patch-2.2.14 linux/arch/sparc/math-emu/sfp-machine.h

Next file: linux/arch/sparc/math-emu/sfp-util.h
Previous file: linux/arch/sparc/math-emu/math.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.2.13/linux/arch/sparc/math-emu/sfp-machine.h linux/arch/sparc/math-emu/sfp-machine.h
@@ -1,6 +1,11 @@
-/* Machine-dependent software floating-point definitions.  Sparc version.
-   Copyright (C) 1997 Free Software Foundation, Inc.
+/* Machine-dependent software floating-point definitions.
+   Sparc userland (_Q_*) version.
+   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+		  Jakub Jelinek (jj@ultra.linux.cz),
+		  David S. Miller (davem@redhat.com) and
+		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
 
    The GNU C Library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public License as
@@ -15,405 +20,186 @@
    You should have received a copy of the GNU Library General Public
    License along with the GNU C Library; see the file COPYING.LIB.  If
    not, write to the Free Software Foundation, Inc.,
-   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
+   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 
-   Actually, this is a sparc (32bit) version, written based on the
-   i386 and sparc64 versions, by me, 
-   Peter Maydell (pmaydell@chiark.greenend.org.uk).
-   Comments are by and large also mine, although they may be inaccurate.
-
-   In picking out asm fragments I've gone with the lowest common
-   denominator, which also happens to be the hardware I have :->
-   That is, a SPARC without hardware multiply and divide.
- */
-
-
-/* basic word size definitions */
+#ifndef _SFP_MACHINE_H
+#define _SFP_MACHINE_H
+   
 #define _FP_W_TYPE_SIZE		32
 #define _FP_W_TYPE		unsigned long
 #define _FP_WS_TYPE		signed long
 #define _FP_I_TYPE		long
 
-/* You can optionally code some things like addition in asm. For
- * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
- * then you get a fragment of C code [if you change an #ifdef 0
- * in op-2.h] or a call to add_ssaaaa (see below).
- * Good places to look for asm fragments to use are gcc and glibc.
- * gcc's longlong.h is useful.
- */
-
-/* We need to know how to multiply and divide. If the host word size
- * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
- * codes the multiply with whatever gcc does to 'a * b'.
- * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm 
- * function that can multiply two 1W values and get a 2W result. 
- * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
- * does bitshifting to avoid overflow.
- * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
- * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or 
- * _FP_DIV_HELP_ldiv (see op-1.h).
- * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
- * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
- * to do this.]
- * In general, 'n' is the number of words required to hold the type,
- * and 't' is either S, D or Q for single/double/quad.
- *           -- PMM
- */
-/* Example: SPARC64:
- * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y)
- * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
- * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
- *
- * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
- * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y)
- * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
- *
- * Example: i386:
- * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
- * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
- *
- * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
- * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
- */
-#define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm)
-#define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm)
-/* FIXME: This is not implemented, but should be soon */
-#define _FP_MUL_MEAT_Q(R,X,Y)   _FP_FRAC_SET_4(R, _FP_ZEROFRAC_4)
-#define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y)
-#define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
-/* FIXME: This is not implemented, but should be soon */
-#define _FP_DIV_MEAT_Q(R,X,Y)   _FP_FRAC_SET_4(R, _FP_ZEROFRAC_4)
-
-/* These macros define what NaN looks like. They're supposed to expand to 
- * a comma-separated set of 32bit unsigned ints that encode NaN.
- */
-#define _FP_NANFRAC_S		_FP_QNANBIT_S
-#define _FP_NANFRAC_D		_FP_QNANBIT_D, 0
-#define _FP_NANFRAC_Q           _FP_QNANBIT_Q, 0, 0, 0
-
-/* On some architectures float-to-int conversions return a result
- * code.  On others (e.g. Sparc) they return 0
- */
-#define _FTOI_RESULT		0
+#define _FP_MUL_MEAT_S(R,X,Y)					\
+  _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
+#define _FP_MUL_MEAT_D(R,X,Y)					\
+  _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
+#define _FP_MUL_MEAT_Q(R,X,Y)					\
+  _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
+
+#define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_udiv(S,R,X,Y)
+#define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_2_udiv(D,R,X,Y)
+#define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_4_udiv(Q,R,X,Y)
+
+#define _FP_NANFRAC_S		((_FP_QNANBIT_S << 1) - 1)
+#define _FP_NANFRAC_D		((_FP_QNANBIT_D << 1) - 1), -1
+#define _FP_NANFRAC_Q		((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
+#define _FP_NANSIGN_S		0
+#define _FP_NANSIGN_D		0
+#define _FP_NANSIGN_Q		0
 
 #define _FP_KEEPNANFRACP 1
 
-/* This macro appears to be called when both X and Y are NaNs, and 
- * has to choose one and copy it to R. i386 goes for the larger of the
- * two, sparc64 just picks Y. I don't understand this at all so I'll
- * go with sparc64 because it's shorter :->   -- PMM 
+/* If one NaN is signaling and the other is not,
+ * we choose that one, otherwise we choose X.
  */
-#define _FP_CHOOSENAN(fs, wc, R, X, Y)				\
+/* For _Qp_* and _Q_*, this should prefer X, for
+ * CPU instruction emulation this should prefer Y.
+ * (see SPAMv9 B.2.2 section).
+ */
+#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP)			\
   do {								\
-    R##_s = Y##_s;						\
-    _FP_FRAC_COPY_##wc(R,Y);					\
+    if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)		\
+	&& !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
+      {								\
+	R##_s = X##_s;						\
+	_FP_FRAC_COPY_##wc(R,X);				\
+      }								\
+    else							\
+      {								\
+	R##_s = Y##_s;						\
+	_FP_FRAC_COPY_##wc(R,Y);				\
+      }								\
     R##_c = FP_CLS_NAN;						\
   } while (0)
 
-#define _FP_CHOOSENAN_SQRT(fs, wc, R, X)			\
-  do {								\
-    	R##_s = 0;						\
-    	R##_c = FP_CLS_NAN;					\
-    	_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\
-  } while (0)
+/* Some assembly to speed things up. */
+#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)			\
+  __asm__ ("addcc %r7,%8,%2
+	    addxcc %r5,%6,%1
+	    addx %r3,%4,%0"						\
+	   : "=r" ((USItype)(r2)),					\
+	     "=&r" ((USItype)(r1)),					\
+	     "=&r" ((USItype)(r0))					\
+	   : "%rJ" ((USItype)(x2)),					\
+	     "rI" ((USItype)(y2)),					\
+	     "%rJ" ((USItype)(x1)),					\
+	     "rI" ((USItype)(y1)),					\
+	     "%rJ" ((USItype)(x0)),					\
+	     "rI" ((USItype)(y0))					\
+	   : "cc")
+
+#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)			\
+  __asm__ ("subcc %r7,%8,%2
+	    subxcc %r5,%6,%1
+	    subx %r3,%4,%0"						\
+	   : "=r" ((USItype)(r2)),					\
+	     "=&r" ((USItype)(r1)),					\
+	     "=&r" ((USItype)(r0))					\
+	   : "%rJ" ((USItype)(x2)),					\
+	     "rI" ((USItype)(y2)),					\
+	     "%rJ" ((USItype)(x1)),					\
+	     "rI" ((USItype)(y1)),					\
+	     "%rJ" ((USItype)(x0)),					\
+	     "rI" ((USItype)(y0))					\
+	   : "cc")
+
+#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
+  do {									\
+    /* We need to fool gcc,  as we need to pass more than 10		\
+       input/outputs.  */						\
+    register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2");		\
+    __asm__ __volatile__ ("
+	    addcc %r8,%9,%1
+	    addxcc %r6,%7,%0
+	    addxcc %r4,%5,%%g2
+	    addx %r2,%3,%%g1"						\
+	   : "=&r" ((USItype)(r1)),					\
+	     "=&r" ((USItype)(r0))					\
+	   : "%rJ" ((USItype)(x3)),					\
+	     "rI" ((USItype)(y3)),					\
+	     "%rJ" ((USItype)(x2)),					\
+	     "rI" ((USItype)(y2)),					\
+	     "%rJ" ((USItype)(x1)),					\
+	     "rI" ((USItype)(y1)),					\
+	     "%rJ" ((USItype)(x0)),					\
+	     "rI" ((USItype)(y0))					\
+	   : "cc", "g1", "g2");						\
+    __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2));			\
+    r3 = _t1; r2 = _t2;							\
+  } while (0)
+
+#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
+  do {									\
+    /* We need to fool gcc,  as we need to pass more than 10		\
+       input/outputs.  */						\
+    register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2");		\
+    __asm__ __volatile__ ("
+	    subcc %r8,%9,%1
+	    subxcc %r6,%7,%0
+	    subxcc %r4,%5,%%g2
+	    subx %r2,%3,%%g1"						\
+	   : "=&r" ((USItype)(r1)),					\
+	     "=&r" ((USItype)(r0))					\
+	   : "%rJ" ((USItype)(x3)),					\
+	     "rI" ((USItype)(y3)),					\
+	     "%rJ" ((USItype)(x2)),					\
+	     "rI" ((USItype)(y2)),					\
+	     "%rJ" ((USItype)(x1)),					\
+	     "rI" ((USItype)(y1)),					\
+	     "%rJ" ((USItype)(x0)),					\
+	     "rI" ((USItype)(y0))					\
+	   : "cc", "g1", "g2");						\
+    __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2));			\
+    r3 = _t1; r2 = _t2;							\
+  } while (0)
+
+#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0)
+
+#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0)
+
+#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)					\
+  __asm__ ("addcc %3,%4,%3
+	    addxcc %2,%%g0,%2
+	    addxcc %1,%%g0,%1
+	    addx %0,%%g0,%0"						\
+	   : "=&r" ((USItype)(x3)),					\
+	     "=&r" ((USItype)(x2)),					\
+	     "=&r" ((USItype)(x1)),					\
+	     "=&r" ((USItype)(x0))					\
+	   : "rI" ((USItype)(i)),					\
+	     "0" ((USItype)(x3)),					\
+	     "1" ((USItype)(x2)),					\
+	     "2" ((USItype)(x1)),					\
+	     "3" ((USItype)(x0))					\
+	   : "cc")
 
-  
-#define __FP_UNPACK_DENORM(fs, wc, X)				\
-    {								\
-	_FP_I_TYPE _shift;					\
-	_FP_FRAC_CLZ_##wc(_shift, X);				\
-	_shift -= _FP_FRACXBITS_##fs;				\
-	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));		\
-	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;			\
-	X##_c = FP_CLS_NORMAL;					\
-    }
-
-#define __FP_UNPACK_RAW_1(fs, X, val)				\
-  do {								\
-    union _FP_UNION_##fs *_flo =				\
-    	(union _FP_UNION_##fs *)val;				\
-								\
-    X##_f = _flo->bits.frac;					\
-    X##_e = _flo->bits.exp;					\
-    X##_s = _flo->bits.sign;					\
-  } while (0)
-
-#define __FP_UNPACK_RAW_2(fs, X, val)			\
-  do {							\
-    union _FP_UNION_##fs *_flo =			\
-    	(union _FP_UNION_##fs *)val;			\
-							\
-    X##_f0 = _flo->bits.frac0;				\
-    X##_f1 = _flo->bits.frac1;				\
-    X##_e  = _flo->bits.exp;				\
-    X##_s  = _flo->bits.sign;				\
-  } while (0)
-
-#define __FP_UNPACK_RAW_4(fs, X, val)			\
-  do {							\
-    union _FP_UNION_##fs *_flo =			\
-    	(union _FP_UNION_##fs *)val;			\
-							\
-    X##_f[0] = _flo->bits.frac0;			\
-    X##_f[1] = _flo->bits.frac1;			\
-    X##_f[2] = _flo->bits.frac2;			\
-    X##_f[3] = _flo->bits.frac3;			\
-    X##_e  = _flo->bits.exp;				\
-    X##_s  = _flo->bits.sign;				\
-  } while (0)
-
-#define __FP_UNPACK_S(X,val)		\
-  do {					\
-    __FP_UNPACK_RAW_1(S,X,val);		\
-    _FP_UNPACK_CANONICAL(S,1,X);	\
-  } while (0)
-
-#define __FP_UNPACK_D(X,val)		\
-  do {					\
-    __FP_UNPACK_RAW_2(D,X,val);		\
-    _FP_UNPACK_CANONICAL(D,2,X);	\
-  } while (0)
-
-#define __FP_UNPACK_Q(X,val)		\
-  do {					\
-    __FP_UNPACK_RAW_4(Q,X,val);		\
-    _FP_UNPACK_CANONICAL(Q,4,X);	\
-  } while (0)
-
-#define __FP_PACK_RAW_1(fs, val, X)				\
-  do {								\
-    union _FP_UNION_##fs *_flo =				\
-    	(union _FP_UNION_##fs *)val;				\
-								\
-    _flo->bits.frac = X##_f;					\
-    _flo->bits.exp  = X##_e;					\
-    _flo->bits.sign = X##_s;					\
-  } while (0)
-  
-#define __FP_PACK_RAW_2(fs, val, X)			\
-  do {							\
-    union _FP_UNION_##fs *_flo =			\
-    	(union _FP_UNION_##fs *)val;			\
-							\
-    _flo->bits.frac0 = X##_f0;				\
-    _flo->bits.frac1 = X##_f1;				\
-    _flo->bits.exp   = X##_e;				\
-    _flo->bits.sign  = X##_s;				\
-  } while (0)
-
-#define __FP_PACK_RAW_4(fs, val, X)			\
-  do {							\
-    union _FP_UNION_##fs *_flo =			\
-    	(union _FP_UNION_##fs *)val;			\
-							\
-    _flo->bits.frac0 = X##_f[0];			\
-    _flo->bits.frac1 = X##_f[1];			\
-    _flo->bits.frac2 = X##_f[2];			\
-    _flo->bits.frac3 = X##_f[3];			\
-    _flo->bits.exp   = X##_e;				\
-    _flo->bits.sign  = X##_s;				\
-  } while (0)
-
-#include <linux/kernel.h>
-#include <linux/sched.h>
-
-/* We only actually write to the destination register
- * if exceptions signalled (if any) will not trap.
- */
-#ifdef __SMP__
-#define __FPU_TEM \
-	(((current->tss.fsr)>>23)&0x1f)
-#else
+#ifndef __SMP__
 extern struct task_struct *last_task_used_math;
-#define __FPU_TEM \
-	(((last_task_used_math->tss.fsr)>>23)&0x1f)
 #endif
-#define __FPU_TRAP_P(bits) \
-	((__FPU_TEM & (bits)) != 0)
-
-#define __FP_PACK_S(val,X)			\
-({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\
-    if(!__exc || !__FPU_TRAP_P(__exc))		\
-        __FP_PACK_RAW_1(S,val,X);		\
-    __exc;					\
-})
-
-#define __FP_PACK_D(val,X)			\
-({  int __exc = _FP_PACK_CANONICAL(D,2,X);	\
-    if(!__exc || !__FPU_TRAP_P(__exc))		\
-        __FP_PACK_RAW_2(D,val,X);		\
-    __exc;					\
-})
-
-#define __FP_PACK_Q(val,X)			\
-({  int __exc = _FP_PACK_CANONICAL(Q,4,X);	\
-    if(!__exc || !__FPU_TRAP_P(__exc))		\
-        __FP_PACK_RAW_4(Q,val,X);		\
-    __exc;					\
-})
 
 /* Obtain the current rounding mode. */
+#ifndef FP_ROUNDMODE
 #ifdef __SMP__
 #define FP_ROUNDMODE	((current->tss.fsr >> 30) & 0x3)
 #else
 #define FP_ROUNDMODE	((last_task_used_math->tss.fsr >> 30) & 0x3)
 #endif
+#endif
 
-/* the asm fragments go here: all these are taken from glibc-2.0.5's stdlib/longlong.h */
-
-#include <linux/types.h>
-#include <asm/byteorder.h>
-
-/* add_ssaaaa is used in op-2.h and should be equivalent to
- * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
- * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
- * high_addend_2, low_addend_2) adds two UWtype integers, composed by
- * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
- * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow
- * (i.e. carry out) is not stored anywhere, and is lost.
- */
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
-  __asm__ ("addcc %r4,%5,%1
-        addx %r2,%3,%0"                                                 \
-           : "=r" ((USItype)(sh)),                                      \
-             "=&r" ((USItype)(sl))                                      \
-           : "%rJ" ((USItype)(ah)),                                     \
-             "rI" ((USItype)(bh)),                                      \
-             "%rJ" ((USItype)(al)),                                     \
-             "rI" ((USItype)(bl))                                       \
-           : "cc")
-
-
-/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
- * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
- * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
- * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
- * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
- * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE
- * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere,
- * and is lost.
- */
-
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
-  __asm__ ("subcc %r4,%5,%1
-        subx %r2,%3,%0"                                                 \
-           : "=r" ((USItype)(sh)),                                      \
-             "=&r" ((USItype)(sl))                                      \
-           : "rJ" ((USItype)(ah)),                                      \
-             "rI" ((USItype)(bh)),                                      \
-             "rJ" ((USItype)(al)),                                      \
-             "rI" ((USItype)(bl))                                       \
-           : "cc")
-
-
-/* asm fragments for mul and div */	 
-/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
- * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
- * word product in HIGH_PROD and LOW_PROD.
- * These look ugly because the sun4/4c don't have umul/udiv/smul/sdiv in
- * hardware. 
- */
-#define umul_ppmm(w1, w0, u, v) \
-  __asm__ ("! Inlined umul_ppmm
-        wr      %%g0,%2,%%y     ! SPARC has 0-3 delay insn after a wr
-        sra     %3,31,%%g2      ! Don't move this insn
-        and     %2,%%g2,%%g2    ! Don't move this insn
-        andcc   %%g0,0,%%g1     ! Don't move this insn
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,%3,%%g1
-        mulscc  %%g1,0,%%g1
-        add     %%g1,%%g2,%0
-        rd      %%y,%1"                                                 \
-           : "=r" ((USItype)(w1)),                                      \
-             "=r" ((USItype)(w0))                                       \
-           : "%rI" ((USItype)(u)),                                      \
-             "r" ((USItype)(v))                                         \
-           : "%g1", "%g2", "cc")
-
-/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
- * denominator) divides a UDWtype, composed by the UWtype integers
- * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
- * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less
- * than DENOMINATOR for correct operation.  If, in addition, the most
- * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
- * UDIV_NEEDS_NORMALIZATION is defined to 1.
- */
-
-#define udiv_qrnnd(q, r, n1, n0, d) \
-  __asm__ ("! Inlined udiv_qrnnd
-        mov     32,%%g1
-        subcc   %1,%2,%%g0
-1:      bcs     5f
-         addxcc %0,%0,%0        ! shift n1n0 and a q-bit in lsb
-        sub     %1,%2,%1        ! this kills msb of n
-        addx    %1,%1,%1        ! so this can't give carry
-        subcc   %%g1,1,%%g1
-2:      bne     1b
-         subcc  %1,%2,%%g0
-        bcs     3f
-         addxcc %0,%0,%0        ! shift n1n0 and a q-bit in lsb
-        b       3f
-         sub    %1,%2,%1        ! this kills msb of n
-4:      sub     %1,%2,%1
-5:      addxcc  %1,%1,%1
-        bcc     2b
-         subcc  %%g1,1,%%g1
-! Got carry from n.  Subtract next step to cancel this carry.
-        bne     4b
-         addcc  %0,%0,%0        ! shift n1n0 and a 0-bit in lsb
-        sub     %1,%2,%1
-3:      xnor    %0,0,%0
-        ! End of inline udiv_qrnnd"                                     \
-           : "=&r" ((USItype) (q)),                                     \
-             "=&r" ((USItype) (r))                                      \
-           : "r" ((USItype) (d)),                                       \
-             "1" ((USItype) (n1)),                                      \
-             "0" ((USItype) (n0)) : "%g1", "cc")
-
-#define UDIV_NEEDS_NORMALIZATION 0
+/* Exception flags. */
+#define FP_EX_INVALID		(1 << 4)
+#define FP_EX_OVERFLOW		(1 << 3)
+#define FP_EX_UNDERFLOW		(1 << 2)
+#define FP_EX_DIVZERO		(1 << 1)
+#define FP_EX_INEXACT		(1 << 0)
 
-#define abort()								\
-	return 0
+#define FP_HANDLE_EXCEPTIONS return _fex
 
-#ifdef __BIG_ENDIAN
-#define __BYTE_ORDER __BIG_ENDIAN
+#ifdef __SMP__
+#define FP_INHIBIT_RESULTS ((current->tss.fsr >> 23) & _fex)
 #else
-#define __BYTE_ORDER __LITTLE_ENDIAN
+#define FP_INHIBIT_RESULTS ((last_task_used_math->tss.fsr >> 23) & _fex)
 #endif
 
-/* Exception flags. */
-#define EFLAG_INVALID		(1 << 4)
-#define EFLAG_OVERFLOW		(1 << 3)
-#define EFLAG_UNDERFLOW		(1 << 2)
-#define EFLAG_DIVZERO		(1 << 1)
-#define EFLAG_INEXACT		(1 << 0)
+#endif

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)