Network Working Group                                         C. Bormann
Internet-Draft                                    Universität Bremen TZI
Intended status: Standards Track                         3 November 2024
Expires: 7 May 2025


                    More Control Operators for CDDL
                  draft-ietf-cbor-cddl-more-control-07

Abstract

   The Concise Data Definition Language (CDDL), standardized in RFC
   8610, provides "control operators" as its main language extension
   point.  RFCs have added to this extension point both in an
   application-specific and a more general way.

   The present document defines a number of additional generally
   applicable control operators for text conversion (Bytes, Integers,
   JSON, Printf-style formatting) and for an operation on text.

About This Document

   This note is to be removed before publishing as an RFC.

   The latest revision of this draft can be found at https://cbor-
   wg.github.io/cddl-more-control/.  Status information for this
   document may be found at https://datatracker.ietf.org/doc/draft-ietf-
   cbor-cddl-more-control/.

   Discussion of this document takes place on the Concise Binary Object
   Representation (CBOR) Maintenance and Extensions Working Group
   mailing list (mailto:cbor@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/browse/cbor/.  Subscribe at
   https://www.ietf.org/mailman/listinfo/cbor/.

   Source for this draft and an issue tracker can be found at
   https://github.com/cbor-wg/cddl-more-control.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.




Bormann                    Expires 7 May 2025                   [Page 1]

Internet-Draft           CDDL control operators            November 2024


   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 7 May 2025.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Text Conversion . . . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Byte Strings: Base16 (Hex), Base32, Base45, Base64  . . .   4
     2.2.  Numbers . . . . . . . . . . . . . . . . . . . . . . . . .   6
     2.3.  Printf-style Formatting . . . . . . . . . . . . . . . . .   7
     2.4.  JSON Values . . . . . . . . . . . . . . . . . . . . . . .   8
   3.  Text Processing . . . . . . . . . . . . . . . . . . . . . . .   8
     3.1.  Join  . . . . . . . . . . . . . . . . . . . . . . . . . .   9
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
   5.  Implementation Status . . . . . . . . . . . . . . . . . . . .  11
   6.  Security considerations . . . . . . . . . . . . . . . . . . .  12
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  13
   List of Figures . . . . . . . . . . . . . . . . . . . . . . . . .  14
   List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . .  14
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  14
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  14









Bormann                    Expires 7 May 2025                   [Page 2]

Internet-Draft           CDDL control operators            November 2024


1.  Introduction

   The Concise Data Definition Language (CDDL), standardized in
   [RFC8610], provides "control operators" as its main language
   extension point (Section 3.8 of [RFC8610]).  RFCs have added to this
   extension point both in an application-specific [RFC9090] and a more
   general [RFC9165] way.

   The present document defines a number of additional generally
   applicable control operators:

    +===============+=========+=======+==============================+
    | Name          | t       | c     | Purpose                      |
    +===============+=========+=======+==============================+
    | .b64u, .b64c  | text    | bytes | Base64 representation of     |
    |               |         |       | byte strings                 |
    +---------------+---------+-------+------------------------------+
    | .b64u-sloppy, | text    | bytes | (sloppy-tolerant variants of |
    | .b64c-sloppy  |         |       | the above)                   |
    +---------------+---------+-------+------------------------------+
    | .hex, .hexlc, | text    | bytes | Base16 representation of     |
    | .hexuc        |         |       | byte strings                 |
    +---------------+---------+-------+------------------------------+
    | .b32, .h32    | text    | bytes | Base32 representation of     |
    |               |         |       | byte strings                 |
    +---------------+---------+-------+------------------------------+
    | .b45          | text    | bytes | Base45 representation of     |
    |               |         |       | byte strings                 |
    +---------------+---------+-------+------------------------------+
    | .decimal      | text    | int   | Text representation of       |
    |               |         |       | integer numbers              |
    +---------------+---------+-------+------------------------------+
    | .printf       | text    | array | Printf-formatted text        |
    |               |         |       | representation of data items |
    +---------------+---------+-------+------------------------------+
    | .json         | text    | any   | Text representation of JSON  |
    |               |         |       | values                       |
    +---------------+---------+-------+------------------------------+
    | .join         | text or | array | Build text or byte string    |
    |               | bytes   |       | from array of components     |
    +---------------+---------+-------+------------------------------+

             Table 1: New Control Operators in this Document,
    t = target type (left-hand side), c = controller type (right-hand
                                  side)






Bormann                    Expires 7 May 2025                   [Page 3]

Internet-Draft           CDDL control operators            November 2024


1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [BCP14] (RFC2119) (RFC8174) when, and only when, they appear in all
   capitals, as shown here.

   Regular expressions mentioned in the text are as defined in
   [RFC9485].

   This specification uses terminology from [RFC8610].  In particular,
   with respect to control operators, "target" refers to the left-hand
   side operand, and "controller" to the right-hand side operand.
   "Tool" refers to tools along the lines of that described in
   Appendix F of [RFC8610].  Note also that the data model underlying
   CDDL provides for text strings as well as byte strings as two
   separate types, which are then collectively referred to as "strings".

2.  Text Conversion

2.1.  Byte Strings: Base16 (Hex), Base32, Base45, Base64

   A CDDL model often defines data that are byte strings in essence but
   need to be transported in various encoded forms, such as base64 or
   hex.  This section defines a number of control operators to model
   these conversions.

   The control operators generally are of a form that could be used like
   this:

   signature-for-json = text .b64u signature
   signature = bytes .cbor COSE_Sign1

   The specification of these control operators is complicated by the
   large number of transformations in use.  Inspired by Section 8 of RFC
   8949 [STD94], we use representations defined in [RFC4648] with the
   following names:













Bormann                    Expires 7 May 2025                   [Page 4]

Internet-Draft           CDDL control operators            November 2024


     +==============+=======================+========================+
     | name         | meaning               | reference              |
     +==============+=======================+========================+
     | .b64u        | Base64URL, no padding | Section 5 of [RFC4648] |
     +--------------+-----------------------+------------------------+
     | .b64u-sloppy | Base64URL, no         | Section 5 of [RFC4648] |
     |              | padding, sloppy       |                        |
     +--------------+-----------------------+------------------------+
     | .b64c        | Base64 classic,       | Section 4 of [RFC4648] |
     |              | padding               |                        |
     +--------------+-----------------------+------------------------+
     | .b64c-sloppy | Base64 classic,       | Section 4 of [RFC4648] |
     |              | padding, sloppy       |                        |
     +--------------+-----------------------+------------------------+
     | .b32         | Base32, no padding    | Section 6 of [RFC4648] |
     +--------------+-----------------------+------------------------+
     | .h32         | Base32/hex alphabet,  | Section 7 of [RFC4648] |
     |              | no padding            |                        |
     +--------------+-----------------------+------------------------+
     | .hex         | Base16 (hex), either  | Section 8 of [RFC4648] |
     |              | case                  |                        |
     +--------------+-----------------------+------------------------+
     | .hexlc       | Base16 (hex), lower   | Section 8 of [RFC4648] |
     |              | case                  |                        |
     +--------------+-----------------------+------------------------+
     | .hexuc       | Base16 (hex), upper   | Section 8 of [RFC4648] |
     |              | case                  |                        |
     +--------------+-----------------------+------------------------+
     | .b45         | Base45                | [RFC9285]              |
     +--------------+-----------------------+------------------------+

       Table 2: Control Operators for Text Conversion of Byte Strings

   Note that this specification is somewhat opinionated here: It does
   not provide base64url, base32 or base32hex encoding with padding, or
   base64 classic without padding.  Experience indicates that these
   combinations only ever occur in error, so the usability of CDDL is
   increased by not providing them in the first place.  Also, adding "c"
   makes sure that any decision for classic base64 is actively taken.












Bormann                    Expires 7 May 2025                   [Page 5]

Internet-Draft           CDDL control operators            November 2024


   These control operators are "strict" in their matching, i.e., they
   only match base encodings that conform to the mandates of their
   defining documents.  Note that this also means that .b64u and .b64c
   only match text strings composed of the set of characters defined for
   each of them, respectively.  (This is maybe worth pointing out here
   explicitly as this contrasts with the "b64" literal prefix that can
   be used to notate byte strings in CDDL source code, which simply
   accepts characters from either alphabet.  This behavior is different
   from the matching behavior of the four base64 control operators
   defined here.)

   The additional designation "sloppy" indicates that the text string is
   not validated for any additional bits being zero, in variance to what
   is specified in the paragraph behind table 1 in Section 4 of
   [RFC4648].  Note that the present specification is opinionated again
   in not specifying a sloppy variant of base32 or base32/hex, as no
   legacy use of sloppy base32(/hex) was known at the time of writing.
   Base45 is known to be suboptimal for use in environments with limited
   data transparency (such as URLs), but is included because of its
   close relationship to QR codes and its wide use in health informatics
   (note that base45 is strongly specified not to allow sloppy forms of
   encoding).

2.2.  Numbers

                +==========+=================+===========+
                | name     | meaning         | reference |
                +==========+=================+===========+
                | .decimal | Decimal Integer | ---       |
                +----------+-----------------+-----------+

                    Table 3: Control Operator for Text
                          Conversion of Integers

   The control operator .decimal allows the modeling of text strings
   that carry numeric information in decimal form, such as in the
   uint64/int64 formats of YANG-JSON [RFC7951].

   yang-json-sid = text .decimal (0..9223372036854775807)

   Again, the specification is opinionated by only providing integer
   numbers without leading zeros, i.e., the decimal numbers match the
   regular expression 0|-?[1-9][0-9]* (of course, further restricted by
   the control type).  See the next section for more flexibility, and
   for octal, hexadecimal, or binary conversions.






Bormann                    Expires 7 May 2025                   [Page 6]

Internet-Draft           CDDL control operators            November 2024


2.3.  Printf-style Formatting

        +=========+===================================+===========+
        | name    | meaning                           | reference |
        +=========+===================================+===========+
        | .printf | Printf-formatting of data item(s) | ---       |
        +---------+-----------------------------------+-----------+

          Table 4: Control Operator for Printf-formatting of Data
                                  Item(s)

   The control operator .printf allows the modeling of text strings that
   carry various formatted information, as long as the format can be
   represented in Printf-style formatting strings as they are used in
   the C language (see Section 7.21.6.1 of [C]).

   The controller (right-hand side) of the .printf control is an array
   of one Printf-style format string and zero or more data items that
   fit the individual conversion specifications in the format string.
   The construct matches a text string representing the textual output
   of an equivalent C-language printf function call that is given the
   format string and the data items following it in the array.

   From the printf specification in the C language, length modifiers
   (paragraph 7) are not used and MUST NOT be included in the format
   string.  The 's' conversion specifier (paragraph 8) is used to
   interpolate a text string in UTF-8 form.  The 'c' conversion
   specifier (paragraph 8) represents a single Unicode scalar value as a
   UTF-8 character.  The 'p' and 'n' conversion specifiers (paragraph 8)
   are not used and MUST NOT be included in the format string.

   In the following example, my_alg_19 matches the text string "0x0013":

   my_alg_19 = hexlabel<19>
   hexlabel<K> = text .printf (["0x%04x", K])

   The data items in the controller array do not need to be literals, as
   for example in:

   any_alg = hexlabel<1..20>
   hexlabel<K> = text .printf (["0x%04x", K])

   Here, any_alg matches the text strings "0x0013" or "0x0001" but not
   "0x1234".







Bormann                    Expires 7 May 2025                   [Page 7]

Internet-Draft           CDDL control operators            November 2024


2.4.  JSON Values

   Some applications store complete JSON texts [STD90] into text
   strings, the JSON value for which can easily be defined in CDDL by
   using the default JSON-to-CBOR conversion rules provided by
   Section 6.2 of RFC 8949 [STD94].  This is supported by a control
   operator similar to .cbor as defined in Section 3.8.4 of [RFC8610].

                      +=======+=========+===========+
                      | name  | meaning | reference |
                      +=======+=========+===========+
                      | .json | JSON    | [STD90]   |
                      +-------+---------+-----------+

                         Table 5: Control Operator
                        for Text Conversion of JSON
                                   Values

   embedded-claims = text .json claims
   claims = {iss: text, exp: text}

   Notes:

   *  JSON has known interoperability problems [RFC7493].  While
      Section 4 of [RFC7493] probably is not relevant to this
      specification, Section 2 of [RFC7493] provides requirements that
      need to be followed to make use of the generic data model
      underlying CDDL.  Note that the intention of Section 2.2 of
      [RFC7493] is directly supported by Section 6.2 of RFC 8949
      [STD94].  The recommendation to use text strings for representing
      numbers outside JSON's interoperable range is a requirement on the
      application data model and therefore needs to be reflected on the
      right-hand side of the .json control operator.

   *  This control operator provides no way to constrain the use of
      blank space or other serialization variants in the JSON
      representation of the data items; restrictions on the
      serialization to specific variants (e.g, not providing for the
      addition of any insignificant blank space, prescribing an order in
      which map entries are serialized) could be defined in future
      control operators.

   *  A .jsonseq is not provided in this document for [RFC7464], as no
      use case for inclusion in CDDL is known at the time of writing;
      again, future control operators could address this use case.

3.  Text Processing




Bormann                    Expires 7 May 2025                   [Page 8]

Internet-Draft           CDDL control operators            November 2024


3.1.  Join

   Often, text strings need to be constructed out of parts that can best
   be modeled as an array.

         +=======+==================================+===========+
         | name  | meaning                          | reference |
         +=======+==================================+===========+
         | .join | concatenate elements of an array | ---       |
         +-------+----------------------------------+-----------+

            Table 6: Control Operator for Text Generation from
                                  Arrays

   For example, an IPv4 address in dotted-decimal might be modeled as in
   Figure 1.

   legacy-ip-address = text .join legacy-ip-address-elements
   legacy-ip-address-elements = [bytetext, ".", bytetext, ".",
                                 bytetext, ".", bytetext]
   bytetext = text .decimal byte
   byte = 0..255

      Figure 1: Using the .join operator to build dotted-decimal IPv4
                                 addresses

   The elements of the controller array need to be strings (text or byte
   strings).  The control operator matches a data item if that data item
   is also a string, built by concatenating the strings in the array.
   The result of this concatenation is of the same kind of string (text
   or bytes) as the first element of the array.  (If there is no element
   in the array, the .join construct matches either kind of empty
   string, obviously further constrained by the control operator
   target.)  The concatenation is performed on the sequences of bytes in
   the strings.  If the result of the concatenation is a text string,
   the resulting sequence of bytes only matches the target data item if
   that result is a valid text string (i.e., valid UTF-8; note that in
   contrast to the algorithm used in Section 3.2.3 of RFC 8949 [STD94]
   there is no need that all individual byte sequences going into the
   concatenation constitute valid text strings).

   Note that this control operator is hard to validate in the most
   general case, as this would require full parser functionality.
   Simple implementation strategies will use array elements with
   constant values as guideposts ("markers", such as the "." in
   Figure 1) for isolating the variable elements that need further
   validation at the CDDL data model level.  It is therefore recommended
   to limit the use of .join to simple arrangements where the array



Bormann                    Expires 7 May 2025                   [Page 9]

Internet-Draft           CDDL control operators            November 2024


   elements are laid out explicitly and there are no adjacent variable
   elements without intervening constant values, and where these
   constant values do not occur within the text described by the
   variable elements.
   If more complex parsing functionality is required, the ABNF control
   operators (see Section 3 of [RFC9165]) may be useful; however, these
   cannot reach back into CDDL-specified elements like .join can do.

      |  Implementation note: A validator implementation can use the
      |  marker elements to scan the text, isolating the variable
      |  elements.  It also can build a parsing regexp (Section 6 of
      |  [RFC9485]; see also Section 8 of [RFC9485] for security
      |  considerations related to regexps) from the elements of the
      |  controller array, with capture groups for each element, and
      |  validate the captures against the elements of the array.  In
      |  the most general case, these implementation strategies can
      |  exhibit false negatives, where the implementation cannot find
      |  the structure that would be successfully validated using the
      |  controller; it is RECOMMENDED that implementations provide full
      |  coverage at least for the marker-based subset outlined in the
      |  previous paragraph.

4.  IANA Considerations


   // RFC Editor: please replace RFC-XXXX with the RFC number of this
   // RFC and remove this note.

   This document requests IANA to register the contents of Table 7 into
   the registry "CDDL Control Operators" of [IANA.cddl]:





















Bormann                    Expires 7 May 2025                  [Page 10]

Internet-Draft           CDDL control operators            November 2024


                       +==============+============+
                       | Name         | Reference  |
                       +==============+============+
                       | .b64u        | [RFC-XXXX] |
                       +--------------+------------+
                       | .b64u-sloppy | [RFC-XXXX] |
                       +--------------+------------+
                       | .b64c        | [RFC-XXXX] |
                       +--------------+------------+
                       | .b64c-sloppy | [RFC-XXXX] |
                       +--------------+------------+
                       | .b45         | [RFC-XXXX] |
                       +--------------+------------+
                       | .b32         | [RFC-XXXX] |
                       +--------------+------------+
                       | .h32         | [RFC-XXXX] |
                       +--------------+------------+
                       | .hex         | [RFC-XXXX] |
                       +--------------+------------+
                       | .hexlc       | [RFC-XXXX] |
                       +--------------+------------+
                       | .hexuc       | [RFC-XXXX] |
                       +--------------+------------+
                       | .decimal     | [RFC-XXXX] |
                       +--------------+------------+
                       | .printf      | [RFC-XXXX] |
                       +--------------+------------+
                       | .json        | [RFC-XXXX] |
                       +--------------+------------+
                       | .join        | [RFC-XXXX] |
                       +--------------+------------+

                            Table 7: New Control
                              Operators To Be
                                 Registered

5.  Implementation Status

   This section is to be removed before publishing as an RFC.

   In the CDDL tool described in Appendix F of [RFC8610], the control
   operators defined in the present revision of this specification are
   implemented as of version 0.10.4.








Bormann                    Expires 7 May 2025                  [Page 11]

Internet-Draft           CDDL control operators            November 2024


6.  Security considerations

   The security considerations in Section 5 of [RFC8610] apply, as well
   as those in Section 12 of [RFC4648] for the control operators defined
   in Section 2.1.

7.  References

7.1.  Normative References

   [BCP14]    Best Current Practice 14,
              <https://www.rfc-editor.org/info/bcp14>.
              At the time of writing, this BCP comprises the following:

              Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

              Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [C]        International Organization for Standardization,
              "Information technology — Programming languages — C",
              Fourth Edition, ISO/IEC 9899:2018, June 2018,
              <https://www.iso.org/standard/74528.html>.  Technically
              equivalent specification text is available at
              https://web.archive.org/web/20181230041359if_/
              http://www.open- std.org/jtc1/sc22/wg14/www/abq/
              c17_updated_proposed_fdis.pdf
              (https://web.archive.org/web/20181230041359if_/
              http://www.open- std.org/jtc1/sc22/wg14/www/abq/
              c17_updated_proposed_fdis.pdf)

   [IANA.cddl]
              IANA, "Concise Data Definition Language (CDDL)",
              <https://www.iana.org/assignments/cddl>.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/rfc/rfc4648>.

   [RFC8610]  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.



Bormann                    Expires 7 May 2025                  [Page 12]

Internet-Draft           CDDL control operators            November 2024


   [RFC9165]  Bormann, C., "Additional Control Operators for the Concise
              Data Definition Language (CDDL)", RFC 9165,
              DOI 10.17487/RFC9165, December 2021,
              <https://www.rfc-editor.org/rfc/rfc9165>.

   [RFC9285]  Fältström, P., Ljunggren, F., and D.W. van Gulik, "The
              Base45 Data Encoding", RFC 9285, DOI 10.17487/RFC9285,
              August 2022, <https://www.rfc-editor.org/rfc/rfc9285>.

   [RFC9485]  Bormann, C. and T. Bray, "I-Regexp: An Interoperable
              Regular Expression Format", RFC 9485,
              DOI 10.17487/RFC9485, October 2023,
              <https://www.rfc-editor.org/rfc/rfc9485>.

   [STD90]    Internet Standard 90,
              <https://www.rfc-editor.org/info/std90>.
              At the time of writing, this STD comprises the following:

              Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.

   [STD94]    Internet Standard 94,
              <https://www.rfc-editor.org/info/std94>.
              At the time of writing, this STD comprises the following:

              Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", STD 94, RFC 8949,
              DOI 10.17487/RFC8949, December 2020,
              <https://www.rfc-editor.org/info/rfc8949>.

7.2.  Informative References

   [RFC7464]  Williams, N., "JavaScript Object Notation (JSON) Text
              Sequences", RFC 7464, DOI 10.17487/RFC7464, February 2015,
              <https://www.rfc-editor.org/rfc/rfc7464>.

   [RFC7493]  Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
              DOI 10.17487/RFC7493, March 2015,
              <https://www.rfc-editor.org/rfc/rfc7493>.

   [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/rfc/rfc7951>.






Bormann                    Expires 7 May 2025                  [Page 13]

Internet-Draft           CDDL control operators            November 2024


   [RFC9090]  Bormann, C., "Concise Binary Object Representation (CBOR)
              Tags for Object Identifiers", RFC 9090,
              DOI 10.17487/RFC9090, July 2021,
              <https://www.rfc-editor.org/rfc/rfc9090>.

List of Figures

   1.  Using the .join operator to build dotted-decimal IPv4 addresses
       (Figure 1)

List of Tables

   1.  New Control Operators in this Document (Table 1)

   2.  Control Operators for Text Conversion of Byte Strings (Table 2)

   3.  Control Operator for Text Conversion of Integers (Table 3)

   4.  Control Operator for Printf-formatting of Data Item(s) (Table 4)

   5.  Control Operator for Text Conversion of JSON Values (Table 5)

   6.  Control Operator for Text Generation from Arrays (Table 6)

   7.  New Control Operators To Be Registered (Table 7)

Acknowledgements

   Henk Birkholz suggested the need for many of the control operators
   defined here.  The author would like to thank Laurence Lundblade and
   Jeremy O'Donoghue for sharpening some of the mandates, Mikolai
   Gütschow for improvements to some examples, A.J. Stein for serving as
   shepherd for this document and for his shepherd review, and Orie
   Steele for serving as responsible AD and for providing a detailed AD
   review.

Author's Address

   Carsten Bormann
   Universität Bremen TZI
   Postfach 330440
   D-28359 Bremen
   Germany
   Phone: +49-421-218-63921
   Email: cabo@tzi.org






Bormann                    Expires 7 May 2025                  [Page 14]