, in no 

particular order, to the following: 

 Bil Herd, the lead engineer of the TED project, and who also wrote the TED System Hardware 

Manual, Terry Ryan, Fred Bowen, John Cooper, Dave Haynie, Bruce Ahearns, Dave DiOrio, Eric 

Yang, Bob Olah, Ted Lengthy and countless other Commodore engineers who designed the chips 

and engineered the TED system and to whoever in this list who wrote the 7360 Data Sheet ! 

 Hársfalvi Levente (TLC) for thoughts on cold starting from cartridges, joystick ports & TED latches 

 Martin Korth for the pagezero commodore specifications  

 Valentino Zenari (SVS) for the most excellent SVS ROM Map 

 Attila Grósz (Gaia) for the extremely cool YAPE emulator. 

 Groepaz and the Vice team for the equally cool VICE emulator and fixing the bugs within days! 

 The Western Design Center for information on the 6551. 

 Csaba Pankaczy (csabo) for info on which TED registers to check. 

 SukkoPera for the OpenC16Cart project, saving countless original cartridges for their original 

purpose. 

The HTML version of the document can be found here and you can contact me either by a private message 

to ‘crock’ on Plus4World or Lemon64. You can also send email to a filtered email account at 

   

http://www.inchocks.co.uk/commodore/Diag264/CurrentVersion/
https://www.textpad.com/
https://sourceforge.net/projects/tass64/
http://yape.homeserver.hu/
http://vice-emu.sourceforge.net/
http://www.c128.com/
http://inchocks.co.uk/c64/264/TED%20System%20Hardware%20Manual.pdf
http://inchocks.co.uk/c64/264/TED%20System%20Hardware%20Manual.pdf
http://inchocks.co.uk/c64/264/TED%207360R0%20Preliminary%20Data%20Sheet.pdf
https://problemkaputt.de/pagezero.htm
http://plus4world.powweb.com/dl/tools/rommap/download.php
http://yape.homeserver.hu/
http://noname.c64.org/csdb/scener/?id=572
http://vice-emu.sourceforge.net/
http://www.westerndesigncenter.com/wdc/documentation/w65c51n.pdf
https://github.com/SukkoPera/OpenC16Cart
http://www.inchocks.co.uk/commodore/Diag264
http://plus4world.powweb.com/forum
http://www.lemon64.com/forum/
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DISCLAIMER 

As soon as you undo the screws and lift up the lid on an old 8-bit machine, there is an element of risk 

involved. To use this diagnostic tool in its most effective form, it requires replacing the kernel ROM in the 

machine and attaching loop-back connectors to the interface ports. The TED chip especially is sensitive to 

abuse and the built in latch register is easily broken by stray voltages and static. 

Although I describe how to build such connectors that I have successfully used myself, they are not required 

to test the keyboard and joysticks if you don’t need to run the tests unattended. Diag264 does provide 

features to manually test the keyboard and joysticks and to bypass them to allow the rest of the tests to run 

unattended. As keyboard and joystick problems are not usually intermittent in nature, this should not be an 

issue for most users. 

If you do choose to build loop-back connectors for the keyboard or joysticks, I will provide any guidance 

that I can, but please understand that you do so at your own risk. 

BACKGROUND 

I acquired or built most of Commodore's official diagnostic cartridges and harnesses for the 64, VIC-20 and 

C128, which they sold to service centres, mainly to help me fix the growing pile of computers I’d acquired. 

Fixing them became somewhat an obsessive-compulsive habit, and I could not bear having broken 

machines lying around. In amongst them I had a C16 and two Plus/4’s, only one of which worked. I started 

searching around for a diagnostic cartridge for the 264 series but with no luck. I knew Commodore had 

definitely made one, but I could not track it down. Finally, I found an image of one on Plus4World, but as I 

never got any response from the owner, I decided that my only choice was to build my own. 

DESIGN AND THEORY OF OPERATION 

The design and operation of Diag264 is closely modelled on the operation of the cartridges available for 

the 64/128 and VIC-20. One of the aspects that I was most keen to copy was the functionality of the Dead 

Test Cartridge of the 64. The primary use of this cartridge was to find RAM issues in a machine that 

otherwise appeared dead. 

The majority of Commodores later 8-bit offerings used DRAM chips in either a 64k x 1 or 16k x 4 

configuration. This usually meant that any dead RAM chip would make the machine completely inoperable, 

as the zero page ($0002-$00FF) and stack ($0100-$01FF) are rendered practically unusable. The kernal 

start-up routines in both the 64 and 264's make extensive use of the ZP and implicitly rely on the stack upon 

the first execution of an RTS instruction. This presents a problem for any normal cartridge based diagnostic 

tool because we are dependent on the kernal to hand over control to the cartridge ROM. 

The Dead Test cartridge avoids this problem by making use of the 64's Ultimax mode, which was a legacy 

from the MAX Machine, a cartridge only based console system which was a subset of the later 64’s 

architecture. The Ultimax compatibility mode enables an external cartridge ROM to replace the Kernal of 

the host machine and therefore bypass the normal start-up routines, making it ideal for identifying RAM 

problems on an otherwise ‘dead’ system. 

  

http://plus4world.powweb.com/home
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The 264 architecture does not include any way of auto-booting into an external ROM without trying to pull 

some dirty tricks with the address lines, so it becomes a trade-off between the conveniences of a cartridge 

versus the extra benefits of booting straight into the diagnostic. The Diag264 ROM can therefore be 

compiled for either cartridge or kernal. 

The kernal option is a drop in replacement of the kernal ROM, which is the 28-pin ROM chip with the 

identifier beginning with 318004 (PAL) or 318005 (NTSC), which is in location U4 in a C16 and C116, and 

U24 in a Plus/4. 

The cartridge, or low-ROM, option involves either sacrificing a standard commercial Commodore C16/Plus 

cartridge or, preferably, you can acquire a SukoPerra designed 264 cartridge blank from PCBWay. The 

cartridge version is also known as the low-ROM option because it will work in any of the available sockets 

which map to the low block of ROM from $8000 to $C000. This means the low-ROM version will also work 

in the BASIC ROM socket (U23 in a Plus/4, U3 in a C16/C116), and the low function ROM socket (U25 in 

a Plus/4, not present in a C16/C116.) 

If you choose to modify an existing cartridge, you will need to remove the ‘low’ ROM and install a 28-pin 

DIL socket in its place. With the edge connector facing towards you, this is the socket on the left. The image 

in Figure 1, which is my own cartridge, also has a socket in the ‘high’ ROM position, on the right. This is not 

required for Diag264. 

 

Figure 1 - Cartridge Mod 

The TED chip itself supports both NTSC and PAL standards, controlled by bit 6 of register $FF07. The only 

differences between NTSC and PAL machines are a different clock crystal and a slightly different kernal to 

correctly set the state of the PAL/NTSC bit, and some other small modifications to take into account timing 

differences. 

When running from a cartridge or any of the low-ROM sockets, Diag264 queries the installed kernal to 

determine whether it should set NTSC or PAL mode by checking the value of $F33F, which contains the 

default value for TED register $FF07. The kernal version has no way to determine from software whether 

the base machine is NTSC or PAL, so the ROM image is available in versions which default to either NTSC 

or PAL. Nevertheless, for both the cartridge and kernal options, it is possible to override the default by 

holding down ‘P’ or ‘N’, as the machine is powered on, to force the software into PAL or NTSC respectively. 

https://github.com/SukkoPera/OpenC16Cart
https://www.pcbway.com/project/shareproject/OpenC16Cart_V3.html
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LOOP-BACK CONNECTORS 

To determine the correct operation of the various I/O interfaces, a number of loop-back connectors are 

required. For a C16 or C116 you need a minimum of a serial port and cassette connector. For a Plus/4 an 

additional user port loop-back is required to test the Asynchronous Communications Interface Adapter 

(ACIA) interface and the 6529 8-bit port. The ACIA is a 6551/8551 chip which provides the RS232 support 

via the user port. 

It is also possible to construct connectors for the joystick ports and keyboard, but this is not an absolute 

requirement if the user is prepared to manually execute the keyboard and joystick tests. 

CASSETTE CONNECTOR 

The cassette connector requires a 7 pin mini-din connector, two 330 ohm resistors and a few short lengths 

of wire. The diagram below is viewed looking at the rear/solder side of the plug. 

 

Figure 2 - Cassette Connector 

 

1. GND 

2. +5v 

3. Motor 

4. Read 

5. Write 

6. Sense 

7. GND 

 

The read line [4] is directly connected to the write line [5] while the two resistors form a voltage divider 

between the motor [3] and GND[7], with the resulting output being sufficient to pull the sense [6] line high 

when the cassette motor is activated. 

7 pin mini-din plugs can be sourced from most electronics retailers such as Digikey or Mouser, and are 

plentiful on Ebay. They can be rather tricky to solder given the small pitch of the pins. It may be easier to 

find another lead with a 7-pin moulded plug pre-attached if you happen to have one to hand. 
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SERIAL CONNECTOR 

The serial connector is very simple. As the data and clock lines are bi-directional, they are internally looped 

back, the only exception being the ATN line. The connector consists of a single link between the ATN [3] 

and Clock [4] line. The diagram below is viewed looking at the rear/solder side of the plug. 

 

Figure 3 - Serial Connector 

1. N/C (Plus/4 & C232), +5v (C16 & C116) 

2. GND 

3. ATN (Out) 

4. Clock (In/Out) 

5. Data (In/Out) 

6. Reset 

 

6 pin DIN plugs are in plentiful supply and easy to solder as they usually have cups to hold the wire. 

USER PORT CONNECTOR (PLUS/4 ONLY) 

The User Port connector serves two purposes, firstly to test the 8-bit 6529 port, and secondly the 6551/8551 

ACIA RS232 interface. This is constructed using a 24-way edge connector with .156” spacing, the same as 

found on other Commodore 8 bit machines. The diagram below is viewed from the rear of the plug. This 

connector can be acquired from the sources mentioned above as well as from Jim Brain’s go4retro store. 

You need to make seven links, four linking ports 0-3 on the 6529 to ports 4-7, which requires joining [B] -> 

[6], [K] -> [7], [4] -> [J] and [5] -> [F] respectively. Then three connections looping back the signals for the 

ACIA. These are [C] -> [M], [D] -> [L] and [E] -> [H]. This implements a standard RS232 loop-back, the only 

difference being that the plus/4 does not expose CTS on the user port. Further detail about RS232 loop-

backs can be found in the datasheet for the equivalent W65C51N from the Western Design Center. 

(W65C51N Datasheet) 

Ensure that you clearly label your connector ‘top’ and ‘bottom’ or preferably, insert the vertical keys between 

1 & 2 and A & B  then 10 & 11 and L & M, as shown by the blue dotted lines in the diagram.  If you insert it 

upside down, you will short the 9V AC to the 5V DC line and you will likely destroy something in your 

machine. 

 

Figure 4 - User Port Connector

http://store.go4retro.com/12-24-156-edge-connector/
http://www.westerndesigncenter.com/wdc/documentation/w65c51n.pdf
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1. GND 

2. +5V 

3. /BRESET - Buffered Reset 

4. 6529 – P2 (also Cassette Sense) 

5. 6529 – P3 

6. 6529 – P4 

7. 6529 – P5 

8. RxC – Receive Clock 

9. ATN – IEC Attention 

10. 9V AC 

11. 9V AC 

12. GND 

A. GND 

B. 6529 – P0 

C. RxD – Receive Data 

D. RTS – Request to Send 

E. DTR – Data Terminal Ready 

F. 6529 – P7 

H. DCD – Data Carrier Detect 

J. 6529 – P6 

K. 6529 – P1 

L. DSR – Data Set Ready 

M. TxD – Transmit Data 

N. GND 

Table 1 - User Port Pin Description 

KEYBOARD LOOP-BACK 

There are two types of connector used on the 264 series. The easy one is for the C16, which uses the 

same style keyboard connector as the VIC-20/C64, albeit with a different layout, and uses a 20-pin SIL 

(single in-line) plug with a 0.1” (2.54mm) pitch. 

This plug can be built using a 40-pin IDE cable from a PC hard drive which has the same 0.1” pitch. 80-pin 

IDE cables have each alternate conductor grounded to reduce crosstalk but the wires are finer and difficult 

to work with, so you’re better off avoiding them. Peter Schepers has some info on preparing a similar plug 

for a Commodore 64 diagnostic harness here http://ist.uwaterloo.ca/~schepers/diagnostic.html. The 

process is to split out the odd numbered wires and cut the rest back close to the plug. Pin 1 is usually 

marked by a different colour.  

The wires need to be connected as shown in Figure 5 and Table 2 - Keyboard Signals. Pins 2, 4, 5 & 20 of 

the keyboard connector (not the IDE numbering) have no connection and pin 2 is used as a key. I blocked 

off pin 2 with a pin from another header plug. As the other side of the IDE cable has pin 20 blocked off, this 

makes it impossible to connect the plug incorrectly. The contacts on a typical keyboard have around 110 

ohms of resistance, so I suggest putting small resistors in line to limit the current. There is also a small 

signal diode with the cathode connected to the keyport 6529 (Signal Out) side of the connector to prevent 

the joystick loop-back interfering with the testing of the keyport. 

 
Figure 5 - C16 Keyboard connector 

http://ist.uwaterloo.ca/~schepers/diagnostic.html
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The C116 and Plus/4 use an 18-way FFC (Flat Flexible Cable) connector. Although the mechanical 

construction of the keyboard for the Plus/4 and C116 is quite different, it is electrically compatible, so you 

can use a Plus/4 keyboard on a C116 and vice-versa. 

This connector is not easy to construct unless you have a supply of 18-way FFC cables. Some have had 

success using 0.1 inch pin headers, but my concern with this approach is that the pins are much thicker 

than the cable and it may stress the socket to the point where the original cable does not make a good 

electrical connection. The other common issue is that as the machines get older, the ends of the FFC cable 

have a habit of delaminating, meaning the metal separates from the plastic making it a challenge to insert 

the FFC into the socket. I would recommend that for casual use, the user just stick with manual testing of 

the keyboard. The pins are in the same order but numbered differently on the C116 and Plus/4, as seen in 

columns 6 and 7 of Table 2 - Keyboard Signals. 

Signal Out Signal In Key C16 Pin Out C16 Pin In Plus/4, C116 

Pin Out 

Plus/4, C116 

Pin In 

D0 K4 F1 19 7 18 6 

D1 K5 S 8 9 7 8 

D2 K6 T 12 10 11 9 

D3 K7 V 11 3 10 2 

D4 K0 9 13 18 12 17 

D5 K1 P 1 15 1 14 

D6 K2 ; 16 14 15 13 

D7 K3 2 6 17 5 16 

Table 2 - Keyboard Signals 

JOYSTICK LOOP-BACK 

The design of the joystick interface on the 264 series is different to other 8-bit Commodore computers. With 

the exception of the fire buttons, all the control lines from ports 1 and 2 are all wired together and connected 

to the TED’s keyboard latch. Whereas the 64’s joystick interface worked by pulling the control line to ground, 

this interface works by using a buffered line of on the data-bus as the joysticks input. Joystick 1 uses D2, 

and Joystick 2 uses D1. 

I tried a few ways of building a test circuit that I felt was safe for the TED, and the one shown in Figure 7 

was the simplest that I was comfortable using. A 74LS244 is perfect for our needs, it is a TTL octal buffer 

with two active low enable lines, each enabling 4 outputs. By driving the enable lines with the joystick select 

lines and holding the inputs low, it effectively emulates the joystick being pushed in every direction at once. 

Again, as the contacts in the +4 Joystick have a resistance of around 110 ohms, I have included similar 

valued resistors in series with the outputs. The +5V and GND are available on both ports and can be taken 

from either or both. Although you can solder the wires to 8-pin mini-dins, it is very fiddly and I would suggest 

finding and cutting a cable with a moulded plug, such as old AppleTalk network cables. 
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Figure 6 - Joystick Port Connections 
 

Figure 7 - Joystick Test Circuit 

OPERATION & TEST WALKTHROUGH 

Install the ROM or insert the cartridge, connect the loop-back connectors, connect a monitor or correctly 

tuned TV and finally the PSU, then power on the machine. Most of the screen shots that follow are either 

grabbed from YAPE or VICE simply because the quality is better, but some of the ones that rely on the 

loop-backs are taken with a camera pointing at my LCD TV. 

LOW RAM TEST 

The first sequence of tests is run as soon as the CPU hands over execution to the diagnostic ROM. The 

principle is to execute a memory test of the address space of $0002-$0FFF without making any use of the 

Zero Page or Stack. This is complicated by the restriction that we only have the A, X & Y registers available 

on the CPU and you also need to have some means of communicating a meaningful status back to the 

user in the case of finding a fault. The test routine achieves this by using the stack pointer (SP) as a fourth 

register and the screen and border colour to communicate the status. 

First is a data-bus test which writes a sequence of values to a fixed location, in this case $00FF. The values 

test each data line in turn, using values 1,2,4,8 etc. Any failure to read back the same value will either 

indicate a problem with the data line or with one of the DRAMs. I say either because although these tests 

can give a strong indication of where the problem may lie, it is frequently impossible to be definitive. 

If a problem is detected, the border will flash from 1 to 8 times, followed by a short pause. The number of 

flashes indicates which data line is at fault. Additionally, the screen background colour is set to red, so you 

can tell where in the test sequence the problem was found. 

The screen contents are a useful source of information when diagnosing ram faults; it is possible to identify 

stuck data lines or addressing faults just by looking at the screen contents. For this reason, if the ram tests 

detect an error and drop into the screen flash, the screen will alternately fill with ‘@’ symbols and ‘ ’, which 

are values $00 and $FF respectively. It will also alternate from filling top downwards and bottom upwards, 

to help identify addressing faults. The patterns you should see are shown below in Screenshot 1 - Low 

RAM Flash Screens. 
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If you see the screen filling with values other than with ‘@’ or ‘ ’, or the fill is not uniform, this indicates a 

RAM problem and you may be able to determine the problem by cross referencing the observed characters 

with Table 3. Note that the CBM characters do not render correctly on the web page. As there would 

be no point proceeding with any further tests if the zero page or stack is at fault, the machine will continually 

repeat the flash cycle until powered off or reset. 

  

Screenshot 1 - Low RAM Flash Screens 

Symptom Cause Symptom Cause Plus/4 IC C16/C116 IC 

A instead of @ D0 stuck high  instead of  D0 stuck low U11 U5 

B instead of @ D1 stuck high  instead of  D1 stuck low U12 U5 

D instead of @ D2 stuck high  instead of  D2 stuck low U13 U5 

H instead of @ D3 stuck high  instead of  D3 stuck low U14 U5 

P instead of @ D4 stuck high  instead of  D4 stuck low U15 U6 

(space) instead of @ D5 stuck high instead of  D5 stuck low U16 U6 

 instead of @ D6 stuck high  instead of  D6 stuck low U17 U6 

 instead of @ D7 stuck high  instead of  D7 stuck low U18 U6 

Table 3 - Low RAM Flash Screens (does not display on web page, download PDF) 

The second low-RAM test is designed to identify addressing faults. The RAM tests implemented in the 

original Commodore diagnostic tools wrote the same byte across the entire address space. This makes 

them unable to highlight addressing related issues, such as failed multiplexers. 

The address bus testing in Diag264 tries to be a bit smarter. It implements a more elegant test which writes 

a bit pattern to a given memory address, and then writes the inversion of this bit pattern to all the 

complementary addresses where the address differs by the inversion of only one of the address bus lines. 

In Diag264 we use a base address at $00FF, so we first write $00 to the addresses in Table 4, which are 

$00FF plus all the complementary addresses of $00FF below $0FFF. 
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Then we write a value of $FF only to $00FF, and check that all of the other addresses still contain $00. If 

there is any problem decoding addresses, or there is a stuck address lines in either in the multiplexers or 

the RAM’s themselves, then one or more of the addresses above would also appear to have changed. This 

is a simple but powerful tool to detect addressing problems. 

Faults are reported using the same mechanism as the data-bus test, except the background will be blue. 

The number of flashes corresponds to the address line where the problem was identified, as shown in Table 

4. As before, further clues may be determined by observing the screen contents during the screen flash 

cycles. Problems found in the addressing tests often indicate failed multiplexers (74LS257) which are in 

positions U7 and U8 on a C16/C116 and U9 and U10 in a Plus/4. 

Address Address Bus Flashes on failure 

$007F 0000 0111 1111 8 

$00BF 0000 1011 1111 7 

$00DF 0000 1101 1111 6 

$00EF 0000 1110 1111 5 

$00F7 0000 1111 0111 4 

$00FB 0000 1111 1011 3 

$00FD 0000 1111 1101 2 

$00FE 0000 1111 1110 1 

$00FF 0000 1111 1111 base address 

$01FF 0001 1111 1111 9 

$02FF 0010 1111 1111 10 

$04FF 0100 1111 1111 11 

$08FF 1000 1111 1111 12 

Table 4 - Address Bus Flash Codes 

The final low-ram test is a device test, which writes a sequence of 20 test bytes across the address, followed 

by a pseudo random pattern. The bytes are: 

$7F, $BF, $DF, $EF, $F7, $FB, $FD, $FE, $80, $40, $20, $10, $08, $04, $02, $01, $FF, $AA, $55, $00 

The screen border will cycle through a sequence of colours as each test byte is used and, as the low-ram 

area includes the screen and colour memory, you will see the contents of the screen rapidly change. The 

same reporting mechanism of flashing the border is used if an error is found during this test, with the screen 

background being black. If a failure occurs at this point, the number of screen flashes will point very strongly 

to the defective DRAM. The table below shows which IC is the likely problem. 

Flashes Bit Plus/4  IC C16/C116 IC 

1 D0 U11 U5 

2 D1 U12 U5 

3 D2 U13 U5 

4 D3 U14 U5 

5 D4 U15 U6 

6 D5 U16 U6 

7 D6 U17 U6 

8 D7 U18 U6 

Table 5 - Possible Failed RAM Chips 
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Once in the flash sequence, problems with particular devices will often be visually obvious as the screen 

contents cycle between $00 and $FF. For example, if on a Plus/4 U15 has failed leaving bit 4 stuck high, 

instead of seeing alternating ‘@’ and ‘ ’ symbols, you would see ‘P’ (hex value $10) and ‘ ’. 

Once the low RAM tests have completed, Diag264 knows that the zero-page and stack are now functioning 

correctly, so the stack is initialised and the TED registers set up as they would be on normal machine start-

up. As we now know the screen RAM is functional, we can revert to a more human friendly form of 

communication before moving on to the more comprehensive tests. 

SCREEN LAYOUT 

Now is a good time to explain the general layout of the screen, most of which is self-explanatory. Look at 

the screenshot of a completed test cycle in Screenshot 2. On the top line is the Diag264 web page link. On 

the bottom line, from left to right, is the current cycle number in hexadecimal, the current random number 

seed used in the RAM tests, and the video mode. In the bottom right corner is my name and the year, and 

below is the release version and build number. The build number is the timestamp of when the binary was 

compiled, in the format YYYYMMDDHHMM. 

Down the left side is the name of current test in progress, followed by the status of the completed tests, 

which would be OK, FAIL, or SKIP. The next numeric column is the total number of failures for this test 

since the tests started. If the diagnostic is left on continuous loop, this is useful for spotting intermittent 

failures. To the right is information specific to the test, which is covered in the explanations below. As each 

test runs, the cursor will flash to the immediate right of the test name. The area below the list of tests may 

contain various other additional information, depending on the current test. 

 

Screenshot 2 - Screen Layout 
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BANK LOGIC TEST 

The Bank Logic test serves two purposes; to test the “Enable RAM” virtual TED register at $FF3E, and then 

to test the ROM selection logic implemented by writing to address locations $FDD0-$FDDF. The first test 

sets the $FF3E register then checks to see if RAM is visible in the kernal area. If this fails, you will see 

something like Screenshot 3 – Enable RAM Failure, with a brief description in a message box. Problems 

with this register would usually indicate a problem with the TED chip. 

 

Screenshot 3 – Enable RAM Failure 

 

Screenshot 4 – ROM Banking Failure 

The second test compares a sequence of bytes in various ROM configurations, ensuring that the expected 

bytes are visible as the low-ROM and high-ROM configurations are switched. This test can identify three 

possible failure conditions. Firstly that the low-ROM banking is not switching as expected, then that the 

high-ROM banking is not switching, and finally that the kernal does not always remain visible in the area 

from $FC00 to $FCFF. In the 264 architecture, the kernal banking routines reside in this area and the PLA 

has logic to ensure that that the kernal is always visible, irrespective of which high-ROM bank is selected. 

In Screenshot 4 – ROM Banking Failure all three messages are shown as an example, but only those 

detected will be displayed during normal operation.  

The banking logic is controlled by the PLA and three supporting logic chips. The locations are shown below 

in Table 6 - Banking Logic Chips. If Diag264 does highlight an issue with the ROM banking logic, any of the 

below chips could potentially be at fault. 

Chip Plus/4 C 16 C116 

PLA 251641-02 U19 U16 U101 

74LS139 U20 U14 U103 

74LS175 U21 U15 U105 

74LS27 / 74LS02 U22 U12 U104 

Table 6 - Banking Logic Chips 

The message box will remain visible for approximately 5 seconds before being cleared and moving onto 

the next test, however the summary message to the right of the test status will remain visible. 
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HIGH RAM TEST 

The high RAM test performs a similar sequence of tests to the low RAM tests, but on the memory area from 

$1000 to the upper end of installed RAM, which could be $3FFF, $7FFF or $FFFF, depending on the model 

under test. The test first identifies the amount of installed RAM by writing a sequence of bytes to $30 and 

checking to see if they are mirrored at $4030 or $8030. The amount of installed memory is displayed when 

the test completes. 

On a 64K system we also need to test the RAM that resides beneath the ROM’s. To do this, the test code 
is copied to $0200 and the RAM made visible by writing to the TED pseudo register at $FF3F. As it’s not 
possible to access the RAM beneath the I/O areas, memory is then tested up to $FCFF and then from 
$FF20 to $FFFF, skipping locations $FF3E and $FF3F. 

In order to speed the tests up, the screen is blanked, allowing us to make use of the clock doubling feature 

of the TED architecture. On a 64K system they will take approximately 20 seconds to complete and the 

screen colour will cycle as the test values change. 

Two types of error can be reported, either an addressing or a device error. The addressing error occurs 

when performing the same type of address testing as described in the low RAM tests, only this time testing 

the complete address range. As shown in Screenshot 5 - RAM Address Failure the address where the error 

occurred will be displayed, as well as an “exclusive or” between the written and expected value. Additionally, 

a message box will be displayed for a few seconds highlighting the chips possibly at fault, which for 

addressing errors could be the 74LS257 multiplexers. Due to the limitations of testing only via software, 

this cannot be definitive, and addressing errors can also come from physical issues on the PCB and the 

CPU itself. 

A device error occurs when a value read does not match what was written to a given memory location. As 

well as the byte pattern tests as described in the low RAM tests, the high RAM device test also writes a 

sequence of pseudo random numbers across the address space to try and catch subtle pattern memory 

issues that otherwise would not show up. If Diag264 is left running, each iteration of the high RAM test will 

start with a new seed value, ensuring the maximum possible exercising of the RAM. 

 

Screenshot 5 - RAM Address Failure 

 

Screenshot 6 – RAM Device Failure 

As shown in Screenshot 6 – RAM Device Failure the address where the error occurred is again displayed, 

as well as an “exclusive or” between the written and expected value. Also, a message box will be displayed 

which will attempt to highlight which RAM chip is likely at fault. The message box lists the chips for the 

Plus/4, C16, and C116 and does not attempt to guess which machine the tests are running on. 
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ROM TESTS 

The ROM tests perform checksums on any installed ROMS, including those in the Function High and Low 

sockets in a Plus/4, which would usually be the 3+1 software. The checksum routine is copied to $0200 in 

RAM to allow the different ROM’s to be switched in. The Low ROM area is summed from $8000 - $BFFF 

and High ROM from $C000 - $FFFF, with the exception of $FD00 – $FF1F for the I/O area, the two bytes 

at $FF3E and $FF3F which are the virtual TED registers, and for high ROMs other than the kernal, the area 

from $FC00 - $FCFF is also skipped as the 264 architecture always exposes the default kernal in this area 

to allow the bank switching and interrupt routines to always be visible. 

Each ROM is check summed three times using a cyclic redundancy algorithm. If an inconsistent value is 

read, it is assumed no rom is present and the message ‘SKIP’ is displayed. If SKIP is seen when a ROM is 

known to be present, this should be considered a failure. If the checksum of the ROM is recognised, the 

part number and revision is displayed. Any other computed checksum will result in a ‘FAIL’. An example 

can be seen in Screenshot 7 - ROM Checksum Failure which shows a problem with the ROM in the Function 

Low socket.  

 

Screenshot 7 - ROM Checksum Failure 

All known official ROM’s are recognised, along with beta versions, those with modified Hungarian 

characters sets, and the kernal modified by Andrew Challis, to support his 6510 CPU replacement. If the 

ROM is identified, it will display the text in Table 7 - Diag264 recognized ROM's below, which in the case 

of officially released ROM’s, will be the Commodore part number.  
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Description Checksum Diag 264 Display 

Basic ROM Beta 0119 (19th January 1984) $F885 BETA 0119 

Basic ROM Beta 0203 (3rd February 1984) $23D5 BETA 0203 

Basic ROM Beta 0217 (17th February 1984) $5031 BETA 0217 

Basic ROM Release version $EC81 318006-01 

Kernal ROM Beta 0119 (19th January 1984) $1D45 BETA 0119 

Kernal ROM Beta 0203 (3rd February 1984) $0355 BETA 0203 

Kernal ROM Beta 0217 (17th February 1984) $D17A BETA 0217 

Kernal ROM Beta 0316 (16th March 1984) $424E BETA 0316 

PAL kernal Revision 1 (EPROM only) $33F0 318004-01 

PAL kernal Revision 3 $1FC9 318004-03 

PAL kernal Revision 4 $010D 318004-04 

PAL kernal Revision 5 $EEA6 318004-05 

NTSC kernal Revision 4 $5FAD 318005-04 

NTSC kernal Revision 5 $5CD4 318005-05 

Hungarian PAL kernal Revision 1 $CAE8 318030-01 

Hungarian PAL kernal Revision 2 $F3DA 318030-02 

PAL 6510 CPU replacement (Rev 5) $E02B 6510 PAL V1 

NTSC 6510 CPU replacement (Rev 5) $5259 6510 NTSC V1 

3+1 Function Low $2558 318053-01 

3+1 Function High $00A5 318054-01 

Micro Illustrator $36C2 MICRO ILLUS. 

Diag264 Varies DIAG264 

Table 7 - Diag264 recognized ROM's 

KEYBOARD TEST 

The keyboard test checks two aspects of the keyboard operation, the 6529 single port interface and the 

keyboard latch on the TED chip. It does not perform an exhaustive check on the keyboard matrix, as this 

can be done in the advanced keyboard tests discussed later. The test can be carried out manually or by 

using the keyboard loop-back plugs for unattended testing. 

The test first checks to see if the shift-lock is held down. If so, the remainder of this test, as well as the 

joystick test, is skipped, avoiding unnecessary delays waiting for keys that will never be pressed if the loop-

back plugs are not in place. If not, the 6529 keyport is tested to see if it can hold a value by writing to the 

port and comparing with the values that are read back. If any problems are detected with the keyport, the 

message “6529 KEYPORT BAD” is shown when the keyboard test completes. 

The keyboard port is then cleared (all bits set high) and the TED keyboard latch sampled. If the latch 

contains anything other than $FF, this indicates a possible keyboard problem. At this point a string of 8 

keys to be pressed is displayed on the screen, as seen in Screenshot 8. 
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Screenshot 8 – Keyboard Test 

The test will then pull each of the lines low on the keyport in turn, keeping each one low for approximately 

2 seconds. The leftmost black key is the one that should be pressed if a keyboard is attached and also 

corresponds to the loop-backs on the keyboard connector if that is being used. The keys and loop-backs 

have been chosen so that each line on the keyport pulls a different bit of the TED latch low. If the 

corresponding bit of the latch does not go low within two seconds, that port/latch combination is deemed to 

have failed, the key is colour red, and the test moves on to the next key. 

On success, the key will be coloured green and an additional test will be done by clearing the port and re-

reading the latch register after a short delay. If the same value cannot be read from the latch it indicates a 

problem with the latch being able to hold the value correctly, a common partial failure of the TED. In this 

instance the message “TED LATCH BAD” will be displayed after the joystick test has completed!  You can 

see in Screenshot 8 that the first two keys were successfully detected, 3 and 4 were not, and the remaining 

keys are currently being waited for. If a loop-back is being used the test will complete very quickly if 

successful. 

JOYSTICK TEST 

The joystick test operates much in the same way as the keyboard test, except that instead of a list of keys, 

a list of possible directions for the two joystick ports is displayed. They will initially be displayed in black 

text, which turn green as each direction is detected. The test does not require the joystick to be actuated in 

any particular order, and will be flagged as complete once every direction and fire button has been detected. 

If directions are still outstanding after approximately 12 seconds, the test will be flagged as a fail. 

With a suitable loop-back connected, the test will complete almost instantly. Without a loop-back, the only 

way to get this to successfully complete is to have a joystick connected to both of the ports. If you suspect 

one of the joystick port has issues but you only have a single joystick, you should start the test with the 

joystick on port one, determine that it works or not, then power off the machine and swap the joystick to the 
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other port. Although there is some electronic protection on the joystick ports, you should never swap 

joysticks over with the power on. 

As with the keyboard test, the TED latch is also tested to determine that it can hold a value. If a latch 

problem is detected in either the joystick test or the preceding keyboard test, the message “TED LATCH 

BAD” will appear after the test completes. See Screenshot 9. 

If a joystick loop-back is not available, activating the shift lock before the test starts will cause the joystick 

test to be skipped. 

 

Screenshot 9 - Failed TED Latch 

CASSETTE TEST 

The cassette interface on the 264 series is implemented using P4, P1, and P3 of the 7501/8501 CPU for 

read, write, and motor control respectively. On a Plus/4 the cassette sense is implemented by port bit P2 

on the user port 6529. There is no 6529 on the C16, C116 or C232 but the equivalent cassette sense 

operation is mirrored using a tri-state buffer to drive D2 to the state of the sense line when reading from 

$FD10. 

If the cassette test fails at any point, a status byte will be shown to the right of the cycle count which will 

indicate during which step of the test it failed. The steps in the test are as follows: 

01. Start with write low (P1) and check read (P4) is high. 

02. Hold write high and check read is low. 

03. Hold write low and check read is high again. 

04. With the motor off, check if P7 in unaffected 

05. Check P2 of 6529 at $FD10 is low 

06. Turn cassette motor on (P3 low), and check P3 remains low 

07. Check P2 of 6529 at $FD10 is now high. 

  



19 

 

All of the CPU output ports are inverted by a 7406 at U6 on a Plus/4 and U9 on a C16/C116. Assuming the 

loop-back is installed correctly, any failure in steps 1-6 strongly indicates that either the CPU or the 7406 is 

faulty. If a failure occurs at step 7, it implies the cassette sense circuit is at fault or, more likely, that the 

circuitry that provide power to the cassette motor is at fault. 

Further diagnosis of the CPU’s I/O ports can be done using the Advanced Port Testing feature described 

later. 

SERIAL TEST 

The IEC serial port is internally looped back, with the exception of the ATN line, which is looped back to 

CLK in in the connector. As with the cassette test, a status byte will be shown to the right of the cycle count 

which will indicate exactly which step of the test failed. The steps in the test are as follows: 

01. Start with DATA out (P0), CLK out (P1) and ATN (P2) low and check DATA in (P7) and CLK in (P6) 

are high.  

02. Hold DATA out high and check DATA in is low. 

03. Hold DATA out low and check DATA in is high again. 

04. Hold CLK out high and check CLK in is low. 

05. Hold CLK out low and check CLK in is high again. 

06. Hold ATN out high and check CLK in is low. 

07. Hold ATN out low and check CLK in is high again. 

The serial port shares much of the circuitry with the cassette, so any problems with this test strongly indicate 

an issue with the CPU ports or the 7406 inverter. Again, further diagnosis of the CPU’s I/O ports can be 

done using the Advanced Port Testing feature described later. 

USER PORT TEST 

The user port is only present on the Plus/4 and contains two interfaces, the 6529 single port interface and 

the 6551 ACIA RS232 interface. This test exercises both to determine correct operation, starting with the 

6529 port. 

After setting all port bits high (inactive), the port is read over a period of time to ensure the value is stable. 

This is a best endeavour to ensure the port is present on the machine being tested, such as a C16, as the 

data lines usually float with random values if not. The test will say ‘SKIP’ if it can’t be found. If you know the 

port to be present, this should be read as a fail. 

The individual data lines of the port are activated in sequence to ensure they pull the corresponding looped 

back data line low (see Figure 4) if not, the test will fail. In this instance, the status byte will contain the 

hexadecimal representation of the failed port bits. The Advanced Port Testing also allows you to directly 

manipulate the state of the port bits for further analysis. 
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RS232 PORT TEST 

The ACIA is rather more complex to test as the communication is interrupt driven. First an interrupt handler 

is set up in the low memory error to catch the communication related interrupts and then the port is 

configured for 8-bit words, 1 stop bit, and 2400 baud. If this value cannot be read back from the control 

register, the ACIA port is assumed not to be present and skipped. If any of the following steps fail, the step 

will be indicated in the status byte. 

01. RTS and DTR are cleared. DSR is checked to see if it is set. 

02. DCD is checked to see if it is set. 

03. Interrupts are enabled and DTR is set ready. After a short delay, check that an interrupt has 

occurred and that DCD has been cleared.  

04. RTS is set ready. After a short delay, check that an interrupt has occurred and that DSR has been 

cleared. 

Now a sequence of 192 test bytes is set up and transmitted using the ACIA. All the communication is 

interrupt based, interrupts being generated when the receive register (all 1 byte of it) is full and when the 

send register is empty. The location for the received message is set up to be about ¾ of the way down the 

screen, so if the message is received correctly, you should see something like Screenshot 10. 

 

Screenshot 10 - RS232 Test 

The test waits approximately 2.5 seconds for the message to be received before checking the following 

conditions have been met. 

05. Check that ‘bytes to send’ is now zero. 

06. Check that ‘bytes received’ is now 192. 

07. Check no overflow errors occurred. 

08. Check no framing errors occurred. 

09. Check no parity errors occurred. 

10. Check the contents of the receive buffer match the send buffer 
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INTERRUPT & 2X CLOCK TESTS 

The interrupt tests check that the interrupt sources on the TED chip are all functioning correctly. The TED 

has 4 usable interrupt sources; 3 timers and the raster interrupt. These are initialised to a specific pre-

condition and then allowed to run for approximately half a second, counting the number of interrupts that 

occurred. If this number falls outside of the boundaries shown below, the TED may be at fault. 

The number of triggered interrupts during the period is affected by the video standard of the machine under 

test (different number of lines to render) as well as the presence of an ACIA on the system (causes more 

interrupts). 

The test is performed twice, the first time with the TED forced into single clock mode and the second time 

with the screen blanked, thus running at twice the speed. The interrupt sources and the boundaries currently 

defined for both single and double clock operation are seen in Table 8 - Interrupt Sources and Boundaries. 

 Single Clock Double Clock 

Interrupt Source Lower Bound Upper 

Bound 

Lower 

Bound 

Upper Bound 

Timer 1 with a reload value of $2000 $53 $56 $26 $26 

Timer 2, initialised with $0100 $0B $0B $05 $05 

Timer 3, initialised with $FF00 $0A $0A $04 $04 

Raster Interrupts at scan line 204 $26 $2E $11 $14 

Table 8 - Interrupt Sources and Boundaries 

Each count will be displayed as it completes; in green if within the boundaries defined above, otherwise 

red. An example of the output for a successfully completed test is shown in Screenshot 2, earlier in the 

document. 

Upon completion of all tests, the number of detected interrupts will cycle between the minimum and 

maximum values while Diag264 pauses at the end of each cycle. If any of the counts do vary, they will flash 

blue. 

TED REGISTER TESTS 

The final sequence of tests attempts to test as many of the TED registers as can reasonably be achieved 

in a short space of time. Some of the registers have already been tested prior to this section, for example 

the screen blanking, clock doubling and timers. For most of the remaining registers it is not possible for the 

software to determine an ‘OK’ or ‘FAIL’ state so it relies on the observer to make that decision after 

comparing the results to this document. 

A sequence of three screens is displayed, and the observer should be on the lookout for deviations from 

what is described and shown below. A musical scale is played for the duration of each screen using one of 

the three voices for each of the screens. 
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COLOUR PALETTE 

This screen plays a scale on voice 1 and displays a cycling colour palette. It doesn’t really do much more 

than show off the TED’s colour palette. 

 

Screenshot 11 - Colour Palette 

TED GRAPHIC MODES 

The second screen has much more going on and is designed to show the available graphics modes on a 

single screen using raster interrupts to change the mode between sections. You should check carefully that 

what is shown on the screen matches Screenshot 12 - TED Graphics Modes. The modes displayed are 

shown alongside the screenshot. There should be no observable flickering or other artefacts on the screen. 

The top three sections show the three different text modes. Each section shows four rows of characters 

with tile values of 0 – 39, 64 – 103, 128 – 167 and 192 – 231 respectively. The attribute (colour) values are 

set to the same value. 

The first, with the dark blue border is the default Hi-Res text mode. Although not seen in the static picture, 

the third and fourth rows will be flashing. The second, with the black background, shows multicolour mode, 

which is not really suited to the inbuilt character set but should nevertheless be noticeable on characters 8 

– 15 and 24 – 31. The third text mode, with the yellow background, shows the rarely used extended 

background mode, where the first 64 characters are rendered on a different coloured background 

depending on the value of bits 6 and 7 of the tile value. 

The bottom two sections highlight the bitmap graphics modes, Hi-Res and multicolour, with respective 

green and red borders. The top should show a grid of white lines and the bottom a grid of alternating vertical 

blue and red lines with green horizontal lines. 
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Screenshot 12 - TED Graphics Modes 

Top Border 

Hi-Res Text 

Multicolour Text 

Extended Background Text 

Hi-Res Bitmap 

Multicolour Bitmap 

Bottom Border 

 

SMOOTH SCROLL 

The final TED register test demonstrates the smooth scrolling and the 24 row, 38 column modes. The status 

screen is moved in a sinusoidal wave. There should be no visible artefacts on any of the borders or any 

shearing of the display. The white noise generator should be heard during this test. 

 

Screenshot 13 – Smooth Scroll 
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TEST CYCLE COMPLETION 

At the end of the test, the display will pause for a few seconds before looping round and continuing from 

the High RAM test again. During this time, the minimum and maximum interrupt values will be displayed, if 

any. You also have the option to select from two advanced tests, pressing ‘K’ for the extended keyboard 

tests, and ‘P’ for the extended ports testing. If the keyboard loop-back plug is detected, this option will not 

appear, as clearly the keyboard is unavailable. 

Just before starting again, a brief sample will play to test the TED’s digital sample playing capabilities. 

EXTENDED KEYBOARD TEST 

When the main tests complete, there will be a pause of a few seconds before the cycle starts again.  

The advanced keyboard tests were implemented to identify keyboard reliability issues and to identify 

patterns which may cause complete rows or columns of keys to fail, which may in turn indicate that there is 

a problem with the keyboard output port or TED latch. Fundamental problems should be detected by the 

man keyboard test, but this allows for an additional level of investigation. 

Displayed you will see a screen as shown in Screenshot 14 – Advanced Keyboard Testing, which shows 

the keyboard not as it is physically laid out, but according to the rows and columns of the 6529 keyboard 

port and TED latch. Initially, all keys will be black, showing that the key has not yet been pressed. While 

each key is pressed, it will highlight in a reversed green colour, which will revert to non-inverted, but still 

green, once the key is released. 

Using this, you can go through all keys ensuring that they are responding correctly, including when used in 

conjunction with either shift, shift-lock, or the Commodore key.  

 

Screenshot 14 – Advanced Keyboard Testing 



25 

 

To exit the keyboard test, either press ‘Control’ and ‘Q’, or wait for the hexadecimal countdown timer to 

reach 00, after which the main test cycle will restart.  

EXTENDED PORT TESTS 

The extended port testing functionality was added to enable more detailed investigation of the I/O ports on 

the CPU and, if fitted, the 6529 on the user port. Having issues with the ports can cause problems with the 

cassette deck and the IEC port for disk drives and printers. As well as the CPU itself, some of the failure 

points include the 7406 hex inverter and the diodes that protect the I/O lines. During normal operation, it 

can be quite difficult to investigate these without an oscilloscope as the states change very quickly, but this 

tool allows you to maintain the ports in a steady state and toggle them as required. 

After the pressing ‘P’, you will see an image similar to the one shown in Screenshot 15 – Extended Ports 

Testing . At the top of the screen is the CPU with the CPU DDR (Data Direction Register) at memory location 

$00, followed by the write value to the CPU port register itself at location $01, and finally the value read 

back from the port register. All the values are shown as a hexadecimal value, followed by a binary 

representation of the register. For the DDR these are represented by ‘I’ and ‘O’ for Input and Output 

respectively. For the written value, port bits set to input by the respective value in the DDR are displayed 

as a dash ‘-‘, and ports set to output displayed as a solid block for a high value, and a dot ‘.’ for a low value. 

For the read value, the same scheme applies, again being shown as a solid block for a high value and a 

dot for a low value. To the right is a summary of the use of the CPU port on 264 computers. 

Below the CPU is the 6529 SPI (Single Port Interface) at location $FD10 which is exposed on the user port 

of the Plus/4. The 6529 does not have a corresponding DDR, so just the write and read values are shown. 

To the right is shown the only standard use of this port, where P2 is used for cassette sense. On a C16, 

the 6529 is not present, but the ability to read P2 is still implemented using some basic TTL logic.   

 

Screenshot 15 – Extended Ports Testing 

Operation is quite simple, in that the ‘CTRL’ key is used to rotate between the CPU DDR, the CPU port 

write value and the 6529 write value. The selected port is highlighted in reversed green text. Once selected 
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the individual register bits are manipulated using the keys ‘0’ to ‘7’. On the DDR, these will toggle the port 

bits between input and output, while on the write values this will toggle between high and low outputs. 

On the CPU port, any bits set as input via the DDR cannot be changed. The default value for the DDR on 

264 machine is $0F, meaning port bits 0 to 3 are outputs and 4 to 7 are inputs. There should not normally 

be any reason to change the DDR from its default value, as once set by the kernel, it is never changes 

during the normal operation of the machine and neither does any other software change it to my knowledge. 

If you have a cassette deck attached, then pressing play, fast forward, or rewind, should cause the cassette 

sense bit to toggle. Toggling P3 on the CPU output will cause the motor to start and stop. With the motor 

enabled, playing a tape with a program on should cause P4 to flicker rapidly. 

As some of the CPU ports are internally connected, then without the loop-back plugs installed toggling P0 

should affect the input on P7, and likewise P1 will affect P6. 

If you have the loop-back plugs installed, then P3 (motor) should toggle the sense line, and P1 (cassette 

write) should toggle P4 (cassette read.) 

DIAG264 VERSION HISTORY 

0.15A - added colour to print_msg 

 - made sure that keyport and latch messages are always displayed 

 - fixed long standing bug with timer 3 checks 

0.20A - re-write of rom check routine 

0.21A - updated ZP usage 

0.22A - tidied low-ram test, integrated ted mode screen 

0.4A - integrated smooth scroll 

 - added databus and address bus tests 

 - added 128 char definitions 

0.5A - added better address bus tests and for high ram 

0.6A - added HW cursor 

0.7A - tolerance checks on interrupt counts 

0.1B - High RAM location reporting 

 - fixed a raster synch issue with the interrupt counts which should improve count stability 

 - implemented NTSC compatible tests... 

0.11B - allowed skipping of KB test even if failures have occured 

0.12B - improved latch testing on KB test 

0.13B - fixed keyport bug 

 - fixed setting of cassette motor if sense is on cpu-p7 so it doesn't break serial test 

 - fixed location of $FD10-D2 message 

0.2B - first Beta release! 

 - relaxed interrupt tolerances based on running on NTSC machine 

0.3b - much improved address bus test 

0.5b - fixed databus test to correctly mask bits 

0.6b - Autodetect PAL/NTSC if running from cartridge (F33F - #$08 for PAL, #$48 for NTSC) 

 - Always allow KB skip 

0.7b - Fixed NTSC/PAL toggle. 'P' forces PAL and 'N' forces NTSC 

 - Avoid conflict if dongle installed 

0.8 - Updated version & 2016 

 - remove cpu-p7 cassette checks, messages etc 

 - fixed raster detection in colour_sound_test 

 - simplified colour sound test 

0.9 - Updated version & 2018 

 - ROM checksums now CRC-16 

 - use a single smooth scroll dataset and manipulate bits 

 - various minor code optimisations 

 - Doesn't trash the screen when check-summing function ROM's 

 - stabilised raster splits 

 - added various beta kernals 

0.91 - added extended KB test 

 - fixed small bug in forcing NTSC mode 
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 - cart version now works in any low-rom position, including replacing func-low 

 - cart_lo renamed to low_rom 

 - fixed bug caused by small_delay sitting across a page boundary causing interrupt… 

- …timing discrepancies 

 - align interrupt handler to page boundary, again to avoid timing discrepancies 

 - added pseudo random number testing to RAM 

0.92 - added advanced port testing 

 - added checksum for Andy Challis' 6510 replacement kernal 

 - reset interrupt sources at end of TED interrupt tests 

0.93 - beta release 

 - changed keys to toggle ports to 0->7 instead of 1->8 

 - Added some information to the EPT tests to describe the use of the ports 

 - reset the ports at the beginning of EPT 

 - show Diag264 and not FAIL if running from low-ROM socket 

0.94 - fixed bug that always sent the tests into the port testing if the KB loop-back plug… 

- …was installed 

- added check to detect KB dongle and if present don't show messages for advanced tests 

0.95 - updated to 2020 

- fixed small bug which compared 3 bytes instead of 2 when comparing ROM CRC checksums. 

  A legacy from the old 3 byte checksum. 

0.96 - make TED mode use raster interrupts 

- simplified tune playing routine 

- reduce time waiting for joystick input, reduced to #$c0 

- improve error reporting on joystick test. (Alex Korth email May 2019) 

- if the latch doesn't have correct value at start, or is unstable during reading, print 

  as status byte 

- pop up a message box on ram failures suggesting chip at fault 

- fixed bug where using shift-lock to skip keyboard and joystick persisted for joystick 

  on subsequent cycles 

- moved receive buffer up a bit to make look neater 

- reviewed and updated ZP usage 

- added new banking logic tests for FF3E and FDD0 

- added error for unexpected interrupts 

- play a Homer Simpson WooHoo! sammple at the end of each test cycle 

- added exomizer decompression for sample data an other stuff for future 

- added Andy Challis NTSC kernal for 6510 adapter 

- stabilise the interrupt counts by refactoring int handler, skip false ACIA IRQ's if 

  not present  

- display min and max interrupt counts, highlighting differences at end of cycle 

- explicitly set raster line on interrupt tests to 204, previously set by TED defaults 

- updated to 2021 

 

 

 

Figure 8 - Shady Cat 

 

 

 

 

 


